These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1.1

The International Seismological Hummary. January, February, March. 1949

10

INTERNATIONAL GEODETIC AND GEOPHYSICAL UNION. ASSOCIATION OF SEISMOLOGY. FORMERLY THE BULLETIN OF THE BRITISH ASSOCIATION SEISMOLOGY COMMITTEE.

The Director of the I.S.S. wishes to express his thanks to U.N.E.S.C.O. and H.M. Treasury for financial support, which has covered the cost and preparation of this volume.

This number constitutes the beginning of the thirteenth volume of the International Seismological Summary in which travel times and Epicentral distances are calculated with reference to "Geocentric" latitudes of epicentres and observing stations. The travel-times used in making determinations are those contained in "Seismological Tables" by H. Jeffreys and K. E. Bullen, British Association for Advancement of Science-London, 1950, and residuals derived accordingly.

Distances are calculated from modified direction-cosines defined by :

 $A = \cos \phi' \cos \lambda$ $\mathbf{B} = \cos \phi' \sin \lambda$

$C = \sin \phi'$

 λ being the east longitude from Greenwich and ϕ' the geocentric latitude whose relationship to the ordinary geographic latitude ϕ is :---

 $\tan \phi' = .99328 \tan \phi$.

These formulae are used to determine direction-cosines of both epicentre and station, though the position is in every case referred to normal ϕ and λ .

The notation is that generally accepted. P and S stand for the times of onset of the direct longitudinal and transverse waves. Pg, Sg, P*, S* for short distances are used for times of these waves transmitted through the superficial "Granitic" and "Intermediate" layers respectively. Reflections of the direct waves at the earth's surface are denoted by PP, PS, PPP, SS . . . and at the outer surface of the central core by PcP, PcS . . .

The refracted longitudinal wave through the central core is known as K. Such waves as PKP, SKS, PKS, SKKS, are frequently recorded at great distances from the epicentre. All times are given as Greenwich Civil Time and are referred to the adopted T_0 as zero,

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

2

The arrangement of the "Summary" consists of :---

- (1) Date and Time at Origin (T_0) , calculated from the above-mentioned tables, together with the depth of focus where this is assumed not to be in the surface. The time calculated is that at which the P wave leaves the focus, not that when P arrives at the epicentre.

Epicentre constants :---(2)

from which distances, Δ , and where necessary Azimuths, of stations with respect to the epicentre may be calculated by means of the formulae :---

$$cos \Delta = aA + bB + cC$$

$$2-2 cos \Delta = (a - A)^{2} + (b - B)^{2} + (c - C)^{2}$$

$$sin Az = -(aD + bE) cosec. \Delta$$

$$cos Az = -(aG + bH + cK) cosec. \Delta$$

a, b, c being related to the observing station in the same way as A, B, C are to the epicentre.

 δ is defined as the nearest integer to $10^{5}(A^{2}+B^{2}+C^{2}-1)$ and may be used to compare distances calculated by the first two formulae above, whose equivalence depends on the assumption

$$A^2 + B^2 + C^2 = 1$$

h is the height, in kilometres, of the epicentre above the sphere of equal volume concentric with the earth and is given by

 $h = -3.549 + 10.788 \cos 2 \phi$

- The tabular matter consisting of the station names arranged in (8) order of epicentral distances, followed by this distance and the Azimuth measured round the epicentre from North through East. Other columns give the P phase and its residual, or PKP, in which the residual is shown in brackets []. The S phase or an associated phase follows with its residual. If SKS is entered here the residual is shown in [], and if SKKS in {}. Under "Supp" is placed the time of some other, preferably well recorded phase such as PS, SS, or, in the case of deep focus shocks, pP. The final column, L, records the onset, if known, of Rayleigh waves R, or of the horizontally polarised surface waves Q.
- (4) Readings for which space is not available in the tabular part, added at the foot.

The letters E, N, Z after a phase indicate that the reading was taken on an instrument recording East-West, North-South, or Vertical component of motion, though some stations have instruments oriented to record North-East or North-West components, Reflections near

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

8

۲

the epicentre take place, and in the case of deep focus earthquakes can be distinguished from the direct phases. These are distinguished as pP, sS, sP, pPP—the small p and s referring to the initial portion of the path towards the surface.

The letters a, k after a P or PKP phase stand for the terms "Anaseismic" and "Kataseismic," and indicate whether the first longitudinal motion was one away from the focus or towards it.

The epicentres for earthquakes with abnormal focal depth are calculated from travel times appropriate to them in the tables cited above. The depth to be assumed can be obtained from these tables when the observational data are plentiful, and the epicentre then determined in the usual way. When the data are scanty an indication of depth can be obtained from the evidence of the readings of certain individual stations.

The first quarter for 1949 contains 131 epicentres, 84 of which are repetitions from previous epicentre.

Cases of abnormal depth are noted below :---

Jan. 2d. 4h. 3.0N. 97.0E. 0.020

	2d.	8h.	21.6N.	143·4E.	0.020
	3d.	18h.	42.5N.	82·5E.	0.005
	9d.	10h.	23·3S.	66-4W.	0.030
	13d.	8h.	26.0S.	178.0E.	0.100
	13d.	9h.	Undetermine	ed shock.	Suggested Deep.
	28d.	6h.	11.7S.	92·4E.	Suggested Deep.
	24d.	9h.	22·2S.	176·1W.	0.012
•	2d.	17h.	52·8N.	178·2W.	0.030
	5d.	20h.	19·6N.	69·4W.	0.020
	6d.	9h.	18·5N.	146·0E.	0.020
	9d.	17h.	39.9S.	174·2E.	0.025
	13d.	18h.	32·8S.	178·1W.	Suggested Deep.
	13d.	20h.	20.8S.	69.0W.	0.010
	26d.	21h.	42·3N.	142·4E.	0.005
	28d.	4h.	Undetermine	ed shock,	Suggested Deep,

Feb.

r.co.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

4

Mar.	4d.	1h.	°.85.	° 102·2E.	Suggested Deep.
0-01-0-01-	4d.	10h.	36.7N.	70·5E.	0.030
	7d.	14h.	Undetermine	ed shock.	Suggested Deep.
	9d.	14h.	15·8S.	174·2W.	0.020
	11d.	19h.	36.7N.	70·5E.	0.030
	13d.	12h.	12.5S.	106·5E.	0.010
	13d.	18h.	21.0S.	67.5W.	0.002
	16d.	22h.	5.4S.	151·3E.	Suggested Deep.
	17d.	3h.	33·9N.	139·6E.	0.010
	17d.	21h.	5.4S.	151·3E.	Suggested Deep.
	18d.	3h.	42·4N.	147·0E.	0.025
	19d.	18h.	31.6N.	130·4E.	0.025

Thanks are also due to the Director of the Meteorological Office and the Superintendent of Kew Observatory for hospitality extended

to the Staff and assistance with administration.

KEW OBSERVATORY, Richmond, SURREY.

November, 1956.

٣

•

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1949

5

1949 JANUARY, FEBRUARY, MARCH.

Jan. 1d. 1h. 17m. 53s. Epicentre $36^{\circ} \cdot 9N$. $121^{\circ} \cdot 7W$. (as on 1948, June 20d.). $A = -\cdot 4213, B = -\cdot 6821, C = +\cdot 5978; \delta = +12; h = -1;$ $D = -\cdot 851, E = +\cdot 525; G = -\cdot 314, H = -\cdot 509, K = -\cdot 802.$ \triangle Az. P. O-C. S. O-C. Supp. L.

		0	•	m. s.	s.	m. s.	s.	m. s.		m.
Lick		0.4	6	i0 11	- 2	i0 23	+ 2	i0 17	S*	
Santa Clara		0.5	336	e 0 13	- 1	i0 20	- 3			
Berkeley		1.1	335	10 21a	- 1	i 0 37	-2			
Fresno		1.5	96	e 0 27	- 1	i047	-2	i0 30	$\mathbf{P}_{\mathbf{g}}$	
Tinemaha		2.8	86	i046	- 1	i 1 21	- 1			
Santa Barbara		2.9	147	i0 48	0					
Reno	N.	3.0	29	i0 53	+ 3	i 1 38	Sg	i0 56	\mathbf{P}^*	
Haiwee	E.	3.1	104	e 0 53	+ 2	i1 34	+ 5			
Mineral		3.4	1	0 56k	+ 1	i1 40	+ 3	i1 9	$\mathbf{P}_{\mathbf{z}}$	-
Shasta Dam		3.8	352	e 0 59	- 2	-		i2 7	Sg	-
Pasadena		4.0	131	i1 1	- 3	e 1 48	- 4			-
Boulder City		$5 \cdot 6$	98	i 1 27	0					
Pierce Ferry		6.2	94	e 1 35	0					-
Tucson		10.1	114	e 2 33	+ 5	e 4 21	- 4	e4 2	8	e 5·1
Hungry Horse		12.7	24	i 3 10	+ 5	istan <u>sana</u> Tanan	s . 1 9		1. 200	—

Additional readings :---

Mineral iZ = 0m.59s., iN = 1m.3s. and 1m.6s., iSN = 1m.45s., iN = 1m.55s.Shasta Dam i = 2m.11s.

Jan. 1d. Readings also at 0h. (Boulder City, Pierce Ferry, Shasta Dam, near Andijan and Obi-garm), 1h. (Nanking and near Frunse), 2h. (Hungry Horse and near Shasta Dam), 3h. (Ksara, Klyuchi, Boulder City, Pierce Ferry, Hungry Horse, Shasta Dam, Tucson, Pasadena, Riverside, Palomar, and Tinemaha), 5h. (Pierce Ferry and near Shasta Dam), 7h. (near Shasta Dam (2)), 8h. (near Shasta Dam), 9h. (Boulder City, Pierce Ferry, Salt Lake City, Tucson, and Uccle), 10h. (Pierce Ferry and near Shasta Dam (2)), 11h. (near Shasta Dam (2)), 12h. (La Paz and near Shasta Dam (2)), 13h. (Pierce Ferry, Hungry Horse (2), and near Shasta Dam), 14h. (Pierce Ferry, Hungry Horse, Shasta Dam, near Messina, near Berkeley, Lick, Fresno, Mineral, Reno, and Santa Clara), 15h. (Boulder City (2) and Tucson), 16h. (Ashkabad), 17h. (Tucson), 18h. (Kew, Pierce Ferry, and near Shasta Dam), 19h. (Bombay, Hyderabad, Kodaikanal, Poona, Boulder City, Pierce Ferry, Tucson, Pasadena, and Palomar), 20h. (Salt Lake City), 23h. (Boulder City, Hungry

Horse, Pierce Ferry, Tucson, La Paz, Bogota, and near Huancayo).

Jan. 2d. 4h.	44m.		and the second second second second		1.1.1.1.1.1.1.1	97°.0E. . 14d.).	Depth	of focus	3 0·020.		
	 The state of the state of the state 	·1217, ·993, E	2 C 2 C 2 C 2 C 2 C 2 C 2 C 2 C 2 C 2 C		the second se	$= + \cdot 0520$ $= - \cdot 00$	and the second se	-1; ∙052, ŀ	$h = +7;$ $\zeta =999.$		
		Å	Az.	Р. m.	and the second se	0 – C.	s. m. s.	0 - C. s.	m. s.	op.	L . m.
Batavia Colombo Kodaikanal Calcutta Hyderabad	Z. E. E. N.	$13.4 \\ 17.5 \\ 20.7 \\ 21.2 \\ 23.2$	$134 \\ 283 \\ 293 \\ 338 \\ 10$	i43 e43	4 123 37 39 55	-13 + 8 + 5 + 2	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	-1 + 39 + 8 + 10 + 4	$\frac{-}{844}$ 956		$10 \cdot 7 \\ 10 \cdot 1 \\ - 1$
Poona Bombay Murgab Obi-garm Andijan		27 ·4 28 ·4 41 ·0 43 ·4 43 ·7	305 305 332 329 332	17 1 17 4	19 19 28 16 50	$^{+9}_{-53}$ $^{-1}_{-2}$ $^{-1}_{-1}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	+ 9 $+ 21$ $+ 11$ $+ 17$		ss ?	
Stalinabad Frunse Samarkand Tashkent Tchimkent		43.8 44.4 45.5 45.6 46.2	328 337 327 331 333	e75 e8	19 58 58? 9	-22 +20 -81	i 14 19 e 14 37 i 14 46 i 14 48 i 14 58	$^{+10}_{+19}_{+12}_{+13}_{+14}$	e 9 28	$\mathbf{P}_{\mathbf{c}\mathbf{P}}$	
Irkutsk Grozny Leninakan Sverdlovsk Brisbane	z.	$49.5 \\ 60.5 \\ 60.7 \\ 61.0 \\ 61.8$	$7\\320\\316\\339\\124$	e 9 5 9 5 9 5	34 59 57 57	-22 + 40 - 22 - 14	e 15 46 i 18 18	$+\frac{16}{16}$	e 10 26 i 18 39	PP PS	

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

		Δ	Az.	P		0 – C.	and the second	о−с.	Su	op.	L.
		0	0	m.	8.	s.	m. s.	8.	m. s.		m.
Piatigorsk		62.6	319	e 10	2	- 7					
Riverview	N.	62.7	131		-		i 18 18	- 0	11 0	- D	e 28·9
Helwan		67.5	302	10	36	- 5	19 30	+ 8	e 24 0	pP SS	
Theodosia		68·1	318	e 10	46	+ 2	19 52	+22	e 24 0	ବବ	100
Moscow		70.7	330	e 10	57	- 3	e 20 10	-10			
Christchurch		81.7	135	_			37 429	8			
Stuttgart	z.	86.3	318	e 12	22	- 3			e 12 48	\mathbf{pP}	-
Tamanrassett	z.	90.2	293	e 12	29	-14			i 12 53a	\mathbf{pP}	
Hungry Horse		122.1	24	i 18	31	[- 5]			e 20 9	\mathbf{PP}	
Shasta Dam		123.6	35	e 18	28	[-10]	Boresto III	100	e 20 17	\mathbf{PP}	
Lick	z.	126.2	38	i 18	46k	[+ 3]			i 18 51a	pPKP	
Tinemaha	z.	128.4	37	e 18	46	(-2)	e 22 4	PKS		120	-
Logan		128.7	27	e 18	38	[−10]					
Pasadena	Z.	130.4	39	i 18	49	[- 3]			e 21 4	\mathbf{PP}	-
Boulder City		131.1	34	e 18	50	[- 3]					
Pierce Ferry		131.5	33	e 18	50	[-4]			e 21 13	\mathbf{PP}	
Palomar	z.	131.7	38	e 19	4	į+10j			e 21 30	\mathbf{PP}	
		136.1	35	e 18	55	1 - 71			e 21 45	\mathbf{PP}	
Tucson		160.2	226	i 19	44	(+ 4)		, .			76.7

Irkutsk SS = 19m.42s. Helwan PcPZ =10m.48s., PPZ =13m.16s., PPPZ =14m.56s. Stuttgart eZ =15m.44s. Tamanrasset iZ = 12m.43s.k. Shasta Dam i = 20m.45s. Pasadena eZ = 22m.8s. Tucson e = 19m.16s. Long waves were also recorded at Auckland, Wellington, Ksara, Kew, College, and Bozeman.

Jan. 2d. 8h. 49m. 38s. Epicentre 21°.6N. 143°.4E. Depth of focus 0.020.

 $A = -.7471, B = +.5548, C = +.3660; \delta = -8; h = +4;$ D = +.596, E = +.803; G = -.294, H = +.218, K = -.931.

		Δ	Az.	Р.	0 – C.	_s.	0 – C.	Sul	op.	L.
Mizusawa Vladivostok Irkutsk Batavia Brisbane	E.	$ \begin{array}{r} 0 \\ 17 \cdot 7 \\ 23 \cdot 5 \\ 42 \cdot 9 \\ 42 \cdot 9 \\ 45 \cdot 3 \\ 49 \cdot 7 \\ 49 \cdot 7 \\ \end{array} $	$354 \\ 339 \\ 326 \\ 237 \\ 169 \\$	m. s. 3 59 i 4 57 i 7 44 i 8 6a i 8 38	s. + 1 + 1 + 3 + 1	m. s. 7 9 i 8 56 i 13 54 i 14 30 i 15 28	8. + 2 + 12 + - 2 5	m. s. i $\overline{9}$ 35 8 8 i $\overline{9}$ 20	sS pP pP	m.
Riverview Almata Frunse Murgab College		$55.6 \\ 58.6 \\ 60.3 \\ 61.1 \\ 61.7$	$173 \\ 309 \\ 308 \\ 303 \\ 27$	$\begin{array}{cccccccc} i & 10 & 7 \\ i & 9 & 43 \\ e & 9 & 55 \\ 10 & 0 \\ - & - \end{array}$	pP + 1 + 1 + 1	e 16 55 i 17 31 e 17 54 18 3 e 18 2	$+ 2 \\ - 1 \\ - 0 \\ - 9$	i 10 30 e 19 22	pP 	e 24·3
Andijan Tchimkent Obi-garm Tashkent Poona	E.	$\begin{array}{r} 62 \cdot 1 \\ 64 \cdot 0 \\ 64 \cdot 4 \\ 64 \cdot 4 \\ 64 \cdot 9 \end{array}$	$306 \\ 308 \\ 304 \\ 307 \\ 282$	i 10 4 i 10 15 i 10 19 e 10 24 i 10 24	- 2 - 4 - 2 + 3 0	i 18 12 i 18 33 i 18 41 i 18 43 i 18 48	- 4 - 7 - 23	 i 19 36 10 45	sS pP	
Stalinabad Auckland Samarkand Sitka Sverdlovak	N.	$\begin{array}{r} 65\cdot 1 \\ 65\cdot 3 \\ 66\cdot 3 \\ 67\cdot 4 \\ 68\cdot 3 \end{array}$	$304 \\ 153 \\ 305 \\ 36 \\ 325$	$\begin{array}{r} \mathbf{i} \ 10 \ \ 25 \\ \mathbf{e} \ 10 \ \ 34 \\ 10 \ \ 46 \end{array}$	$-\frac{1}{-1}$ + $\frac{1}{-0}$	i 18 52 20 0 e 19 7 e 19 17 i 19 27	-2 -3 -1 -4 -5	19 46 	sS sS	e 27.5
Wellington Christchurch Victoria Shasta Dam Mineral	z.	$69.0 \\ 70.1 \\ 76.2 \\ 79.3 \\ 80.0$	$156 \\ 158 \\ 44 \\ 51 \\ 51$	$ \begin{array}{r} 11 & 42 \\ 12 & 2 \\ 1 & 11 & 48 \\ 1 & 11 & 52 \\ \end{array} $	pP pP 1 1	19 34 19 46 1 20 57 e 21 27	$-\frac{6}{7}$	$i \begin{array}{ccc} 20 & 40 \\ 1 & 12 & 35 \\ 1 & 12 & 44 \\ \end{array}$	sS pP pP	28.7 29.7

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1949					7			
Berkeley Grozny Moscow Lick Reno	z. z.	∆ 80·3 80·8 80·9 81·0 81·6	Az. 54 313 327 54 52	P. m. s. i 11 54k 11 59 11 54 11 54 11 57 a i 12 1	0 - C. s. + 2 - 4 - 1 0	S. $O - C$. m. s. s. i 21 43 - 2 21 45 - 5 i 21 44 - 7 	Supp. m. s. i 12 2k pP	L. m.
Hungry Horse Piatigorsk Fresno Erevan Leninakan		$82.1 \\ 82.4 \\ 82.6 \\ 82.8 \\ 83.1 \\ 83.1 \\ $	$41 \\ 315 \\ 54 \\ 311 \\ 312$	i 12 3 12 5 i 12 6 e 12 8 e 12 13?	$-1 \\ 0 \\ 0 \\ +1 \\ +4$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
Tinemaha Pasadena Palomar Logan Boulder City	z.	83.6 84.8 86.1 86.3 86.6	$53 \\ 56 \\ 56 \\ 47 \\ 53$	i 12 12 i 12 17 a e 12 22 i 12 22 e 12 22 e 12 25	$+ 1 \\ 0 \\ - 2 \\ - 3 \\ - 1$	i 22 24 $-\overline{6}$ i 22 24 $-\overline{6}$ i 22 46 $+\overline{1}$ e 22 39 $[+5]$	i 13 5 pP i 13 9 pP e 13 9 pP	e 34·4
Pierce Ferry Tucson Ksara Helwan Stuttgart	z.	$87.1 \\ 91.1 \\ 91.8 \\ 97.0 \\ 98.9$	53 55 307 306 332	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-100 - 200 - 200	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	e 22 38 SKS e 23 2 SKS i 16 34 PP e 24 26 S	
St. Louis Tamanrasset Bogota Huancayo La Paz	z.	$101.8 \\ 119.7 \\ 135.0 \\ 141.8 \\ 149.8$	$40 \\ 316 \\ 59 \\ 82 \\ 85$	i 18 33k i 22 11 e 19 13 i 19 30	[+2] PKS [0] [+4]	i 24 1 [+ 2] 	i 26 42 PS e 19 57 PP e 22 31 PP	 71·4

Additional readings :---Vladivostok iPP =5m.35s. Irkutsk pP =8m.0s., sS =14m.42s.?, SS =17m.16s. Brisbane iZ =13m.31s., iE =16m.49s. Riverview eSE =18m.12s., iE =18m.17s., eSSE =18m.55s. College eSS =22m.22s. Tashkent ePPP =12m.30s. Poona sSE =19m.41s., iE =19m.53s. Stalinabad iS_cS =19m.57s. Sverdlovsk iSS =24m.2s., i =27m.24s. Christchurch SSEN =24m.38s. Mineral iZ =12m.7s. Berkeley iN =21m.28s., iE =21m.40s., iZ =22m.26s., iN =23m.5s.

Reno
$$eS = 12m.54s$$
.
Fresno $eSE = 22m.5s$.
Pasadena $iZ = 13m.12s$., $eSEN = 22m.20s$., $iEZ = 23m.20s$.
Logan $eS = 22m.26s$.
Tucson $e = 14m.8s$. and $15m.39s$., $esS = 24m.9s$., $e = 27m.32s$.
Helwan $eZ = 17m.15s$., $eN = 25m.0s$.

Jan. 2d. 12h. 50m. 22s. Epicentre 24°.9N. 63°.5E. (as on 1948, Jan. 30d.).

 $A = +.4052, B = +.8127, C = +.4187; \delta = -2; h = +3;$ D = +.895, E = -.446; G = +.187, H = +.375, K = -.908.

		\wedge	Az.	Р.	0-C.	s.	0 – C.	Su	pp.	L.
			0	m. s.	8.	m. s.	8.	m. s.		m.
Poona		11.5	121	i 2 42	- 6	5 3	+ 4	3 15	\mathbf{PPP}	
Ashkabad		13.7	343	3 20 ?	+ 2	<u> </u>				
Stalinabad		14.3	17	i 3 21	5	i 6 12	+ 6	i626	SS	-
Obi-garm		14.7	19	1 3 25	- 6					-
Samarkand		15.0	10	i 3 34	- 1					
Hyderabad		15.8	115	3 42	- 3	6 47	+ 5	7 21	SSS	
Murgab		16.1	31	3 44	5	6 58	+ 9			
Tashkent		17.1	15	e 3 56	- 6	e 7 13	+ 1			
Andijan		17.4	23	i4 3	- 3					
Tchimkent		18.1	15	i4 11	- 3	2 0000		3		
Baku		19.2	327	i 4 42	+14					
Kodaikanal	E.	19.7	135	i4 40	+ 6	i 8 23	+13			10.2
Frunse	242.04	20.1	24	i4 36	- 2			3		
Almata		21.4	27	i4 49	- 2					
Erevan		22.0	319	e54	+ 6	_		1.		-

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1949					8					
Leninakan		Δ 22.8	Аz. 319	P. m. s. e 5 16	0 - C. s. +11	m. s.	0 – C. s.	m. s.	pp. PP	L. m.
Calcutta Grozny Colombo Piatigorsk	Е. Е.	$22.9 \\ 23.4 \\ 23.8 \\ 25.3$	$90 \\ 326 \\ 137 \\ 324$	$ \begin{array}{cccc} i & 5 & 2 a \\ i & 5 & 18 \\ 5 & 3 \\ e & 5 & 34 \\ e & 5 & 34 \\ \end{array} $	-4 + 7 + 7 + 12 + 4		$+\frac{0}{-}$	i <u>5</u> 34		14-7
Ksara Helwan Yalta Sverdlovsk Istanbul		$25.6 \\ 28.9 \\ 30.8 \\ 32.0 \\ 32.8 \\ 32.8 \\ \end{array}$	$297 \\ 288 \\ 317 \\ 357 \\ 308 \\$	$ \begin{array}{r} i 5 & 39 \\ i 6 & 8a \\ i 6 & 31 \\ e 6 & 43 \end{array} $	$+ \frac{7}{5}$ + 1 + 6	i 10 31 e 11 0 e 11 40 i 11 49	+32 + 77 + 77 + 77	7 0 i 13 54	\overline{PP}	 21·3
Moscow Belgrade Irkutsk Ogyalla Messina		$36.2 \\ 40.0 \\ 41.2 \\ 42.3 \\ 42.5$	$336 \\ 311 \\ 38 \\ 315 \\ 301$	i 7 6e 7 41ki 7 46e 9 20e 8 4?	$^{+}_{-2}^{0}_{2}^{0}_{PP}_{+5}^{0}$	e 13 0 e 13 35 13 54 9 e 14 26	$^{+13}_{-9}_{-8}_{+7}$	i 8 30 9 22	PP PP	e 30-4
Triest Rome Tananarive Bologna Collmberg	z.	$44.8 \\ 45.2 \\ 46.2 \\ 46.3 \\ 46.5$	$311 \\ 306 \\ 202 \\ 310 \\ 319$	$ \begin{array}{r} 8 & 18 \\ 8 & 22 \\ e & 8 & 34 \\ e & 8 & 34 \\ e & 8 & 34 \\ \end{array} $	$+ 1 \\ + 2 \\ + -5 \\ + 3$	i 15 11 15 19 e 16 22	$^{+16}_{+18}_{+67}$	$1\overline{8}$ 43 e 10 12	\overline{ss}	e 23.7 e 24.6
Salo Upsala Stuttgart Zürich Strasbourg	z.	$47.0 \\ 47.1 \\ 48.4 \\ 48.6 \\ 49.3$	$311 \\ 330 \\ 315 \\ 313 \\ 315 \\ 315$	e 8 33a i 10 51a e 8 46a e 8 48a e 8 54	$ \begin{array}{c} - 2 \\ PP \\ 0 \\ + 1 \\ + 1 \end{array} $	e 19 8		e 19 16 e 9 37 e 9 46	$\frac{\overline{?}}{\mathbf{P_cP}}$	e 27.6 32.6 e 25.1
Uccle Clermont-Ferran Batavia Tamanrasset Paris	E. Id Z.	51.7 52.2 52.3 52.7 52.8	$317 \\ 320 \\ 120 \\ 282 \\ 314$	e 9 22 e 9 1 i 9 22 a i 9 21	+7 +14 +4 +2	e 16 38? i 17 50	$+\frac{6}{70}$	$e 10 19 \\ e 10 31 \\ i 10 44$	$\begin{array}{c} \mathbf{P}_{c}\mathbf{P}\\ \mathbf{P}_{c}\mathbf{P}\\ \mathbf{P}_{c}\mathbf{P} \end{array}$	e 34.6
Kew Vladivostok Hungry Horse Mineral Pierce Ferry	z.	$54.7 \\ 58.0 \\ 106.3 \\ 114.9 \\ 119.3$	$317 \\ 54 \\ 358 \\ 4 \\ 357$	e 4 38? e 18 4 e 19 42 e 18 51	$\begin{bmatrix} -\frac{1}{24} \\ PP \\ I & 0 \end{bmatrix}$	i 17 52	- 5	e 1919	PP 	e 29·6
Christchurch		120.2 199.0	127	o 19 1	[4. 3]	22 381	PKS	e 20 31	\overline{PP}	e 73·2

Tucson 122.9353 e 19 1 [+ 3] the second second e 20 51 1.1 0104 70.3 \mathbf{PP} 270 i 19 25 [+ 5] i 22 56 PKS i 21 55 134.2La Paz e 70·2 Q e 50 41 280 e 37 13 e 40 52 SS 139.13 Huancayo Additional readings :---Poona $P_{g}EN = 3m.43s.$, iSE = 4m.38s., iSN = 4m.41s., SEN = 5m.35s. Calcutta iSSE =10m.1s. Helwan PPPZ = 7m.15s., iN = 11m.14s., 12m.0s., and 12m.44s. Moscow eSS = 15m.50s.Tananarive e = 19m.7s. and 19m.27s.

Collmberg eZ = 8m.44s., eE = 10m.29s.

Stuttgart eZ = 8m.56s. and 9m.10s.

Clermont-Ferrand e = 9m.51s.

Tamanrasset iZ = 9m.56s.k, eZ = 11m.50s.

Paris i = 9m.31s.

.

Long waves were also recorded at Dehra Dun, Riverview, Auckland, Wellington, Ivigtut, De Bilt, Potsdam, and at other North American stations.

Jan. 2d. 18h. 1m. 44s. Epicentre 35°.5N. 27°.2E. (as on 1948, Oct. 19d.).

A = +.7258, B = +.3730, C = +.5781; $\delta = +11$; h=0; D = +.457, E = -.889; G = +.514, H = +.264, K = -.816.

		Az.	P. m. s.	0 - C.	m. s.	о – С. s.	m. s.	op.	L . m.
Istanbul Helwan	5.8 6.6	$14\\147$	e 1 57 1 39	P_{z}	$\begin{smallmatrix}3&6\\2&50\end{smallmatrix}$	Sg_8	3 12	s.	
Ksara Sofia Bucharest	7 · 4 7 · 8 8 · 9	101 339 355	e 1 47 e 2 0		e 7 6 e 4 14	$+\frac{1}{19}$	$e^{\frac{-}{4}}33$	<u>s</u> •	e 5·3 5·3

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1949					9					0.42
		Δ	Az.	Р.	0 – C.	s.	0 – C.	Su	pp.	L.
		0	0	m. s.	5.	m. s.	8.	m. s.		m.
Messina	N.	9.7	289			e 4 10	- 5	e 4 21	3	
Zürich	z.	18.3	317	e 4 23	+ 6					
Stuttgart	200	18.7	322	e 4 25	+ 6 + 3 - 2			e 4 46	\mathbf{PPP}	
Collmberg	E.	19.1	331	e 4 25	- 2	-				
Strasbourg	0.00	19.4	320	e 4 34	+ 4			e 4 40	\mathbf{PP}	
Clermont-Ferra	nd	20.9	307	e 4 43	- 3			e 5 11	\mathbf{PP}	
Paris	TTCE	22.5	314	i5 6	+ 4			e 5 22	\mathbf{PP}	
Tamanrasset	z.	22.7	242	e 5 10	+ 6			i 5 46	\mathbf{PPP}	
Ottawa	z.	73.6	315	e 11 37	0			C		
Hungry Horse		89.6	335	i 13 0	- 1			i13 6	$P_{c}P$	

Additional readings :---Helwan eZ = 2m.22s. Bucharest eN = 4m.47s., eE = 5m.0s., iE = 5m.14s. Stuttgart e = 4m.33s. Tamanrasset iZ = 5m.17s. and 5m.23s.

Jan. 2d. 22h. Intensity 4.5 in Nevada. U.S.C.G.S. gives 38°.7N. 119°.0W. but data is inconsistent.

```
Reno iPNZ =4m.20s.
Tinemaha iPEZ =4m.25s., iSE =6m.20s.
Fresno iPZ = 4m.31s., iPE = 4m.34s., iSEN = 5m.4s., iN = 5m.31s..
Lick iPEZ =4m.41s.k, iNZ =4m.46s.a, iN =5m.16s. and 5m.19s.
Mineral iPZ = 4m.43s.k, iZ = 4m.48s.k, iE = 4m.51s., iN = 4m.54s., iEN = 5m.7s. and
    5m.28s.
Berkeley iPZ = 4m.48s., iZ = 4m.51s. and 4m.57s., iE = 5m.17s.
Shasta Dam iP = 4m.52s., iS = 5m.1s., i = 5m.50s.
Branner iPZ = 4m.52s.k, eE = 4m.55s., iZ = 4m.58s., iN = 5m.31s., iSN = 5m.34s.
San Francisco iPEN =4m.53s., iSEN =5m.32s.
Boulder City eP = 5m.0s., i = 6m.4s.
Pierce Ferry eP = 5m.3s., i = 5m.19s.
Pasadena iPZ = 5m.18s.
Logan e = 5m.31s., 5m.49s., and 6m.12s., eS? = 6m.46s., eL = 6m.54s.
Santa Clara ePEN =5m.39s., eSEN =5m.45s.
Hungry Horse iP = 6m.28s., iL = 9m.29s.
Tucson e = 6m.50s., eS? = 7m.47s., eL = 8m.34s.
```

Jan. 2d. Readings also at 0h. (Stuttgart, Ksara, Boulder City, Hungry Horse, Logan, Pierce Ferry, Shasta Dam, Tucson, Pasadena, Palomar, Tinemaha, Wellington, Christchurch, Auckland, and near Apia, more than one shock), 1h. (Almata, near Andijan, Murgab, Tashkent, Tchimkent, Stalinabad, and Samarkand), 2h. (Piatigorsk, near Leninakan, Erevan, and Grozny), 3h. (La Paz), 4h. (near Balboa Heights and Bogota), 5h. (Tucson), 6h. (near Andijan and Tchimkent), 8h. (near Hungry Horse), 14h. (Boulder City, Hungry Horse (2), Pierce Ferry (2), Shasta Dam (2), Ashkabad, and near Mizusawa), 15h. (near Leninakan, Erevan, Piatigorsk, and Grozny), 16h. (near Tucson), 17h. (La Paz), 21h. (Tacubaya), 22h. (Hungry Horse).

Jan. 3d. 13h. 43m. 36s. Epicentre 35°.0N. 116°.5W. (as on 1948, Dec. 18d.).

A = -3663, B = -7347, C = +5710; $\delta = 0$; h = 0; D = -895, E = +446; G = -255, H = -511, K = -821.

		$\stackrel{\Delta}{\circ}$	Az.	Р. m. s.	O - C.	S. m. s.	O - C.	m. s.	op.	L. m.
Riverside		1.2	216	i0 26	+ 2	i041	0		2 	
Pasadena		1.6	238	î 0 31	± 1	i 0 51	0	_		
Boulder City		1.7	54	i 0 30	- î					
Palomar		1.7	190	i 0 32	+ 1	-			1 	
Pierce Ferry		2.3	61	i 0 40	0			1		
Tinemaha	z.	2.5	326	i0 43	0			-	-	
Tucson	***	5.5	118	i 1 23	- 2	e 2 20	-10	i1 44	$\mathbf{P}_{\mathbf{g}}$	i 2 · 9
Shasta Dam		7.3	322	e 2 22		i 3 46	S*			
Logan		7.7	27	e 2 22	P.					e 3·5
Hungry Horse		13.5	7	i4 26	+71			Second	100 2	

Tucson also gives i = 1m.37s., iS = 2m.24s., i = 2m.32s., and 2m.40s.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1949

10

Jan. 3d. 18h. 11m. 22s. Epicentre 42°·5N. 82°·5E. Depth of Focus 0·005. (as on 1947, Dec. 19d.).

Almata		$4 \cdot 2$	284	el 1	-2	i 1 57	+ 5	
Frunse		5.8	266	e 1 29	+ 4	i 2 41	+ 9	
Murgab		7.7	241	1 58?	+ 6	2 16?	63	
Andijan		7.8	260	e 1 59	+ 6	e 3 26	+ 5	
Tchimkent		9.6	275	i 2 18	Ő	6	· · · · ·	
Tashkent		9.9	265	e 2 24	+ 2	e 4 15	+ 3	
Obi-garm		10.4	253	i 5 18?	3	2	1. 1. 1. 1. 1 .	-
Stalinabad		11.2	254	i 2 40	0	i 4 39	- 5	
Samarkand		12.0	263	e 2 53	+ 3			
Irkutsk		17.7	49	e4 4	+ 1	e715	- 1	
Sverdlovsk		20.0	325	4 28	- 2	8 7	+ 1	
Bombay	E.	24.9	202	2 <u>—1</u>	2 <u>22</u>	e 10 11	+37	
Poona	N.	25.0	200		-	i 10 10	+34	e 13·3
Hyderabad	N.	25.2	190	e 5 15	- 6	10 21	+42	14.9
Grozny	22.0	26.8	285	e 5 37	+ 1		·	
Moscow		31.6	311	e 6 20	+ 1			
Collmberg		46.6	307	e 8 23	0			
Stuttgart	Z.	49.8	305	e 8 47	- 1	<u>1999</u>		
Tamanrasset	z.	65.6	279	i 10 43k	+ 4			
Hungry Horse		88.4	12	e 12 47	+1		_	
Shasta Dam		$94 \cdot 2$	$\tilde{20}$	i 13 13	, Ô	3 135		

Additional readings :---

Stuttgart eZ = 8m.51s.

Tamanrasset eZ = 10m.47s.

Long waves were also recorded at Ksara, Copenhagen, Upsala, De Bilt, and Kew.

Jan. 3d. Readings also at 0h. (Tacubaya), 4h. (Raciborzu), 6h. (Hungry Horse and Shasta

Dam), 7h. (Tacubaya), 9h. (Calcutta, Murgab, and near Ashkabad), 10h. (near Basle), 13h. (near Copiapo and Santa Lucia), 17h. (near Mizusawa), 20h. (Tacubaya), 21h. (near Ashkabad), 22h. (Tacubaya and Hungry Horse), 23h. (La Paz and Tacubaya).

Jan. 4d. 2h. N. Pacific, off coast of China.

Zi-ka-wei ePN = 22m.0s., S = 23m.30s.Nanking eP = 23m.42s., eS = 25m.29s.Andijan eP = 29m.48s.Tchimkent iP = 29m.53s.Tashkent eP = 29m.53s., eS = 37m.8s.Stalinabad eP = 29m.58s. Ksara eP = 33m.1s., eS = 43m.30s.7 Helwan PZ = 33m.28s., eZ = 34m.36s., 35m.20s., and 37m.50s. Victoria eZ = 33m.56s. Calcutta eE = 34m.12s. and 40m.22s. Shasta Dam eP = 34m.14s. Hungry Horse iP = 34m.20s. Pierce Ferry iP = 34m.48s. Strasbourg e = 38m.54s. Bombay eN = 40m.48s., eE = 47m.3s.Poona eEN = 48m.5s.Long waves were also recorded at other European stations.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1949

11

Jan. 4d. 19h. 46m. 51s. Epicentre 34°.9N. 27°.0E. (as on 1948, Sept. 20d.).

A = $+ \cdot 7324$, B = $+ \cdot 3732$, C = $+ \cdot 5696$; $\delta = +13$; h = 0; D = $+ \cdot 454$, E = $- \cdot 891$; G = $+ \cdot 507$, H = $+ \cdot 259$, K = $- \cdot 822$.

		\wedge	Az.	Р.	0-C.	s.	0-C.	Su	op.	L.
		0	•	m. s.	S.	m. s.	8.	m. s.		m.
Helwan		6.2	143	1 34	- 1	2 42	- 6	1 46	\mathbf{P}^{\bullet}	
Istanbul		6.3	14	2 27	+51	4 25	Sg			
		7.4	96	e 2 8	P*	- <u></u> 32				e 5·3
Ksara Triest		14.7	321	ē 3 31	0	e 6 30	+14	<u></u>		
Salo		16.5	315	3 49		e 6 58	0			
Baro		100								
Chur		17.8	318	e 4 11	0			1000		
Zürich		18.6	318	i 4 20	- 1	e8 3	+17			
Stuttgart		19.1	323	e 4 27	. 0	e 8 24	SS	e 4 58	\mathbf{PP}	e 11·2
		19·2	318	e 4 28	C 0					
Basle Collmberg		19 .3	332	e 4 32	+ 3	e 8 21	SS			-
		19.5	330	e 4 34	+ 3	e 8 24	SS		-	
Jena		19.7	321	i 4 37	+ 3 + 3			e 4 53	PP	
Strasbourg		22.3	243	e 4 53	- 8	<u> 21 - 2</u>				<u> </u>
Tamanrasset	z.	22.8	315	05 5	ă	-		-		
Paris		22.0	339	5 11	+3		125		100	100
Copenhagen		$23 \cdot 1$	338	0 11	τ υ					
Var		25.7	318	e4 9	2 3	1000		<u></u>	-	
Kew		71.9	309	i 11 33	Ö					19 11-111
Weston	Z.	73.9	314	e 11 39	0					
Ottawa	64.	80.5	358	i 12 18	+ Š					
College		90.1	335	e 13 5	$^{+3}_{+2}$					
Hungry Horse Boulder City		101.0	328	i 13 59	÷ õ					

Additional readings :--Helwan eZ =1m.39s., S*Z =3m.5s. Stuttgart e =5m.3s. Jena eN =5m.34s. Paris i =5m.22s. Copenhagen i =5m.19s. Long waves were also recorded at Bologna and Rome.

Jan. 4d. Readings also at 1h. (near Granada), 3h. (Nanking and Hungry Horse), 7h. (Auckland, Christchurch, Wellington, Apia, Riverview, Pasadena, Palomar, Tinemaha, Tucson, Boulder City, Pierce Ferry, Reno, Shasta Dam, Lick, Hungry Horse, Victoria, and Stuttgart), 8h. (Victoria, Salo, near Triest (2), Zagreb, and near

Bogota), 9h. (Stuttgart), 11h. (near Stalinabad), 13h. (La Paz), 14h. (Bucharest), 15h. (Tacubaya), 16h. (near Mizusawa), 17h. (Tacubaya), 19h. (near Messina), 20h. (Bucharest, Sofia, Ksara, and near Istanbul), 21h. (Bologna, near Rome, Boulder City, Pierce Ferry, Hungry Horse, near Shasta Dam, and near Murgab).

Jan. 5d. 9h. Loyalty Islands region.

```
Auckland PN =0m.16s., SN =3m.44s., SSN =4m.42s., LN =5.2m.
Brisbane iPEZ =0m.24s., iPPN =0m.43s., iZ =1m.4s., iSE =3m.44s., eSN =3m.47s.,
    iLE = 5m.31s.
Apia eP = 0m.49s.
Riverview iPEZ =1m.20s.k, iSE =5m.16s., iPcPN =5m.27s., iZ =5m.36s., eRZ =6.6m.
Wellington P?Z = 1m.22s., e = 1m.34s., S = 5m.27s., L = 7.2m.
Kaimata PNE = 1m.26s.
Christchurch PNZ =1m.28s., S = 5m.38s., RNZ = 7m.50s.
Arapuni eE = 4m.0s.
Branner iPZ = 9m.9s.a, iZ = 9m.13s.
Berkeley iPZ = 9m.10s.
Pasadena iPZ = 9m.15s.
Fresno iPZ = 9m.16s.
Mineral ePZ = 9m.18s.
Palomar iPZ = 9m.19s.
Hungry Horse iP = 9m.22s.
Reno ePZ = 9m.23s.
Boulder City iP = 9m.31s.
Pierce Ferry iP = 9m.32s.
Tucson eP = 9m.38s., eS = 20m.3s., eL = 37m.7s.
La Paz ePKP? = 15m.10s.
Ottawa eZ = 15m.17s.
Stuttgart eZ =16m.12s.
Ksara e = 24m.23s. and 27m.41s.
```

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1949

12

Jan. 5d. Readings also at 0h. (Copiapo, near Stalinabad, and near Tacubaya), 3h. (College, Hungry Horse, Shasta Dam (2), near Nanking, and Zi-ka-wei), 4h. (La Paz), 6h. (Hungry Horse, Pierce Ferry, and near Mizusawa), 12h. (near Mizusawa), 13h. (Paris), 17h. (Zürich and near Ottawa), 18h. (Tamanrasset, Rome, and near Messina), 19h. (near Messina), 21h. (Tashkent, Samarkand, Tchimkent, near Stalinabad, Obi-garm, Murgab, and Andijan), 22h. (Hungry Horse, Shasta Dam, Stalinabad, Tashkent, near Almata, Murgab, Frunse, and Andijan), 23h. (near Murgab and Andijan).

Jan. 6d. 11h. 42m. 15s. Epicentre 11°.0S. 79°.0W. (as on 1944, June 29d.).

Epicentre as given by U.S.C.G.S.

	$\begin{array}{l} \mathbf{A} = + \\ \mathbf{D} = - \end{array}$			·9638, C -		CALC DATE OF A DESCRIPTION OF A DESCRIPR	-6; ·186, K	h = +6; =982.		
		Δ	Az.	Р.	0 – C.	s.	0 – C.	Suj	эр.	L,
			0	m. s.	s.	m. s.	s.	m. s.		m.
Huancayo		3.8	107	i1 2	+ 1	i1 32	-15	i1 14	$\mathbf{P}_{\mathbf{g}}$	i 1.7
La Paz		11.9	119	e 3 38	+34	i 5 56	SSS			6.9
Bogota		16.3	18	i 3 50	- 2	i6 36	-17			
Tucson		52.7	326	e 9 18	0	200 C 100 C				(100 m)
Pierce Ferry		57.3	327	i 9 51	- 1					
Hungry Horse	13	66.7	336	i 11 26	+31					
College		91.1	337	e 13 7	- 1		\rightarrow			

Additional readings :— Huancayo iS = 1m.23s. Bogota iPP = 3m.57s., $eP_cP = 9m.0s$.

Jan. 6d. 19h. 29m. 8s. Epicentre 46°·1N., 14°·8E. (as on 1939, May 6d.).

Intensity VI at Váce (46° 07'N., 14° 50'E.); IV at Soléava, Dob, Blagovica, etc. Macroseismic radius 27.5km. Epicentre as adopted.

M. D. Uzelac.

Annuaire microséismique et macroséismique de l'Institut Séismologique de Beograd, 1949, Nouvelle Série No. 9, Belgrade, 1950, p. 51.

Intensity IV in Austria with macroseismic area 1600sq. km. Jahrbücher der Zentralanstalt für Meteorologie und Geodynamik, Jahrgang, 1950, Vienna, 1950, Nouvelle Série, Vol. 86, p. E1, with macroseismic chart.

A = + .6728, B = + .1778,	C = + .7182;	$\delta = +8;$	h=-4;
$D = + \cdot 255, E = - \cdot 967;$	G = + .694,	H = + .183,	K =696.

	Δ	Az.	P. m. s.	0 - C.	s. m. s.	0 - C.	m. s.	pp.	L . m.
Zagreb Bologna	0.9 2.9	$\begin{smallmatrix} & & \\ 109 \\ 237 \end{smallmatrix}$	e 0 25	+ 5	e 0 37 e 1 30	+ 3 S*	e 1 44	Sg	
Salo Zürich Stuttgart	3·0 4·5 4·6	$ \begin{array}{r} 260 \\ 289 \\ 308 \end{array} $	$e 1 52 \\ e 1 4 \\ e 1 10$	$^{+62}_{-72}$	2 30 e 2 13 e 2 29	+63 +8 S_g	e 1 26	Pg	
Basle Jena Collmberg Strasbourg	$5.1 \\ 5.2 \\ 5.4 \\ 5.4 \\ 5.4$	$289 \\ 338 \\ 346 \\ 301$	e 1 45 e 2 4 (e 1 24)	$\frac{\mathbf{P}_{g}}{\frac{3}{0}}$	$e 2 45 \\ e 2 14 \\ e 2 46 \\$	Sr S*	e 2 44 2 55	s. s.	

- Jan. 6d. Readings also at 0h. (Boulder City, Hungry Horse, Pierce Ferry, Shasta Dam, Pasadena, Palomar, and Santa Lucia), 2h. (Bombay, Helwan, Ksara, and near Santa Lucia), 3h. (Boulder City, Hungry Horse, Pierce Ferry, and Shasta Dam), 6h. (Almata and Batavia), 7h. (Hungry Horse), 8h. (near Erevan, Leninakan, and Grozny), 10h. (near Stalinabad, Samarkand, and Kulyab), 13h. (Mizusawa and Batavia), 14h. (Hungry Horse), 16h. (Hungry Horse and Pierce Ferry), 17h. (Hungry Horse), 18h. (near Tacubaya), 19h. (near Lick and Branner), 20h. (Santa Lucia), 23h. (Hungry Horse).
- A series of shocks accompanied the eruption of Mauna Loa (Hawaii), of which the principal one was at 5h.59m.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1949

13

Jan. 7d. 17h. 20m. 40s. Epicentre 3°·2S., 148°·2E. (as on 1947, Dec. 25d.).

Approximate.

전성 문

10. 15

Brisbane Riverview Melbourne Batavia Auckland	E. N.	$24.6 \\ 30.6 \\ 34.6 \\ 41.3 \\ 41.5$	$169 \\ 175 \\ 185 \\ 265 \\ 147 \\$	i 5 13 e 6 16 e 7 30 i 9 26 9 55	-10 -2 $+37$ PP PPP	i 9 39 e 11 12 i 12 25 i 17 22 e 16 55	$^{-383}_{++33}$	i 10 31 e 7 15 		$ \begin{array}{r} 1 13 \cdot 9 \\ e 15 \cdot 8 \\ i 15 \cdot 1 \\ \hline 19 \cdot 9 \\ \hline 19 \cdot 9 \end{array} $
Wellington Vladivostok Irkutsk Hyderabad Poona	N.	$44 \cdot 8 \\ 48 \cdot 4 \\ 66 \cdot 5 \\ 71 \cdot 7 \\ 76 \cdot 2$	$151 \\ 344 \\ 333 \\ 289 \\ 290$	$ \begin{array}{r} 10 & 15 \\ e & 8 & 45 \\ \hline e & 12 & 51 \\ e & 11 & 57 \\ \end{array} $	$\frac{PP}{-1} \\ + 5$	$\begin{array}{r} 14 & 45 \\ e & 15 & 36 \\ e & 19 & 44 \\ & 20 & 54 \\ e & 21 & 44 \end{array}$	$-10 \\ -10 \\ 0 \\ + 9 \\ + 8$	e 17 20? e 10 35 i 12 32	$\frac{ss}{PP}{=}$	22·3
Bombay Andijan Stalinabad Tchimkent Tashkent		$77 \cdot 2 \\ 81 \cdot 4 \\ 83 \cdot 7 \\ 83 \cdot 7 \\ 83 \cdot 8 \\ 83 \cdot 8 \\ \end{array}$	$290 \\ 312 \\ 309 \\ 313 \\ 312$	$\begin{array}{cccccccc} e & 12 & & 6 \\ e & 12 & 27 \\ e & 12 & 34 \\ e & 12 & 34 \\ e & 12 & 35 \end{array}$	+ 97 + 72 + 72 + 72 + 72 + 72 + 72 + 72	e 21 58	$+\frac{11}{-10}$	e 12 28	* 	37.6
Samarkand Berkeley Shasta Dam Mount Wilson Boulder City	z.	$85.3 \\ 91.6 \\ 91.9 \\ 94.9 \\ 97.5$	$310 \\ 53 \\ 50 \\ 56 \\ 54$	e 12 40 i 13 1 e 13 23 e 13 35	$\begin{array}{c} 0 \\ -10 \\ -2 \\ -2 \\ 2 \end{array}$	e 30 22	ss	e 42 2 	Q 	e 44·2
Hungry Horse Ksara Kew Huancayo Bogota		$\begin{array}{r} 97 \cdot 6 \\ 110 \cdot 3 \\ 125 \cdot 2 \\ 134 \cdot 2 \\ 137 \cdot 8 \end{array}$	$\begin{array}{r} 42 \\ 305 \\ 336 \\ 111 \\ 86 \end{array}$	$\begin{array}{c} e \ 13 \ 34 \\ e \ 19 \ 22 \\ e \ 23 \ 4 \\ e \ 14 \ 31 \end{array}$	PP PKS	e 30 0 e 44 33 e 41 35	PPS ?	 e 16 21		e 65·3 e 55·7

Additional readings and note :---

Brisbane iSE = 9m.44s.

Riverview ePPZ = 7m.12s., iN = 11m.20s., eQE = 12m.50s.

Vladivostok iPS = 15m.55s.

Berkeley eN = 40m.26s.

Long were also recorded at Christchurch, Arapuni, Calcutta, Seven Falls, Philadelphia, Tucson, and at other European stations.

Jan. 7d. 17h. Pacific Ocean, possibly an after-shock of 17h.20m.

```
Brisbane iP?Z = 58m.41s., iSE = 63m.3s., iSSE = 63m.35s., iLE = 67m.49s.

Riverview iP?Z = 59m.44s., iS?N = 64m.45s., eQE = 66.3m.

Pasadena ePZ = 66m.21s.

Shasta Dam eP = 66m.27s.

Pierce Ferry eP = 67m.5s.

Hungry Horse eP = 67m.45s.

Arapuni S?E = 68m.18s., LE = 72.8m.

Strasbourg e = 83m.23s., 83m.57s., and 84m.13s., eL = 121m.

Long waves were also recorded at Tacubaya, Auckland, Wellington, Calcutta, Paris,

Clermont-Ferrand, De Bilt, and Malaga.
```

Jan. 7d. Readings also at 1h. (La Paz), 2h. (near Malaga), 3h. (near Nanking), 6h. (La Paz), 7h. (Boulder City, Hungry Horse, Pierce Ferry, Shasta Dam, Lick, Branner, and Mineral), 8h. (La Paz (2), near Tchimkent, Frunse, Almata, Kulyab, Obi-garm, Stalinabad, Murgab, Andijan, Samarkand, and Tashkent), 9h. (La Paz, Apia, Huancayo, Pierce Ferry, Shasta Dam, Tucson, Pasadena, Palomar, and Ksara), 10h. (Hungry Horse, Samarkand, Almata, near Andijan, Frunse, and Tchimkent), 13h. (near Mizusawa), 15h. (La Paz, Huancayo, Hungry Horse, Pierce Ferry, Pasadena, and Palomar), 16h. (near Ottawa), 17h. (La Paz, Berkeley, and near Tucson), 20h. (Boulder City, College, Hungry Horse, Pierce Ferry, Shasta Dam, Palomar, Paris, Stuttgart, and near Mizusawa).

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1949

14

Jan. 8d. Readings at 0h. (Strasbourg), 2h. (College, near Zürich, Basle, and Stuttgart), 3h. (Ksara, Santa Clara, Boulder City (2), Pierce Ferry (2), Tucson, near Shasta Dam (2), Lick (2), Berkeley (2), Fresno (2), San Francisco (2), Reno (2), near Andijan, Frunse, Tchimkent, Tashkent, Almata, and Samarkand), 4h. (Zürich and Strasbourg), 5h. (La Paz, near Murgab, and near Ashkabad), 6h. (Bogota), 8h. (Mizusawa (2), College, Boulder City, Pierce Ferry, Shasta Dam, and near Ashkabad), 9h. (College, Kulyab, and near Stalinabad), 10h. (near Mizusawa), 12h. (Apia), 16h. (near Alicante), 19h. (Mount Wilson and near Tinemaha), 20h. (near Tacubaya and near Sofia), 21h. (Strasbourg and Bucharest), 23h. (Mount Wilson, Palomar, and Ottawa).

Jan. 9d. 7h. 48m. 4s. Epicentre 5°.0N. 82°.5W. (as on 1948, Aug. 19d.).

 $A = + \cdot 1300, B = - \cdot 9877, C = + \cdot 0866; \delta = -5;$ h = +7; D = -.991, E = -.131; G = +.011, H = -.086, K = -.996.

		Δ	Az.	1	2.	0 – C.	s.	0 – C.	Suj	pp.	L.
		0	ø	m.	8.	s.	m. s.	s.	m. s.		m.
Balboa Heights		4.9	35	i 1	18	+ 1	i 2 17	+ 2		-	
Bogota		8.4	92	i 2	10	+ 4	i 3 47	+4	i 4 53	Sg	
Huancayo		18.7	157	e 4	21	- 1	e 8 11	\mathbf{PP}			e 9·2
Tacubaya		21.7	314	i 4	58 a	+ 3	e 9 17	SS	(ii) (iii) (iii)		e 11.3
La Paz		25.7	146	i 5		+ 6	i 10 23	+22		_	13.9
St. Louis		34.2	350	i 6	47	- 2	e 12 14	- 2		-	
Tucson		37.9	319	e 7	19	- 1			e 8 44	\mathbf{PP}	e 21·0
Weston		38.5	13	i 7	27	+ 1	e 13 26	+ 4			
Ottawa		40.7	7	e 7	41	- 3			i7 44	P	16.9
Pierce Ferry		42.4	322	e 7	54	- 4				-	
Palomar	z.	42.6	316	i 8	1	+ 2				-	
Boulder City		42.8	321	e 8	1	0		-		-	19 <u>11</u>
	E.	43.2	13	e 8	4	0				-	
Pasadena 2	z.	44.0	316	i 8	12	+ 1			-		
Logan		45.0	330	e 8	16	- 3	-				
Shasta Dam		50.4	322	i 6	49	8					
Hungry Horse		50.9	334	e 9	2	- 3	_				
Victoria		55.6	328	e 9	39	- ĭ		-			
College		75.2	336	i 11	45	- î				The second se	
	z.	87.4	42	e 12	53	$+ \hat{3}$					· 1922

Tueson also gives iP = 7m.23s. Long waves were also recorded at Chicago and Philadelphia.

Jan. 9d. 10h. 34m. 46s. Epicentre 23°.3S. 66°.4W. Depth of focus 0.030. (as on 1947, March 22d.).

Intensity III between 25° and 30°S. latitude. Depth 250km. Epicentre 23°.3S., 66°.8W. (Strasbourg).

F. Greve.

Boletín del año 1949, primer semestre, Instituto Sismológico, Santiago.

 $A = + \cdot 3681, B = - \cdot 8425, C = - \cdot 3933; \delta = -1; h = +4;$ D = -.916, E = -.400; G = -.157, H = +.360, K = -.919.

		Δ	Az.	Р.	0-C.	s.	0-C.	Supp.	L.
		0	•	m. s.	8.	m. s.	s.	m. s.	m.
Copiapo	N.	5.4	220	i1 26	+ 5				i 2.4
La Paz		6.9	346	il 41a	+ 1	i 2 52	- 6		
Santa Lucia		10.8	200	e 2 27	- 3	i 4 27	- 1	e 2 46 pP	
La Plata		13.7	150	3 7	+ 1	5 32	- 2		6-9
Huancayo		14.1	321	e 3 10	- 1	e 5 41	- ī		1 6·2
Bogota		28.7	343	i 5 38	0	i 10 11	+ 1	i546 pP	
Fort de France		38.1	9	i6 59	ŏ	e 12 34	- î	pr	
San Juan		41.4	0	e 7 19	- 7	e 16 24	SS	i 16 33 ?	e 17·9
Tacubaya		53.2	320	i8 59	+ 2	e 18 26	- 1		· · · · ·
Bermuda,		55.4	2			e 17 44	+66	e 19 34 sS	

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1949					15					8
Philadelphia Fordham St. Louis Weston Harvard		∆ 63·5 64·2 65·5 65·5 65·6	Az. 353 355 339 357 357	P. m. s. i 10 11 i 10 19 i 10 20 i 10 20	0 - C. s. - 22 - 22 - 2 - 2 - 2	S. m. s. e 18 20 i 18 28 i 18 44	0 - C. s. - 3 - 3 - 3	Sup m. s. e 19 22 i 11 0 i 11 10 i 11 14 i 11 13	sS pP pP pP	L. m. e 26·9
Cleveland Ottawa Tucson Seven Falls Palomar	E.	$66.0 \\ 68.9 \\ 69.7 \\ 70.2 \\ 74.1$	348 353 320 357 318	e 10 20 e 10 40 i 10 46 e 10 52 i 11 14	$- \frac{4}{2}$ $- \frac{1}{2}$ $+ \frac{1}{2}$	i 18 49 e 19 28 e 19 41	- 4 + 1 + 5	i 11 11 e 11 30 e 11 18	pP pP PcP	
Pierce Ferry Riverside Pasadena Logan Tinemaha		74.3 74.8 75.4 77.2 77.4	$322 \\ 318 \\ 318 \\ 327 \\ 320$	i 11 13 i 11 18 i 11 19 0 11 22 i 11 34	-11 + 12 + 29 + 29	i 20 41 e 21 1	+ 1	i 11 33 e 14 29	PeP PP	
Fresno Lick Reno Branner Berkeley	Z. Z. Z.	$78.1 \\ 79.6 \\ 79.9 \\ 80.0 \\ 80.3$	$319 \\ 318 \\ 321 \\ 318 $	i 11 36 i 11 44k e 11 46 i 11 46a i 11 47k	$+ \begin{array}{c} 0 \\ 0 \\ 1 \\ 0 \\ 0 \end{array}$			e 11 39 i 12 40 a i 12 7	р рР ?	
Mineral Shasta Dam Hungry Horse Tamanrasset Victoria	z. z.	$ \begin{array}{r} 81 \cdot 5 \\ 82 \cdot 2 \\ 83 \cdot 1 \\ 83 \cdot 6 \\ 87 \cdot 8 \end{array} $	$321 \\ 320 \\ 331 \\ 61 \\ 326$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{r} & 0 \\ & 3 \\ & - & 1 \\ & + & 4 \\ & - & 1 \end{array} $			i 12 4 a e 13 1	pP pP	
Rome Stuttgart Triest College Ksara	z.	$97.4 \\ 98.3 \\ 99.8 \\ 107.3 \\ 112.4$	$46 \\ 41 \\ 44 \\ 334 \\ 61$	$e 1\overline{3} 15$ $i 1\overline{3} 52$	+ 2 P	i 23 33 i 24 42 i 28 20	$\frac{[+9]}{+12}$ PS	i 26 20 e 35 44	$\frac{1}{PS}$	
Sverdlovsk Tashkent Stalinabad		$129.3 \\ 139.0 \\ 139.1$	34 53 57	18 44 i 19 1 e 18 59	$[+ 2] \\ [+ 1] \\ [- 1] \\ [- 1]$	i 22 17 e 22 38	PKS PKS			_

Additional readings :---

La Paz i = 2m.33s., iSgE = 3m.28s., iE = 3m.53s., iN = 4m.14s., iE = 5m.6s. Santa Lucia eN = 3m.28s., eE = 3m.45s., iN = 4m.35s., iE = 4m.45s. and 4m.57s., iN = 5m.1s. and 5m.43s.

La Plata N =4m.50s., SEN =5m.42s., N =5m.59s., E =6m.20s. and 6m.44s. Bogota isSEN =10m.27s., iSSEN =11m.47s. Philadelphia e =20m.41s., eSS =22m.18s. St. Louis i =10m.51s., e =19m.49s. Cleveland ipP?N =10m.27s., iZ =11m.16s., isS?E =19m.55s. Logan i =11m.55s. Lick iZ =11m.48s. Rome e =26m.4s. and 29m.13s.

Jan. 9d. 16h. 35m. 18s. Epicentre 24°.8N., 124°.5E. (as given by Strasbourg).

A = -.5148, B = +.7490, C = +.4172; $\delta = +8$; h = +3; D = +.824, E = +.566; G = -.236, H = +.344, K = -.909.

		Λ	Az.	Р.	0 – C.	s.	0 – C.	Su	pp.	L.
			0	m. s.	8.	m. s.	8.	m. s.		m.
Zi-ka-wei		6.9	338	e 2 2	P*	3 46	Sg		1777	4.2
Vladivostok		19.3	16	e 4 27	- 2	i 8 14	+12	i 4 57	PPP	
Irkutsk		31.4	336	e 6 18?	- 7	e 11 30	- 2			-
Calcutta	E.	33.1	274			e 13 40	SS			e 18·1
Andijan		46.0	303	e 8 29	+ 2			*****		
Poona	N.	47.3	273	i12 8	?			200 - 20		
Bombay	E.	48.1	274	e 8 51	+ 8					
Tashkent	22.6	48.3	304	e 8 37	- 8		_	e 11 7	PPP	
Stalinabad		48.7	301	e 8 50	+ 2					
Samarkand		50.1	302	e9 2	+ 3					

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1949

16

	Δ	Az.	Р.	0 – C.	S.	0 – C.	Su	pp.	L.
	•	•	m. s.	8.	m. s.	s.	m. s.		m.
Sverdlovsk	55.4	323	e 9 39	+ 1	17 16	- 6	e 17 28	\mathbf{PS}	
College	66.9	27	e 10 57	+1			i 11 37	P_cP	
Leninakan	67.4	306	e 10 52	- 7				<u> </u>	
Yalta	73.3	311			e 20 59	- 5			
Ksara	75.6	300	e 11 48	0	e 20 56	-33		-	
Triest	85.9	319	_		e 23 15	- 1	e 22 51	SKS	1
Stuttgart	86.8	323	e 12 47?	0					e 45.7
Strasbourg	87.7	324	e 12 59	+ 7	e 28 42	SS	e 14 31	1	44.7
Kew	89.9	329			e 29 30	SS	e 46 42?	Q	e 48·7
Shasta Dam	90.0	44	e 12 49	-14					
Hungry Horse	90.3	34	i13 6	+ 2			e 17 42	?	
Rathfarnham Castle	91.3	333	i 17 13	\mathbf{PP}			e 22 17	?	20 0000

Long waves were also recorded at Weston and at other European stations.

Jan. 9d. 17h. 55m. 13s. Epicentre 24°.8N. 124°.5E. (as at 16h.).

5. E		Δ	Az.	F	` .	0-C.	s.	0-C.	Su	pp.	L.
		0	0	m.	s .	8.	m. s.	8.	m. s.		m.
Zi-ka-wei	N.	6.9	338	e 2	9	\mathbf{P}^*	i 3 59	Se	\rightarrow	: :	
Vladivostok		19.3	16	e 4	29	0	e 8 171	+15			
Irkutsk		31.4	336	e 6	21 ?	- 4	e 11 29	- 3			
Stalinabad		48.7	301	e 8	46	- 2				-	
Sverdlovsk		55.4	323	9	37	- 1				·	
Stuttgart		86.8	323	e 12	47	0			in stat ikan	20000	e 48·8
Hungry Horse		90.3	34	i 13	10	+ 6		-	e 16 52	\mathbf{PP}	13

Long waves were also recorded at Copengahen, Rome, Paris, and Clermont-Ferrand.

- Jan. 9d. Readings also at 0h. (near Tacubaya (2)), 1h. (Santa Lucia), 2h. (La Paz), 3h. (Hungry Horse), 5h. (College, Pierce Ferry, Samarkand, Andijan, Tchimkent, near Obi-garm and Stalinabad), 7h. (Santa Lucia), 8h. (College and near Mizusawa), 9h. (Boulder City, Pierce Ferry, Shasta Dam, near Stalinabad, and near Ashkabad), 10h. (Hungry Horse, Irkutsk, Tchimkent), 11h. (Hungry Horse), 12h. (Boulder City, Pierce Ferry (3), Tucson, Hungry Horse, Logan, near Shasta Dam, Berkeley, Lick, Branner, San Francisco, Fresno, Mineral, and Reno), 13h. (Batavia), 16h. (Hungry Horse and Pierce Ferry), 17h. (Alicante, Almeria, Granada, and Malaga), 18h. (near Leninakan (2)), 21h. (Batavia), 22h. (Hungry Horse).
- Jan. 10d. Readings at 2h. (La Paz), 3h. (near Leninakan), 4h. (Hungry Horse), 5h. (Victoria, Boulder City, Hungry Horse, Shasta Dam, Vladivostok, and near Mizusawa), 6h. (Hungry Horse, Wellington, Auckland, and near Almata), 8h. (Boulder City, Hungry Horse, Pierce Ferry, Shasta Dam, Helwan, Ksara, Stalinabad, Samarkand, Tchimkent, near Andijan and near Mizusawa), 9h. (Hungry Horse), 10h. (Boulder City), 12h. (near Obi-garm), 14h. (Pasadena, Stuttgart, and Collmberg), 16h. (Santa Lucia and near Stalinabad), 17h. (near Murgab), 18h. (Kew, Batavia, Ottawa, Hungry Horse, and La Paz), 20h. (Ottawa and Pierce Ferry), 22h. (Paris, Stuttgart, Collmberg, Boulder City, Pierce Ferry, and near Ashkabad).
- Jan. 11d. Readings at 1h. (Boulder City, Pierce Ferry, and Shasta Dam), 8h. (Batavia), 9h. (near Stalinabad and Kulyab), 10h. (near La Paz), 11h. (Hungry Horse and Pierce Ferry), 12h. (Tacubaya, Pierce Ferry, near Stalinabad, Kulyab, near Stuttgart, Jena, and Collmberg), 13h. (Basle, Pierce Ferry, Hungry Horse, and Shasta Dam), 17h. (Hungry Horse, Stuttgart, near Rome, Prato, and Bologna), 18h. (Copiapo and near Tacubaya), 20h. (College, Hungry Horse, Stuttgart, Grozny, Stalinabad, Tchimkent, Tashkent, Obi-garm, Andijan, Frunse, and near Ashkabad), 23h. (Tucson).
- Jan. 12d. Readings at 0h. (near College), 1h. (Bermuda, Hungry Horse, Victoria, near College, Ksara, Bucharest (2), Belgrade (2), Sofia (2), and near Istanbul (2)), 2h. (Pierce Ferry), 3h. (near Batavia), 4h. (Victoria), 7h. (near Rome), 8h. (Bologna), 10h. (Hungry Horse, Shasta Dam, and near Stalinabad), 11h. (Copiapo), 12h. (near Tacubaya), 13h. (near Ottawa), 15h. and 17h. (Hungry Horse), 18h. (Hungry Horse, Shasta Dam, near Tucson and near Ashkabad), 19h. (Hungry Horse and Santa Lucia), 20h. (Klyuchi and near Andijan), 21h. (Ottawa), 22h. (near Tacubaya), 23h. (near Zürich),

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1949

17

Jan. 13d. 8h. 47m. 35s. Epicentre 26°.0S. 178°.0E. Depth of focus 0.100.

Not intended as an approximate determination.

Auckland Arapuni Tuai New Plymouth Apia	N. E. N. E.	$11 \cdot 2$ $12 \cdot 2$ $12 \cdot 8$ $13 \cdot 5$ $15 \cdot 5$	$194 \\ 189 \\ 183 \\ 193 \\ 40$	$\begin{array}{r}2 & 33 \\ \hline 2 & 45 \\ 2 & 57 \\ e & 3 & 4\end{array}$	+ 2 - 1 + 4 - 8	4 35 5 13 4 55 5 20 e 5 41	+ 3 + 24 + 5 + 8 + 4	$\begin{array}{r}7 & 35 \\ 13 & 33 \\ 4 & 10 \\ e & 13 & 46 \end{array}$	PcP ScS pP ScS	
Wellington Kaimata Christchurch Brisbane Riverview	NE	$15.5 \\ 17.4 \\ 18.0 \\ 22.3 \\ 24.5$	$189 \\ 197 \\ 192 \\ 261 \\ 245$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$-1 \\ -1 \\ -1 \\ +2 \\ +3$	$5 45 \\ 6 19 \\ 6 2 \\ 17 41 \\ 18 16$	$^{+2}_{-25}^{2}_{+5}^{+5}_{-5}$	$\begin{array}{r}4 & 35\\e & 13 & 50\\e & 7 & 4\\i & 7 & 30\end{array}$	$\frac{pP}{S_cS}$ sP sP	
Melbourne Batavia Vladivostok Branner Berkeley	E.	$30.3 \\ 70.4 \\ 80.8 \\ 84.5 \\ 84.7$	$239 \\ 273 \\ 328 \\ 44 \\ 44$	e 5 36 e 10 11 i 11 8 e 11 26 e 11 26k	$^{+14}_{0}_{0}_{0}_{0}_{-1}$	i 9 55 e 18 37 i 20 23 i 21 6	+15 + 4 = 0 + 5	i 13 19 i 11 30	pP PcP	
Lick Pasadena Arcata Riverside Fresno	z. z.	84 · 8 85 · 1 85 · 5 85 · 5 85 · 6	44 49 41 49 46	e 11 28 i 11 29 e 11 31k i 11 30k i 11 30	$ \begin{array}{c} 0 \\ 0 \\ - 1 \\ - 2 \end{array} $	i 21 9 i 21 13	+ 5 + 4	$i 13 46 \\ i 11 33 \\ i 13 52$	pP PcP pP	
Shasta Dam Tinemaha Reno Boulder City Pierce Ferry		86·4 86·7 87·2 88·4 89·0	$42 \\ 47 \\ 44 \\ 49 \\ 49 \\ 49$	i 11 33 e 11 38 i 11 39k e 11 44 e 11 43	$ \begin{array}{r} - & 2 \\ + & 1 \\ - & 1 \\ - & 4 \end{array} $	i 24 22 i 21 27 i 21 31	**********	e 13 50 e 13 56 i 13 54 i 11 46	pP pP pP P	
Tucson Victoria Tacubaya Logan College		$89 \cdot 2 \\ 90 \cdot 8 \\ 92 \cdot 2 \\ 93 \cdot 5 \\ 94 \cdot 4$	53 35 70 45 14	i 11 48 e 11 54 e 12 9 e 12 5 i 12 9	$-{2 \atop -7}{-{7 \atop -3}}$	i 21 51 e 22 3 e 22 13 e 22 26 e 22 46	+ 9 + 7 + 5 + 7 + 20	i 14 5 e 26 7 e 25 47 e 14 25 i 14 22	pP sS pP pP	e 33·1
Butte Hungry Horse Bozeman Huancayo La Plata	N.	95·3 95·7 96·0 99·3 99·6	$\substack{\begin{array}{r} 41 \\ 38 \\ 42 \\ 109 \\ 137 \end{array}$	i 12 16 e 14 55	$-\frac{2}{pP}$	i 22 41 e 22 39 i 22 9 e 22 9	$+ \frac{7}{1}$ $[- \frac{0}{2}]$	i 26 52 i 14 38 e 26 54 i 22 46 22 48	sS pSSSS	e 34-8
Irkutsk Saskatoon La Paz St. Louis Bogota		$100.9 \\ 101.7 \\ 103.1 \\ 107.0 \\ 108.1$	$323 \\ 38 \\ 116 \\ 55 \\ 94$	$\begin{array}{rrrrr} e & 12 & 56 \\ i & 12 & 54 \\ e & 17 & 38 \\ e & 17 & 51 \end{array}$	+15 + 3 PP PP	i 22 19 e 23 37 i 22 28 e 22 49 e 22 48	[+ 2] + 10 + 10 + 10 + 10 + 10 + 10 + 10 + 1	17 12 e 21 55 i 15 13 e 27 15 e 26 42	PP SKS pP sSKS SP	37-4
Chicago Poona Bombay Almata Frunse	E.	$109.9 \\ 110.3 \\ 111.3 \\ 115.1 \\ 116.7$	$52 \\ 281 \\ 281 \\ 308 \\ 307 \\ 307 \\$	$e_{18}^{18} e_{10}^{0}$. $e_{18}^{10} 10$. 17 34	$[+ \frac{PP}{4}]$	e 24 39 i 22 59 i 23 8 i 23 20 23 28		e 26 40 18 36	pPP 	
Andijan Philadelphia Ottawa Obi-garm Stalinabad		${}^{117 \cdot 9}_{118 \cdot 6}_{119 \cdot 2}_{119 \cdot 5}_{120 \cdot 2}$	$304 \\ 57 \\ 51 \\ 302 \\ 302$	e 17 35 i 17 35 e 17 36 i 17 39	$[+ 2] \\ [0] \\ [0] \\ [0] \\ [+ 2] \\ [+$	i 23 32 e 24 48 e 26 1 i 23 37	[+,6]ssks [+3]	e 19 6 e 28 57 e 20 10 e 19 6? e 20 2	PP SS PP PP pPKP	37-4
Tchimkent Tashkent San Juan Samarkand Weston		$120 \cdot 2$ $120 \cdot 3$ $120 \cdot 6$ $121 \cdot 8$ $121 \cdot 9$	$306 \\ 305 \\ 83 \\ 302 \\ 55$	e 17 39 i 17 39 e 19 15 i 17 40	$\begin{bmatrix} + & 2 \\ + & 1 \end{bmatrix}$ \mathbf{PP} $\begin{bmatrix} - & 1 \end{bmatrix}$	23 37 i 23 39 e 23 35 35 15	$[\begin{array}{c} + & 3 \\ + & 4 \\ [- & 1 \\ - & 1 \end{bmatrix}$	$e \frac{21}{26} \frac{25}{20}$ 30 37	pPP sSKS	e 38·0
Bermuda Sverdlovsk Grozny Moscow Leninakan		125.6126.3137.7138.7139.4	$\begin{array}{r} 68 \\ 323 \\ 307 \\ 327 \\ 303 \end{array}$	i 17 50 e 18 2 e 18 15 e 17 583	$[+1] \\ [-9] \\ [+2] \\ [-16]$	e 26 38 e 35 58 	sSKS SS	e 37 15 e 19 31 20 51 e 20 49	SS PP pPKP	e 52·1

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

4	en.	. 8 .	A 1
ъ		л	
а.	228	د ور ا	a .
-			

18

	Δ	Az.	Р.	0 – C.	s.	0 – C.	St	ipp.	L.
	0	0	m. s.	8.	m. s.	8.	m. s.		m.
Theodosia	144.5	312	i 18 25	[+1]			21 3	pPKP	
Ksara	146.4	292	e 18 28	[+ 2]	21 58	sPKP	the second se	pPKP	
Copenhagen	148.5	$\bar{3}4\bar{5}$	e 18 31	1 + 21	the second se	SPKP	21 1	pPKP	17
Istanbul	150.2	308	i 18 33	[+2]	24 33	[-3]		-	
Helwan z.	14 H. C	285	i 18 33k	[+ 1]		SPKP	21 5	pPKP	
Potsdam Z.	151.5	342	i 18 35a	[+1]	i 22 24	sPKP	i 21 7	pPKP	22-02
Collmberg	152.3	340	i 18 44 a	[+9]		•	e 21 9	pPKP	
Jena	153.0	340	e 18 37	(+1)			e 21 15	pPKP	<u> </u>
De Bilt	153.4	351	e 18 49	[+13]	e 42 25?	88	e 21 19	pPKP	<
Kew Z.	154.5	357	i 18 36	[-2]	<u> </u>		i 19 5	PKP ₂	-
Stuttgart	155.7	341	18 40	(+1]	e 36 25	PPS	e 20 51	pPKP	: <u> </u>
Strasbourg	156.2	343	e 18 41	[+1]	e 36 25	PPS	e 21 14	pPKP	
Paris	156-9	353	e 18 43	[+ 2]	e 43 25?	SS	i 21 29	pPKP	2 <u>558</u>
Zürich	$157 \cdot 1$	343	e 18 40	[-1]			e 22 48	PP	() (******
Basle	157.2	344	e 18 40 e 19 18	PKP ₂					
Salo	158.0	335	e 18 47	[+ 5]			19 21	PKP,	
Bologna Z.	A 4 12 14	333	e 19 17	PKP.					
Clermont-Ferrand	159.9	350	e 18 46	[+1]			i 19 29	PKP,	
Almeria	169.2	2	18 53	(+1)			e 20 11	PKP,	
Tamanrasset Z.	A 100 Ch	247	i 18 57k				e 22 47	the second se	

```
Additional readings :---
  Auckland iN=4m.24s., ScPN=9m.44s., PcSN=10m.45s., ScSN=13m.33s., sScSN=17m.35s.
  Tuai iN = 4m.51s., eN = 9m.58s., sS_cS?N = 13m.36s.
  New Plymouth iE = 5m.23s. and 6m.37s.
  Apia e = 3m.10s., eSN = 5m.36s., eE = 7m.0s.
  Wellington i=3m.27s., iZ=3m.35s. and 5m.36s., i=5m.50s., ScS=12m.40s., sScS?=18m.15s.
  Kaimata eNE = 4m.30s. and 10m.15s.
  Brisbane iE = 5m.17s., iEZ = 8m.37s., iZ = 10m.21s., iN = 10m.46s. and 14m.7s.
  Riverview iS_cSN = 14m.16s.
  Vladivostok eSKS = 21m.13s., ePS = 21m.49s., esS = 24m.22s., iSSS = 40m.13s.
  Berkeley eZ = 13m.49s., iSN = 20m.51s., isSZ = 21m.10s., iSKSZ = 22m.5s., iSKSN =
      22m.9s., iSKKSZ = 23m.33s., iEN = 25m.6s.
  Pasadena iEN = 25m.9s.
  Shasta Dam i = 13m.54s.
  Reno iP_cPEN = 11m.40s., eZ = 21m.39s.
  Tucson e = 22m.10s., eSP = 22m.39s., esS = 25m.55s.
  Tacubaya i = 14m.34s., e = 27m.30s.
  Logan e = 24m.42s.
  College is s = 39m.20s.
  Hungry Horse i = 29m.4s., iS? = 31m.45s., ePKKP = 39m.23s.
```

Huancayo e = 16m.48s. and 26m.43s., i = 28m.8s., eSS = 29m.57s. Irkutsk SKKS = 22m.57s., iS = 23m.27s.? La Paz iPPZ =17m.17s., iSKS =23m.18s., iE =25m.53s., iN =27m.0s., iSSN =31m.15s. St. Louis eSKKS=23m.39s., iSN=24m.21s., eSP=26m.12s., isSN=28m.38s., e=30m.27s., 31m.39s., and 33m.25s., iSS = 36m.24s., eSSS? = 38m.18s., eSKP, PKP = 40m.43s.Bogota ePPSEN = 27m.25s.Chicago esS = 28m.56s., eSS = 32m.37s.Poona sPE = 18m.55s., P_cP?E = 20m.27s., sSE = 24m.3s., S_cS?E = 27m.56s.Philadelphia e = 32m.55s. and 42m.15s. Stalinabad iPP = 19m.13s., S = 26m.57s.Tashkent SKSP = 28m.10s., sSP = 32m.13s.San Juan eSP = 28m.6s., e = 30m.39s.Bermuda e = 33m.7s. Moscow ePP = 21m.9s. Ksara PP = 21m.35s. Copenhagen i = 18m.35s. and 18m.41s. Helwan iZ = 18m.40s. and 18m.52s., PPZ = 22m.20s., iZ = 22m.36s., SE = 28m.13s., eZ = 28m.40s, and 32m.33s. Potsdam iZ = 18m.42s. and 18m.53s. Collmberg eZ = 18m.57s. and 21m.18s., eEZ = 31m.32s., eZ = 31m.44s., eE = 31m.48s. Jena e = 18m.46s., eZ = 18m.57s., eE = 19m.0s.De Bilt eE = 35m.25s. Stuttgart ePKPZ = 18m.52s., ePKP₂Z = 19m.11s.k, eZ = 21m.27s., ePPZ = 22m.48s., ePPPZ = 25m.59s., eZ = 27m.49s., e = 28m.31s., eZ = 31m.10s. and 31m.57s.,ePSKS = 33m.13s.Strasbourg iPKP=18m.53s. and 19m.13s., ePKP,=19m.36s., epPKP, =21m.29s., $epPKP_1 = 21m.32s., ePP = 22m.49s., esPP? = 26m.9s., eSS = 40m.57s.$ Paris i =19m.1s., iPKP,? =19m.16s., i =19m.55s., ipPKP, =21m.43s., ePP =22m.55s., e=29m.30s. and 37m.25s. Clermont-Ferrand iPP = 23m.11s. Almeria PP = 24m.57s.Tamanrasset ePKP₁Z = 20m.28s., ePPZ = 24m.26s., ePPP?Z = 28m.16s., eZ = 30m.15s., 30m.29s., and 34m.9s. Long waves were also recorded at Seattle.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1949

19

Jan. 13d. 9h. Perhaps a repetition of earthquake at 8h. Very deep focus. Tuai PN = 3m.10s., S?N = 5m.25s., iN = 5m.29s.New Plymouth P?E = 3m.25s.Apia eP?Z = 3m.30s., eS = 5m.59s.Wellington P = 3m.38s., S = 6m.16s.Kaimata PNE = 4m.0s.?, SNE = 6m.43s.Pasadena iPZ = 11m.51s.Riverside iPZ = 11m.53s.Tucson eP = 12m.10s., e = 12m.18s.

Jan. 13d. Readings also at 5h. (near Leninakan), 7h. (Tacubaya and near Bogota), 8h. (near Santa Lucia), 10h. (Ottawa, near Stalinabad, near Frunse, and Andijan), 17h. (Pierce Ferry and near Ottawa), 19h. (Hungry Horse), 21h. (Tucson, near Berkeley, Lick, Branner, and San Francisco), 22h. (Santa Lucia, Hungry Horse, Samarkand, Tchimkent, near Stalinabad, Kulyab, Obi-garm, Andijan, near Berkeley, Lick, Branner, and San Francisco), 23h. (near Leninakan).

```
Jan. 14d. 1h. Solomon Islands region.
    Brisbane iPZ = 8m.27s., iZ = 9m.36s. and 10m.33s., iN = 11m.55s., iE = 12m.41s.
    Vladivostok iP = 12m.48s., iS = 19m.48s.
    College iP = 15m.47s., i = 16m.0s.
    Andijan eP = 16m.17s., eS = 26m.29s.
    Berkeley iPZ = 16m.19s.a.
    Shasta Dam iP = 16m.19s.
    Lick ePZ = 16m.21s.
    Victoria eZ = 16m.21s.
    Reno iPZ = 16m.29s.k.
    Pasadena iPZ = 16m.32s.k, iP_cP?Z = 16m.48s., epP?Z = 18m.0s., iZ = 18m.15s.
    Riverside iPEZ = 16m.35s.k, epP?Z = 18m.5s., iZ = 18m.12s.
    Tinemaha ePEN = 16m.35s.
    Boulder City iP = 16m.45s., i = 20m.34s.
    Pierce Ferry iP = 16m.48s., i = 18m.18s., e = 20m.38s.
    Hungry Horse iP = 16m.50s.
    Ottawa eZ = 22m.16s.
    Stuttgart eZ = 22m.30s.k, 24m.13s., and 24m.40s.
    Strasbourg ePKP = 22m.31s.
    Paris ePKP = 22m.36s., iPP = 24m.54s., i = 25m.26s.
    La Paz ePN = 22m.40s.
    Tamanrasset iPKPZ = 23m.2s.k, iPKPZ = 23m.5s.a, eZ = 24m.33s.
```

Jan. 14d. 2h. 17m. 45s. Epicentre 33°·2N. 121°·0E. (as given by Strasbourg).

Felt at Nanking and in the lower valley of the Yangtse. Seismographic report of Shuitsingtai seismic station, Nanking, Jan.-Dec., 1949, p.2.

> $A = -.4319, B = +.7187, C = +.5450; \delta = +9; h = +1;$ D = +.857, E = +.515; G = -.281, H = +.467, K = -.838.

		Δ	Az.	Р.	0-C.	s.	0 - C.		pp.	L.
			•	m. s.	8.	m. s.	8.	m. s.		m.
Zi-ka-wei		$2.0 \\ 2.2$	$\frac{170}{242}$	0 43	+ 8 + 2	1 1 7	+ 5	0 43	P.	_
Nanking		the second se	the second se	0 40	T 6	and the second sec	1 8	0 20	•	0.20
Vladivostok		13.1	38	i 3 10	v v		1 1			
Irkutsk		22.6	333	5 0	-3	9 8	+ 1			
Calcutta	E.	30.7	259	(074)	\mathbf{PP}	(0 11 14)	- 1			
Frunse		37.4	299	e 7 43	+27			-		<u></u>
Tashkent		41.4	298	e 7 47	- 3			_		
Obi-garm		41.5	293	e 8 41	+14	_	_			
Stalinabad		42.2	293	e 8 4	+ 8				_	
Bombay	E.	45·2	294	e 15 5	's	(e 15 5)	+ 4	3		
Sverdlovsk		46.9	320			e 15 29	+ 4			-
College		61.0	29	i 10 13	- 5					÷—
Upsala	N.	68·1	328			e 20 23	PS			e 36·2
Stuttgart		78.3	322	e 12 2	- 1		-			e 42·2
Victoria		80.4	38	e 12 13	$-\hat{2}$	()		8 1	_	45.2
Paris		81.7	325	e 12 21	- 1	_	—	i12 26	PcP	e 45·2
Hungry Horse		85.1	33	i 12 38	- 1					1
Shasta Dam		86.1	43	e 12 10	$-3\bar{4}$			i 12 42	P	
Boulder City		93.6	42	e 13 19	Ő			i 13 24	8	
Shawinigan Falls	N.	99.6	-8		Ľ.	e 35 48	SSS			

Nanking gives also P_g=0m.48s., S*=1m.13s., S_g=1m.17s. Calcutta readings reduced by 7 minutes. Long waves were also recorded at Kew, Strasbourg, De Bilt, Potsdam, and Seven Falls,

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1949

20

Jan. 14d. 15h. 53m. 55s. Epicentre 38°.8N. 25°.3E.

$$\begin{array}{cccc} A = + \cdot 7064, \ B = + \cdot 3339, \ C = + \cdot 6240 \ ; & \delta = -13 \ ; & h = -1 \ ; \\ D = + \cdot 427, \ E = - \cdot 904 \ ; & G = + \cdot 564, \ H = + \cdot 267, \ K = - \cdot 781. \\ & & & \Delta & Az. & P. & O - C. & S. & O - C. & Supp. & L. \\ & & & & m. \ s. & s. & m. \ s. & s. & m. \ s. \ s. & m. \ s. \ s. & m. \ s. \ s. \ s. \ s. \$$

Istanbul $3.7 \ 51 \ 1 \ 1 \ + 1 \ 2 \ 4 \ S_g \ - 1 \ 5 \ - 2 \ 1 \ 5 \ - 2 \ - 2 \ 1 \ 5 \ - 2 \ -$

Sofia Bucharest Taranto Campulung	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{r} 1 & 1 & 5 \\ 1 & 29 \\ 1 & 36 \end{array} $	$+ \frac{1}{2} + $			i 1 56	Sg Pg	e 2·3
Belgrade Messina Kalossa N. Budapest Theodosia	$\begin{array}{cccc} 7\cdot 0 & 331 \\ 7\cdot 7 & 268 \\ 9\cdot 0 & 331 \\ 9\cdot 8 & 334 \\ 9\cdot 8 & 334 \\ 9\cdot 8 & 47 \end{array}$	$e \frac{1}{3} \frac{54k}{2}$	P^{\bullet}_{-2} +38 +17	$\begin{array}{ccccccccc} {\bf i} & {\bf 3} & {\bf 35} \\ {\bf 3} & {\bf 10} \\ {\bf e} & {\bf 3} & {\bf 21} \\ {\bf 5} & {\bf 5} \\ {\bf 4} & {\bf 5} \end{array}$	S* -15 -37 +48 -12	i 2 27 i 3 38 e 4 59 e 3 56	P# Ssg	$\frac{5\cdot 2}{5\cdot 5}$
Zagreb Ksara Helwan Rome Ogyalla	$\begin{array}{cccccc} 9\cdot 8 & 318 \\ 9\cdot 9 & 117 \\ 10\cdot 3 & 149 \\ 10\cdot 3 & 292 \\ 10\cdot 5 & 332 \end{array}$	$e \overline{2} 26$ e 3 29	$-\frac{6}{-6}$ +57 PPP	e 4 46 e 4 15 4 29 i 4 52 e 5 29		$ \begin{array}{c} i & 2 & 31 \\ i & 5 & 48 \\ & 2 & 43 \\ & \\ $	PP PPP	5.6
Skalnate Pleso Triest Padova Florence E. Prato	$\begin{array}{ccccccc} 11 \cdot 0 & 342 \\ 11 \cdot 0 & 312 \\ 11 \cdot 5 & 304 \\ 11 \cdot 7 & 300 \\ 11 \cdot 8 & 300 \end{array}$	$e \frac{2}{3} \frac{46}{13}$	$\begin{array}{c} - & 1 \\ + & 2 \\ \hline \mathbf{PPP} \\ + & 5 \end{array}$	$ \begin{array}{r} e 5 33 \\ e 4 57 \\ e 6 0 \\ i 4 42 \end{array} $	$^{+46}_{+10}_{-588}$	i <u>3</u> 48 	P.P.	e 6.3 e 6.7 e 6.9 e 7.1
Bologna Raciborzu Salo Pavia Z. Piatigorsk	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	e 2 58 e 2 59 e 3 5?	$-3 \\ -3 \\ -8 \\ -12 \\ +3 \\ +3 \\ -12 \\ +3 \\ +3 \\ +3 \\ +3 \\ +3 \\ +3 \\ +3 \\ +$	e 5 6 e 5 54	$-\frac{3}{sss}$	e 5 27 i 3 26 ? e 5 4		e 6.8
Leninakan Ravensburg Erevan Zürich Stuttgart	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	e 3 38 e 3 25? e 3 46 e 3 32 a e 3 33	$+11 \\ -3 \\ +12 \\ -2 \\ -6$	e 6 50 e 6 40		e 3 43	PP	e 7·3 e 7·9
Jena N. Basle Neuchatel Potsdam Strasbourg	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	e 3 44 e 3 41 e 3 42 e 3 46 e 3 49	$^+$ 2_2 $^ ^2_2$ $^+$ 1	e 7 3 e 8 56 e 6 53	$\frac{SS}{P_cP}$ + 7	e 4 5? e 3 57	PP PP	e 8.3 e 8.6 e 8.1 8.3
Algiers Clermont-Ferrand Moscow Uccle Tortosa	$\begin{array}{cccccc} 17 \cdot 7 & 270 \\ 17 \cdot 8 & 300 \\ 18 \cdot 9 & 21 \\ 19 \cdot 0 & 316 \\ 19 \cdot 1 & 284 \end{array}$	e 2 39 i 4 7 e 4 21 e 4 24		e 7 597 9 31		i 4 22 4 29	PP P	9·1 e 9·7 (9·5)
Paris De Bilt Alicante Upsala Kew	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$ \begin{array}{r} i & 4 & 24 \\ i & 4 & 31 k \\ 4 & 49 \\ \overline{ 4 } & 56 \\ i & 4 & 56 \\ \end{array} $	$-\frac{4}{2}$	e 7 49 e 8 7 i 8 15 e 8 59? i 8 57	-10 + 5 - 6 + 10 + 3	i 4 42 5 20 i 9 31	PPP	e 10·1 e 9·4 e 9·8 e 11·1 e 11·1
Almeria Jersey E. Toledo Granada Tamanrasset Z.	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		+ 1 - 1 - 2	i 9 3 9 8 i 9 35 e 9 22	+7 -1 +24 +4	5 43 i 5 34 i 5 47 e 5 39	PPP PPP PPP PP	14.0 14.7 e 10.3 12.4
Rathfarnham Castle Lisbon Bombay Poona Calcutta	$\begin{array}{ccccc} 26\cdot 0 & 315\\ 26\cdot 8 & 282\\ 45\cdot 5 & 102\\ 46\cdot 5 & 102\\ 55\cdot 6 & 87 \end{array}$	i 5 14 5 43 a	$\frac{22}{1}{=}$	i 10 15 10 12 e 15 11 e 15 23 e 17 53	+ 97 - 76 + 64 + 28	i 7 17 	-	13.5
College St. Louis Hungry Horse Tucson	$\begin{array}{cccc} 76\cdot 5 & 358 \\ 82\cdot 9 & 315 \\ 86\cdot 0 & 334 \\ 98\cdot 6 & 324 \end{array}$	i 11 51 e 12 28 i 12 40 e 13 23	-30 -30 -19	e 23 43	PS 	e 26 54	1	e 54·4

For Notes see next page.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1949

21

NOTES TO JANUARY 14d. 15h. 53m. 55s.

```
Additional readings :---
  Sofia e = 1m.31s.
  Bucharest eP*N =1m.43s., iS*N =2m.54s., iS*E =2m.58s., iS_EN =3m.18s.
  Taranto e = 2m.0s. and 3m.48s.
  Belgrade i = 3m.9s. and 4m.0s.
  Messina i = 4m.1s.
  Kalossa eE = 3m.41s. and 4m.50s.
  Helwan iZ = 5m.5s., eEN = 5m.47s., eN = 6m.11s. and 7m.37s.
  Bologna e = 4m.49s.
  Raciborzu eN = 6m.15s., iN = 6m.26s.?
  Stuttgart e = 3m.40s. and eZ = 4m.17s.
  Strasbourg i = 3m.55s., e = 4m.23s., 4m.53s., 5m.15s., and 5m.37s., eSS = 7m.10s.
  Algiers e = 3m.5s., 4m.30s., and 4m.36s.
  Clermont-Ferrand i =4m.13s., 4m.29s., 4m.54s., and 5m.12s.
  Paris iPPP =4m.57s.
  Alicante PP = 4m.13s., SS = 8m.41s., SSS = 8m.53s., P<sub>c</sub>P = 9m.1s., P<sub>c</sub>S = 12m.39s., S<sub>c</sub>S =
      16m.9s.
  Kew iNZ = 9m.1s., iEN = 9m.9s.
  Almeria P_cP = 8m.46s., SSS = 9m.55s., P_cS = 12m.23s.
  Toledo iSSSN =10m.5s.
  Granada SS =11m.11s.
  Tamanrasset ePPPZ = 5m.51s.
  Lisbon Z = 7m.15s., 7m.20s., and 10m.43s.
  Long waves were also recorded at Aberdeen, Barcelona, Bergen, and Collmberg.
```

Jan. 14d. Readings also at 0h. (Hungry Horse, near College and La Plata), 1h. (La Paz, and near Leninakan), 3h. (Cleveland, Weston, Ottawa, Hungry Horse, La Paz, Bogota, and near Nanking), 4h. (near Stalinabad), 5h. (near Leninakan), 6h. (College, Hungry Horse, and Pierce Ferry), 12h. (Berkeley, Boulder City, College, Hungry Horse, Pierce Ferry, Shasta Dam, Tucson, Mount Wilson, Riverside, Ottawa, Victoria, Stuttgart, and Strasbourg), 17h. (near Alicante), 19h. (Hungry Horse (2), Tamanrasset, near Catania, and Messina), 20h. (Hungry Horse), 21h. (Victoria, Boulder City, College, Logan, Pierce Ferry, Shasta Dam, Tucson, Pasadena, Mount Wilson, Riverside, Tinemaha, Lick, Reno, Paris, Strasbourg, and Stuttgart), 23h. (Tacubaya, Fort de France, Huancayo, San Juan, Boulder City, Hungry Horse, Pierce Ferry, Tucson, Pasadena, Riverside, Ottawa, Lick (2), and near Branner).

Jan. 15d. 1h. Undetermined shock.

```
Apia eP = 54m.23s., eS = 56m.12s.

Pasadena iPZ = 63m.19s.

Riverside ePZ = 63m.21s.

Shasta Dam iP = 63m.24s.

Tinemaha ePE = 63m.28s.

Boulder City iP = 63m.36s.

Pierce Ferry iP = 63m.39s., e = 65m.37s.

Tucson iP = 63m.40s., e = 65m.40s.

Hungry Horse iP = 64m.8s.

Stuttgart eZ = 70m.52s., iZ = 70m.59s., eZ = 73m.8s.

Strasbourg e = 71m.0s., ePKP<sub>3</sub> = 71m.14s.

Tamanrasset ePKPZ = 71m.14s., ePKP<sub>3</sub>Z = 72m.56s., ePPZ = 76m.50s.
```

Jan. 15d. 7h. 20m. 26s. Epicentre 43°.7N. 16°.6E. (as given by Strasbourg).

A = $+ \cdot 6951$, B = $+ \cdot 2072$, C = $+ \cdot 6884$; $\delta = -1$; h = -3; D = $+ \cdot 286$, E = $- \cdot 958$; G = $+ \cdot 660$, H = $+ \cdot 197$, K = $- \cdot 725$.

	Δ	Az.	Р.	0-C.	s.	0-C.	Su	pp.	L.
	0	200	m. s.	8.	m. s.	s.	m. s.		m.
Zagreb	2.2	349	0 40?	+ 2	e1 1	- 5			
Triest	2.8	314	e 0 52	P•	i1 26	+ 4	e1 0	Pe	
Belgrade	3.0	67			e 1 41	Se			e 1·9
Padova	3.5	284			e 1 53	S.			e 3·0
Rome	3.5	241			e 1 32	- 8			

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1949					22					
		Δ	Az.	Р. m. s.	0 – C. s.	S. m. s.	0 – C. s.	m. s.	pp.	L. m.
Bologna Florence Prato Salo Zürich	E.	$3 \cdot 9$ $3 \cdot 9$ $4 \cdot 0$ $4 \cdot 7$ $6 \cdot 7$	$283 \\ 273 \\ 274 \\ 295 \\ 306$	e 1 13 e 1 46		e 2 24 e 1 43 e 1 52 e 2 26 e 3 8	Sr - 7 0 S• + 8	$\begin{array}{r} & & & \\ e & 2 & 5 \\ i & 2 & 18 \\ i & 2 & 45 \\ e & 3 & 33 \end{array}$	* * * * *	e 2·8
Stuttgart Basle Strasbourg Jena Hungry Horse		7 · 2 7 · 4 7 · 8 8 · 0 78 · 6	$317 \\ 304 \\ 312 \\ 336 \\ 329$	e 1 46 e 1 49 e 2 28 e 2 59 12 4	$ \begin{bmatrix} - & 3 \\ - & 3 \\ P_{g}^{g} \\ - & 1 \end{bmatrix} $	e 3 7 e 3 58 e 3 38 e 3 36	$- 6 \\ S_{g} \\ + 10 \\ + 3 \\$	$\begin{array}{c} \mathbf{e} \ 2 \ 16 \\ \mathbf{e} \ 4 \ 4 \\ \mathbf{e} \ 4 \ 0 \end{array}$	Pg S* S*	e 3·9 e 4·2

Additional readings :---

Triest e = 1m.14s. Stuttgart eZ = 1m.49s., e = 3m.20s., $eS_r = 3m.50s$. Strasbourg e = 3m.0s., 3m.17s., and 3m.45s. Jena eE = 3m.13s., eN = 3m.40s. and 4m.10s. Long waves were also recorded at Collmberg.

- Jan. 15d. Readings also at 0h. (near Stalinabad (2)), 1h. (La Paz and near Leninakan), 4h. (near Auckland, New Plymouth, Havelock North, Tuai, Wellington, Kaimata, and Christchurch), 9h. (Hungry Horse, Pierce Ferry, Shasta Dam, and Victoria), 10h. (Stuttgart, Basle, Tamanrasset, and near Algiers), 11h. (Stuttgart, Tamanrasset, and near Algiers), 12h. (Tacubaya, Boulder City, Hungry Horse, Pierce Ferry, and Shasta Dam), 13h. (Tamanrasset and near Algiers), 14h. (near Ashkabad), 16h. (Hungry Horse), 17h. (near Ashkabad and near Stalinabad), 18h. (Hungry Horse, Shasta Dam, and near Leninakan), 21h. (Berkeley, Pierce Ferry, Shasta Dam, and near Honolulu), 22h. (near Tucson), 23h. (College, near Ashkabad, and near Berkeley).
- Jan. 16d. Readings at 0h. (College, Hungry Horse, Pierce Ferry, and Shasta Dam), 1h. (College), 3h. (near Logan), 5h. (Sofia and near Leninakan), 6h. (Hungry Horse), 12h. (College, Hungry Horse, and Pierce Ferry), 13h. (Alicante, Granada, Hungry Horse, near Grozny, Piatigorsk, Leninakan, and Erevan), 20h. (Strasbourg), 21h. (College), 22h. (near Leninakan), 23h. (Hungry Horse).
- Jan. 17d. Readings at 2h. (La Paz), 4h. (Strasbourg, Stuttgart, Zürich, Sofia, Belgrade, and Trieste), 8h. (near Catania and Messina), 9h. (College, Hungry Horse, Pierce Ferry, and Shasta Dam), 14h. (near Ashkabad), 15h. (Sofia), 16h. (College, Tanan-

arive, and near Klyuchi), 17h. (near Alicante), 21h. (near Florence).

Jan. 18d. 4h. South Pacific, near Chile.

```
Santa Lucia eN = 47m.46s. and 48m.24s.
La Paz iP = 50m.0s., PPZ = 51m.16s., iS = 55m.13s., iSSE = 57m.42s., L = 59.3m.
Huancayo eP = 50m.11s., e = 55m.35s., eL = 58m.9s.
Bogota iP = 55m.16s., iPP = 56m.26s.
Tucson iP = 55m.22s.
Boulder City eP = 55m.41s., i = 55m.46s.
Pasadena iPZ = 55m.42s.a
St. Louis eP = 55m.44s.
Pierce Ferry iP = 55m.51s.
Fresno iPZ = 55m.56s.
Tinemaha ePE = 55m.58s.
Berkeley iPZ = 56m.7s.k, iZ = 56m.15s. and 56m.20s.
Reno iPZ = 56m.12s.k, iZ = 56m.36s.a.
Shasta Dam iP = 56m.18s.
Ottawa eZ = 56m.21s.
Hungry Horse eP = 56m.42s.
Paris iPKP = 62m.25s.
Stuttgart ePKPZ = 62m.31s.
```

Jan. 18d. Readings also at 2h. (Riverview and Santa Lucia), 4h. (Helwan, Ksara, College, and near Mizusawa), 8h. (La Paz, Erevan, and near Leninakan), 10h. (La Paz), 12h. (Hyderabad, Granada, Boulder City, Pierce Ferry, Tucson, Pasadena, and Haiwee), 14h. (Pierce Ferry, near Berkeley, Branner, San Francisco, Fresno, Mineral, and Reno), 18h. (Copiapo, College, and Pierce Ferry), 19h. (Ksara, Hungry Horse, and Kew), 20h. (Boulder City, Pierce Ferry, near Tucson, near Berkeley, Lick, Branner, and San Francisco), 22h. (near Andijan), 23h. (Kew and near Tucson (2)).

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1949

28

Jan. 19d. 13h. 38m. 20s. Epicentre 23° 8N. 121° 8E. (as on 1946, June 2d. and foreshock of 15h. 0m.).

Nanking		8.7	343	e 2 8	- 2	e 3 47	- 3	
Irkutsk		31.4	339	e 6 23	-2			
Frunse		43.2	308	e 8 18	+14		-	
Andijan		44 .5	305	e 8 21	+ 6		—	-
Poona	E.	44.9	273	e 8 14	- 4			
Tchimkent	1000040	46.7	307	e 8 38	+ 6	e 15 28	$^{+}_{+}$ $^{6}_{5}$	
Tashkent		46.9	306	e 8 36	$^{+}_{+} \frac{6}{2}$	e 15 30?	+ 5	
Samarkand		48.5	303	e 8 55	+ 9	e 15 55	+ 7	
Sverdlovsk		54.7	324	9 32	- 1	17 6	- 7	
College		68.9	28	e 11 2	- 7			
Upsala		76-5	330			e 23 10	PPS	e 38·7
Stuttgart	Z.	86.1	323	e 12 43	- 1	-		
Victoria	Z.	87.5	38	e 12 48	-1 -3		1.000	
Kew	0.000	89.5	328		-	e 29 40?	SS	e 44·7
Shasta Dam		92.4	44	e 13 11	- 3			
Hungry Horse		92.5	34	i 13 12	- 2			
Mineral	Z.,	93-1	43	e 13 14k	- 3			
Tamanrasset	z.	102.7	303	18 21	\mathbf{PP}			2 <u>000</u> 0

Long waves were also recorded at Calcutta and at other European stations.

Jan. 19d. 15h. 0m. 0s. Epicentre 23°.8N. 121°.8E. (as at 13h.).

		Δ	Az.	Р.	0 – C.	S.	0 – C.	m. s.	p.	L. m.
Zi-ka-wei Nanking Mizusawa Calcutta Irkutsk	E.	$ \begin{array}{r} $	$^{\circ}_{357}_{343}_{42}_{275}_{339}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		m. s. e 3 28 3 42 e 8 58 e 11 18 11 27	8. 	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Sg PP PP PP	4.0
Batavia Hyderabad Frunse Colombo Andijan	N. N. E.	$33.2 \\ 40.9 \\ 43.2 \\ 43.6 \\ 44.5$	$208 \\ 270 \\ 308 \\ 255 \\ 305$	e 6 43 e 7 28 e 8 8 i 8 40 e 8 17	$^{+3}_{-18}$ $^{+4}_{+32}$ $^{+32}_{+2}$	$1\overline{3}\ 21$ $=$ $1\overline{4}\ 56$	$-\frac{37}{-}$ + 5	1 <u>6</u> 31		19-4
Poona Bombay Obi-garm Tchimkent Tashkent		$44 \cdot 9 \\ 45 \cdot 7 \\ 46 \cdot 4 \\ 46 \cdot 7 \\ 46 \cdot 9$	$273 \\ 274 \\ 302 \\ 307 \\ 306$	e 8 22 e 8 27 e 8 30? e 8 32 e 8 32	$+ \frac{4}{3} \\ + \frac{3}{0} \\ - \frac{9}{2}$	e 14 58 e 15 8 e 15 26 e 15 28	$+ \frac{2}{0} + \frac{4}{3}$	$ \begin{array}{r} 10 & 10 \\ 10 & 20 \\ \hline e & 10 & 31 \end{array} $	PP PP PP	21·1
Samarkand Sverdlovsk Riverview Grozny Piatigorsk		$48.5 \\ 54.7 \\ 63.8 \\ 64.2 \\ 66.0 \\$	$303 \\ 324 \\ 154 \\ 309 \\ 310$	e 8 51? i 9 34 e 10 40 e 10 47	+ 5 + 1 + 1 + 1 - 3	e 15 53 i 17 10 e 19 42 19 22	+ 5- 3+ 31+ 6	i 19 18 e 26 36	ScS Q	e 30-6
Moscow College Yalta Ksara Upsala		$67.4 \\ 68.9 \\ 72.1 \\ 73.9 \\ 76.5$	$323 \\ 28 \\ 312 \\ 301 \\ 330$	$\begin{array}{cccc} 10 & 59 \\ e & 12 & 4 \\ 11 & 26 \\ e & 12 & 11 \\ \hline \end{array}$	$+55 \\ -2 \\ +32 \\ -32 \\$	e 20 6 20 50 e 20 34 e 21 35	$-36 \\ -36 \\ -4$	e 26 0?	ss	$\begin{array}{r} \mathbf{e} \ 33 \cdot 7 \\ \underline{} \\ \mathbf{e} \ 34 \cdot 0 \end{array}$
Istanbul Sitka Helwan Skalnate Pleso Copenhagen		76.7 76.8 78.9 79.5 80.9	$309 \\ 33 \\ 298 \\ 320 \\ 328$	e 11 54 e 11 50 12 10 e 19 36 e 12 18	$-1 \\ -5 \\ +3 \\ +1 \\ +1$	e 21 35 22 12 e 22 25	$-\frac{7}{7}$	e 26 55 e 17 17		e $33 \cdot 3$ e $38 \cdot 5$ $39 \cdot 0$

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1949				24			5		
	Å	Az.	P. m. s.	0 – C. s.	S. m. s.	0 – C. s.	m. s.	pp.	L. m.
Bergen N. Potsdam	$ 81 \cdot 4 \\ 82 \cdot 1 $	$\begin{array}{c} 334\\ 325\end{array}$	i 12 25k	+ 1	e 22_43	$+\frac{12}{-12}$		\equiv	e 34 · (e 42 ·)
Zagreb Jena N. Triest	83.6 83.7 85.0	$318 \\ 323 \\ 319$	e 12 34 e 12 33 e 12 57	$^{+3}_{+19}$	e 22 48 e 23 23	$-\frac{5}{16}$	$\begin{array}{r} \mathbf{e} \ 13 \ 13 \\ \mathbf{e} \ 16 \ 3 \end{array}$	\overline{PP}^{i}	e 41.
Stuttgart	$ \begin{array}{r} 86 \cdot 1 \\ 87 \cdot 0 \end{array} $	$323 \\ 319$	e 12 43 e 12 49	T 1	e 23 11 e 23 40	[+3] + 13	e 16 6	PP	e 43·
Salo Strasbourg	87.0	323	e 12 50	$\begin{array}{c} + 1 \\ + 2 \end{array}$	e 23 28	+1	e 23 16	SKS	41.
Bologna	87.1	318	e 12 52	+ 3	e 23 32	$\dot{+}$ 4	e 16 41	\mathbf{PP}	
Zürich	$87 \cdot 2$	322	e 12 48	- 1					<u>19</u>
Florence	87.5	317	e 12 51	. 0	e 23 34	$^{+}_{+} \frac{3}{5}$			
Victoria	87.5	38	e 12 59k	$+ \frac{8}{1}$	e 23 36	+ 5		\rightarrow	42.
Basle	87 · 7 87 · 7	$322 \\ 316$	e 12 51 e 12 53	$^{-1}_{+1}$	i 23 34	+1	e 23 14	SKS	e 56.
Rome Kew	89.5	328		т <u> </u>	e 25 45	$^{+1}_{\rm PPS}$	e 40 0	Q	e 51.
Paris	89.7	325	e 12 58	- 3	e 25 03	PPS	e 13 3	PcP	e 47 ·
Clermont-Ferrand	91.2	322	i 13 10	-3 + 2			i 16 49	\mathbf{PP}	45
Shasta Dam	92.4	44	i 13 11	- 3					
Hungry Horse	92.5	34	113 2	-12		-		SHE	- 3
Mineral Z.	$93 \cdot 1$	43	i 13 16k	- 1					
Berkeley N.	and the second second second second	46			e 24 30	- 1	e 25 44	PS	e 45.
Butte N.		35		<u> </u>	e 24 34	- 41	e 26 26	PPS	
Bozeman	$95.8 \\ 97.2$	$\frac{34}{45}$	e 13 37	+ 1	e 24 4	[-1]	e 24 40	s	e 47 ·
l'inemaha E. Alicante	97.9	318		τ <u>ι</u>	e 25 12	+ 9	e 38 40	Q	e 44 ·
	 and the second second 	o-constant. National	- 19 97		Strift Strift	1000	anna ann an ann an an ann an an an an an		
Logan	$98.1 \\ 99.0$	37 47	e 13 37 e 13 45	$^{-3}_{+1}$					e 40.
Pasadena	100.0	318	0 15 45	T 1		_	e 43 55	Q	51.
Almeria Boulder City	100.0	43	e 13 48	0		\equiv	C 10 00		
Pierce Ferry	100.4	43	e 13 50	ŏ		8000	S 1		
Famanrasset Z.	102.7	303	e 17 28	8	, 	1	i 18 19a	\mathbf{PP}	
Fucson	104.9	44	e 14 10	0			e 18 23	\mathbf{PP}	e 44 ·
Weston	113.0	10	i 22 54	PKS	e 30 2	PPS			-
Bogota Huancayo	$147.8 \\ 159.9$	30 57	i 19 45	[+1]	e 36 8	?	i 20 9 2 e 44 30	PKP, SS	e 77 ·
the second s	the second s	and the second se			 A second state of the second stat	- 10 C	 A second s	These Manual	e 77 .

Additional readings :---

Calcutta iSSE = 14m.16s.Batavia ePE = 6m.51s. Hyderabad PPN = 8m.49s.Poona iE = 8m.52s., $P_cP?E = 10m.32s.$, SSN = 17m.46s., $S_cS?E = 18m.17s.$, QN = 10m.32s.18m.41s. Tashkent $eP_cP = 10m.0s.$, ePPP = 11m.1s.?, eSS = 18m.55s.College e = 20m.43s. and 25m.28s. Helwan iZ = 12m.30s., eZ = 13m.5s. and 14m.5s., S?N = 22m.24s., eE = 23m.11s., iZ = 23m.43s. Stuttgart eZ = 12m.57s., eSSS? = 32m.0s., e = 35m.6s.Strasbourg e = 13m.4s., 13m.22s., 13m.26s., 13m.47s., and 13m.50s., ePS = 24m.44s.Paris i = 13m.6s. Kew eEN = 31m. Berkeley eE = 25m.18s., eN = 39m.0s., eE = 43m.36s., eZ = 44m.0s. Tucson e = 17m.54s. Long waves were also recorded at Wellington, Scoresby Sund, Bermuda, Philadelphia,

Seven Falls, and at other European stations.

Jan. 19d. Readings also at 0h. (La Paz), 2h. (Wellington, Arapuni, near Andijan, Samarkand, Tashkent, Kulyab, and Stalinabad), 4h. (College, Tchimkent, Frunse, Almata, near Kulyab, Obi-garm, Stalinabad, Samarkand, Andijan, and Tashkent), 5h. (College), 7h. (near Ashkabad), 12h. (Batavia and Alicante), 13h. (Alicante, Pierce Ferry, Hungry Horse, and near Ashkabad), 14h. (Batavia). 15h. (Hungry Horse, Samarkand, Frunse, Tchimkent, near Andijan and near Ashkabad), 16h. (La Paz, Copiapo, and near Ashkabad), 19h. (near Stuttgart (2), Chur, Basle, and Zürich, intensity V at Locarno; Samarkand, Stalinabad, Tashkent, Obi-garm, Tchimkent, Frunse, and near Ashkabad (3)), 20h. (near Ashkabad (2)), 21h. (Tacubaya, near Tucson and near Ashkabad).

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1949

25

Jan. 20d. 6h. 48m. 55s. Epicentre 44°.8N. 14°.8E. (as on 1937, Jan. 29d.).

Intensity III in Dalmatia. Macroseismic area 5,500sq.km. in Austria. Epicentre : 45°.0N. 15°.0E. (Rome). 44°45'N. 14°54'E. (Strasbourg and Triest).

Jahrbücher der Zentralanstalt für Meteorlogie und Geodynamik, Jahrgang 1949, Vienna, 1950, new series, vol. 86, p. E1, with macroseismic chart p. E2.

A second, much stronger, shock from this epicentre occurred at 6h. 50m. but does not

seem to have been recorded. Intensity VII at Rab (44°46'N. 14°46'E.), Baska Otocac, VI at Senj, V at Tramonti di Sitto (Udine), IV-V at Triest, IV at Zagreb and Gorizia, III at Ljubljana, Klagengurth, Vienna, and Innsbruck. Macroseismic area 58,000 sq.km.

M. D. Uzelac.

Annuaire microséismique et macroséismique de l'Institut Séismologique de Beograd, 1949, Nouvelle Série No. 9, Belgrade, 1950, pp. 51-52.

> A = $+ \cdot 6883$, B = $+ \cdot 1819$, C = $+ \cdot 7023$; $\delta = +7$; h = -3; D = $+ \cdot 255$, E = $- \cdot 967$; G = $+ \cdot 679$, H = $+ \cdot 179$, K = $- \cdot 712$.

	\triangle Az.		0 – C.	s. o-0		L.
Triest Zagreb Padova Bologna Florence	$\begin{array}{ccc} & & & & & \\ 1 \cdot 1 & & 319 \\ 1 \cdot 3 & & 39 \\ 2 \cdot 1 & 279 \\ 2 \cdot 5 & 273 \\ 2 \cdot 5 & 273 \\ 2 \cdot 7 & 248 \end{array}$	i 0 16k 0 38 i 0 45a		1044 113 Sg e113 - 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	m.
Prato Salo Kalossa Rome Ogyalla	$ \begin{array}{ccccccccccccccccccccccccccccccccccc$	e 0 52a e 1 9 i 0 58	$^{+1}_{P_{r}}$ $^{+3}_{-8}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} \mathbf{i} \ \mathbf{\overline{1}} \ 5 \ \mathbf{P}_{\mathbf{g}} \\ \mathbf{i} \ \mathbf{\overline{1}} \ 11 \ 11 \ \mathbf{P}_{\mathbf{g}} \end{array}$	$\frac{\overline{2 \cdot 1}}{}$
Belgrade Budapest Pavia Chur Ravensburg	$\begin{array}{cccc} 4\cdot 0 & 87 \\ 4\cdot 0 & 46 \\ 4\cdot 0 & 277 \\ 4\cdot 2 & 301 \\ 4\cdot 7 & 312 \end{array}$	i1 5a e1 4	P•	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	을 가장 물건 전 공부가 물건하는 것을 받았다.	2·1 i 2·7
Taranto Zürich Ebingen Stuttgart Basle	$\begin{array}{cccccc} 4 \cdot 7 & 156 \\ 5 \cdot 1 & 303 \\ 5 \cdot 3 & 312 \\ 5 \cdot 5 & 318 \\ 5 \cdot 7 & 302 \end{array}$	1 13 e 1 18 e 1 45 e 1 25 e 1 29	$ \begin{bmatrix} - & 1 \\ - & 2 \\ P_{g} \\ 0 \\ + & 1 \end{bmatrix} $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
Raciborzu Skalnate Pleso Neuchatel Strasbourg Jena E.	$5 \cdot 8$ 22 $5 \cdot 8$ 38 $5 \cdot 9$ 295 $6 \cdot 1$ 311 $6 \cdot 5$ 342	e 1 23 ? e 1 24 e 1 31 e 1 35 e 1 38	$ \begin{array}{c} - & 6 \\ - & 5 \\ 0 \\ + & 1 \\ - & 1 \end{array} $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$i \overline{2} 1 P_{\varepsilon}$	e 3·3
Sofia Collmberg Messina Potsdam Clermont-Ferrand	$\begin{array}{cccc} 6\cdot 5 & 106 \\ 6\cdot 6 & 350 \\ 6\cdot 6 & 175 \\ 7\cdot 7 & 352 \\ 8\cdot 3 & 281 \end{array}$	e 1 19 i 1 38 e 2 30? i 2 2	$-\frac{20}{-3}$ +49 -2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	i4 14 S.	i 4.6
Uccle Z. Paris Alicante Almeria Tamanrasset Z.	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccc} (e & 2 & 10) \\ e & 2 & 21 \\ & 3 & 14 \\ & 3 & 40 \\ e & 5 & 9 \end{array}$	- 64 + 44 + 10	$\begin{array}{ccccc} (e & 4 & 2) & - & 1 \\ e & 4 & 16 & + 11 \\ 5 & 37 & - & 1 \\ 6 & 38 & + & 8 \\ - & - & - & - \end{array}$	3 29 PPP	(e 4·2) e 5·7 6·5 9·1
College Hungry Horse Shasta Dam	69·8 353 77·0 328 86·6 329	e 16 43 i 11 54 i 12 39				

Additional readings :— Triest iPsP = 28s. Zagreb i = 30s., iPgSg = 41s., iPgSgZ = 47s. Bologna iS = 1m.19s., iSg = 1m.33s. Florence iE = 1m.9s. Salo iE = 1m.10s., iN = 1m.18s., iE = 1m.27s., iSg? = 1m.38s. Belgrade e = 1m.38s., iPgS = 2m.13s. Ravensburg e = 2m.35s., iSgZ = 2m.38s.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1949

26

Stuttgart i =1m.29s.a, $eP^* = 1m.38s.$, $eP_g = 1m.46s.$, i = 1m.57s., e = 2m.5s. and 2m.11s., $eS^* = 2m.20s.$, i = 2m.44s., iS = 2m.56s., i = 3m.3s., iS_g = 3m.7s. Strasbourg eP = 1m.48s., e = 2m.5s., iS = 3m.5s., i = 3m.15s. and 3m.20s., iS_g = 3m.26s. Collmberg iZ =1m.43s., eE = 1m.46s., iSEN = 2m.50s., $eS_gE = 3m.28s.$ Potsdam eN = 3m.27s., eZ = 3m.31s., eE = 3m.40s., iN = 4m.1s., iE = 4m.8s., iN = 4m.17s. and 4m.26s.Clermont-Ferrand i = 2m.15s., 2m.32s., 3m.18s., 3m.53s., and 4m.22s. Uccle readings reduced by 1 minute. Paris i = 2m.42s. and 4m.31s., e = 5m.9s.Alicante PeP = 8m.31s.

Almeria SSS =7m.12s., $P_cP = 8m.46s$. Tamanrasset ePPPZ =5m.51s. College i =16m.56s. and 18m.23s. Long waves were also recorded at Istanbul.

Jan. 20d. 7h. 59m. 26s. Epicentre 39°.6N. 120°.1W. (as on 1948, Dec. 29d.).

Epicentre given by U.S.C.G.S.

Α	=	3882, 1	B = -	6680, C	The second se		+2;	h=-2;		
D	== ·	865, E	=+-;	503;	G = -31	9, $H = -$	·549, K	=773.		
			Az.	Р.	0-C.	s.	О −С.	Sul	эр.	L.
		•	0	m. s.	8.	m. s.	s.	m. s.		m.
Reno		0.2	106	i0 0	-10		-		30-000	
Mineral		1.4	327	i027	0	i048	+ 2			_
Shasta Dam		2.1	328	i 0 38	+ 1	i1 8	+4			Street.
Ukiah		2.5	259			e 1 33	+ 2 + 4 S_{g}	100		$2 \cdot 2$
Lick	z.	2.6	241	i049	\mathbf{P}^{\bullet}					
San Francisco		2.6	225	i044	0	i 1 17	0			
Santa Clara	N.	2.7	231	e 0 57	Pg	e 1 23	S*		_	i 1.6
Fresno		2.9	175	e 0 48	0	i 1 26	+ 2	i 0 51	\mathbf{P}^{\bullet}	
Tinemaha		$3 \cdot 0$	148	i0 55	\mathbf{P}^{\bullet}	i 1 35	S*			
Arcata		3.3	296	e 1 2	P*	i1 35	0	i 1 49	Sg	i 1.9
Haiwee		3-9	152	i 1 11	\mathbf{P}^{\bullet}	$\begin{smallmatrix}i&2&&3\\i&2&47\end{smallmatrix}$	S* S*			
Pasadena		5.7	162	e 1 28	0	i 2 47	S*			STATAT
Pierce Ferry		6.0	123	i1 30	- 2		-		-	i 3·1
Hungry Horse		9.8	25	i 2 26	+ 2			1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 -		i 5·2
Tucson		10.5	131	e 2 47	\mathbf{PP}			e 3 37	3	e 5·0

Additional readings :---

Fresno iN =1m.35s. Arcata iN =1m.30s. Long waves were also recorded at Bozeman, Butte, and Victoria.

Jan. 20d. 11h. 41m. 53s. Epicentre 34°.8N. 137°.0E. (as on 1948, March 9d.).

THE WAY IN THE STREET WAY AND A DRIVE THE STREET IN STREET.

Intensity V at Irako; IV at Nagoya, Tu, Kameyama, and Iida; II-III at Gihu, Hikone, Shizuoka, Omaesaki, Tsuruga, Osaka, Hukui, Kohu, and Kyoto. Macroseismic radius 200-300km. Epicentre 34°.7N., 137°.2E.

The Seismological Bulletin of the Cent. Met. Obs., Japan, for the year 1949. Tokyo, 1950, p. 5, with macroseismic chart.

A =6019, B	$= + \cdot 5612,$	C = +	·5681;	$\delta = -3$; h =	•0;
D = + .682, E =	+.731;	G = -	-·415, H	$= + \cdot 387,$	$\mathbf{K} = - \cdot$	823.
	Δ	Az.	Р.	0 – C.	s.	0 – C.
	.0	0	m. s.	s.	m. s.	s.
Kameyama	0.4	277	0 11k	- 2	0 19	- 2
Nagoya	0.4	356	0 9	- 4		
Gihu	0.6	342	0 16	+ 1	0 26	0
Hikone	0.8	307	0 10k	- 8	0 22	- 9
Omaesaki	1.0	101	0 19k	- 2	0 33	- 3
Owase	1.0	222	0 21	0	0 34	- 2
Kyoto	1.1	282	0 20	- 2	0 38	- 1
Osaka	1.2	263	0 25	+ 1	0 43	+ 2
Shizuoka	1.2	82	0 21k	- 3	0 36	- 5
Kobe	1.5	266	0 29	+ 1	0 53	+ 4

Continued on next page.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1949			27	7		
	Hunatu Misima Siomisaki Sumoto Osima	∆ 1.6 1.6 1.7 1.8 1.9	Az. 64 79 217 256 91	P. m. s. 0 28 0 28 0 33 0 34 0 32	0-C. s. - 22 - + 22 + - 22 + - 22	S. $0 - 0$ m. s. s. 0 49 - 5 0 47 - 5 0 56 + 5 0 58 + 5 0 54 - 5
8	Toyama Toyooka Nagano Kumagaya Maebasi	$1 \cdot 9 \\ 2 \cdot 0 \\ 2 \cdot 1 \\ 2 \cdot 3 \\ 2 \cdot 3 \\ 2 \cdot 3$	$5\\298\\28\\55\\46$	$\begin{array}{ccc} 0 & 36 \\ 0 & 37 \\ 1 & 37 \\ 1 & 42 \\ 0 & 46 \end{array}$	$^{+2}_{+2}_{+60}_{+62}_{+62}_{P_{g}}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	Mera Yokohama Tokyo Wazima Kakioka	$2 \cdot 3 \\ 2 \cdot 3 \\ 2 \cdot 4 \\ 2 \cdot 6 \\ 3 \cdot 0$	$87 \\ 74 \\ 66 \\ 358 \\ 61$	$\begin{array}{ccc} 0 & 41 \\ 0 & 42 \\ 0 & 44 \\ 0 & 51 \\ 0 & 53 \end{array}$	+ 1 + 2 + 3 + 3 + 3 + 3	1 11 + 11 + 11 + 11 + 11 + 11 + 11 + 1
	Koti Mito Aikawa Hirosima Hamada	$3 \cdot 1 \\ 3 \cdot 2 \\ 3 \cdot 4 \\ 3 \cdot 8 \\ 4 \cdot 1$	$246 \\ 61 \\ 17 \\ 265 \\ 273$	$ \begin{array}{cccc} 1 & 3 \\ 1 & 1 \\ 0 & 55 \\ 1 & 30 \\ 1 & 32 \\ \end{array} $	$P_{g}^{P}_{g}^{P}_{0}^{P}_{1}^{P}_{27$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	Hukusima Sendai Hukuoka Kagosima Hungry Horse	$4 \cdot 1 \\ 4 \cdot 7 \\ 5 \cdot 6 \\ 6 \cdot 3 \\ 75 \cdot 8$	$\substack{\substack{43\\41\\260\\241\\41}$	$1 17 \\ 1 23 \\ 2 36 \\ 1 30 \\ 1 11 48$	P* P* S - 6 - 2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

Hukuoka also gives S = 3m.11s.

14

Jan. 20d. 13h. 24m. 56s. Epicentre 35°.6N. 134°.2E. (as on 1943, Oct. 18d.).

Intensity VII-VIII at Nisitani (Hyogo Pref.); VI at Toyooka and Hukui; V at Kobe, Hikone, Tsuruga, Sumoto, Osaka, Kasiwara, Tu, Matsue, and Kyoto; IV at Yonago, Takamatsu, Tohusima, Saigo, Wakayama, Koti, and Hirosima; II-III at Kohu, Irako, Hamada, Iida, Wazima, and Nagoya. Macroseismic radius >300km. Slight damage to walls and houses in the epicentral region. No loss of human life. Epicentre 35°.6N. 134°.6E.

The Seismological Bulletin of the Cent. Met. Obs., Japan, for the year 1949. Tokyo, 1950, p. 6, with macroseismic chart.

	$\Lambda =5682,$	B == +	·5843, C	= + .579		= +8;	h=0;		
	D = +.717, E	$= + \cdot 6$	97; ($3 = -\cdot 40$	4, $H = +$	·415, K	$= - \cdot 815.$		
	Δ	Az.	Р.	0 – C.	s.	0-C.	Su	op.	L.
	0	0	m. s.	8.	m. s.	s.	m. s.		m.
Toyooka	0.5	98	0 7k	$\mathbf{P}_{\mathbf{g}}$	0 10	Sr	-		
Kobe	1.2	139	0 19k	- 5	0 34	- 7			
Osaka	1.4	131	0 25k	- 2	0 42	- 4		-	-
Sumoto	î.4	156	0 25k	- 2	0 42	4			
Hikone	$\hat{1}\cdot\hat{7}$	101	0 20k	$-1\bar{1}$	0 33	-21	·	_	
Hamada	1.9	248	0 37a	+ 3	1 5	+ 6			
Hirosima	1.9	230	0 37	+ 3	$\begin{array}{ccc} 1 & 5 \\ 1 & 2 \end{array}$	+ 3	And and a second se		
Kameyama	2.0	112	0 32	- 3	0 59	- 3	7777 C		
Gihu	$2 \cdot 1$	95	0 34k	- 3					
Koti	$\tilde{2} \cdot \tilde{1}$	195	0 37	0	1 4	0			
Nagoya	2.3	101	0 36k	- 4	1 10	+ 1			
Owase	2.3	133	0 39	- 1	1 5	- 4			
Siomisaki	2.5	149	0 40k	- 3	1 11	- 3			-
Toyama	2.7	66	0 42a	- 3	1 44	+25			
Wazima	2.8	51	0 43 a	- 4	1 24	+ 2	—		—
Nagano	3.4	71	0 35	-20			:	Ballari	
Omaesaki	3.4	107	0 54k	- 1	1 45	S*	-		-
Izuka	3.5	238	1 4	\mathbf{P}^{*}	1 55	S* Sg			
Shizuoka	3.5	101	0 53	- 4	1 43		\equiv		
Hukuoka	3.7	238	1 5	+ 5	1 54	+ 3 S•			

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1949					28					
Hunatu Kumamoto Maebasi Aikawa Kumagaya		△ 3·7 4·0 4·0 4·1 4·2	Az. 90 227 77 52 81	m. s. $\begin{array}{ccc} 0 & 45k \\ 1 & 8k \\ 1 & 11 \\ 1 & 2a \end{array}$	0-C. s. -15 + 4 P• - 3 + 1	$\begin{array}{c} {\rm S.}\\ {\rm m.} \ {\rm s.}\\ 1 \ 42\\ 2 \ 11\\ 2 \ 5\\ 1 \ 58\\ 2 \ 11\end{array}$	0-C. s. -S. -S. -S. -S. -S. 	m. s.	рр. 	L. m.
Miyazaki Osima Yokohama Tokyo Mera		4.3 4.3 4.4 4.5 4.7	213 100 91 87 97	1 6	+ 5 - 2 P* + 3 P*	$ \begin{array}{ccccccccccccccccccccccccccccccccccc$	• • • • •			
Utunomiya Tukubasan Kakioka Kagosima Mito		$4.7 \\ 4.8 \\ 4.9 \\ 5.0 \\ 5.1$	$77\\81\\218\\79$	$\begin{array}{ccccccccc} 1 & 16 \\ 1 & 13 \\ 1 & 9 \\ 1 & 24 \\ 1 & 23 \end{array}$	$^{+2}_{-2}_{-8}_{P^{\bullet}}_{+3}$	$ \begin{array}{r} 2 & 25 \\ \hline 2 & 28 \\ 2 & 44 \\ 2 & 31 \end{array} $	s* ssss			
Hukusima Sendai Akita Mizusawa Morioka	N.	$5.5 \\ 6.0 \\ 6.2 \\ 6.5 \\ 6.9$	$ \begin{array}{r} 65 \\ 62 \\ 47 \\ 55 \\ 51 \\ \end{array} $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-1 +2 +4 +1 -3	$ \begin{array}{r} 2 & 27 \\ 2 & 46 \\ \overline{3} & 2 \\ 3 & 10 \\ \end{array} $	-3 + 3 + 7 + 5			
Aomori Miyako Vladivostok Irkutsk Calcutta	Е.	$7 \cdot 3 \\ 7 \cdot 4 \\ 7 \cdot 7 \\ 27 \cdot 0 \\ 41 \cdot 8$	$\begin{array}{r} 43 \\ 55 \\ 348 \\ 318 \\ 268 \end{array}$	$ \begin{array}{r} 1 & 52 \\ 1 & 50 \\ 1 & 59 \\ 5 & 46 \\ $	$+ 2 \\ + 2 \\ + 3 \\ + 1 \\$	$\begin{array}{r} 3 & 23 \\ 3 & 15 \\ i & 3 & 39 \\ 10 & 27 \\ e & 17 & 11 \end{array}$	$+ 8 \\ - 3 \\ + 14 \\ + 5 \\ SS$			
Frunse Andijan Tchimkent Tashkent Stalinabad		$45.9 \\ 48.0 \\ 49.6 \\ 50.1 \\ 51.3$	298 296 299 297 294	e 8 31 e 8 43 e 8 54 i 9 1 e 9 10	$+ 5 \\ 0 \\ - 1 \\ + 2 \\ + 2$	e 16 24 e 16 30	$\frac{-}{+}$	e 10 54	PP	
Samarkand Sverdlovsk College Bombay Moscow		$52 \cdot 3 \\ 52 \cdot 4 \\ 53 \cdot 4 \\ 56 \cdot 2 \\ 64 \cdot 9$	$296 \\ 319 \\ 32 \\ 270 \\ 322$	e 9 19 9 463 i 9 20 e 14 43 e 10 43	+ 4 + 30 + 30 - 4 = 30 + 30 + 30 + 30 + 30 + 30 + 30 + 30	e 17_40	+ 7			
Theodosia Shasta Dam Hungry Horse Ksara Mineral	z.	71.3 76.5 76.7 77.1 77.2	$313 \\ 50 \\ 40 \\ 302 \\ 50$	11 24 i 11 51 i 12 53 i 11 56k	$+ \frac{1}{3} + \frac{3}{58} - 1$	e 20 10		e 29 14 i 12 2k	SSS PcP	
Reno Jena Helwan Stuttgart Pasadena	Z. Z. Z.	$78.8 \\ 80.2 \\ 82.6 \\ 82.8 \\ 83.2 \\$	$50 \\ 327 \\ 301 \\ 327 \\ 52 \\ 52 \\ \end{array}$	i 12 6 e 12 16 e 12 27 e 12 26 i 12 27	$^{+ 2}_{+ 1}_{- 2}$					
Strasbourg Boulder City Zürich Basle Pierce Ferry		$83.6 \\ 84.1 \\ 84.1 \\ 84.4 \\ 84.5$	$328 \\ 50 \\ 327 \\ 327 \\ 49$	i 12 32 e 12 31 e 12 33 e 12 35 i 12 35	+ 1 - 3 - 1 - 1 - 1		11111	$e 1\overline{\underline{3}} 18$		e 45·1
Salo Paris Tucson Alicante Almeria		84.5 85.6 89.1 95.3 97.4	$324 \\ 330 \\ 50 \\ 326 \\$	e 12 32 i 12 41 e 12 58 e 17 4 e 17 17	-4 0 PP PP			e 12 41 e 12 45	$\overset{\mathbf{P_cP}}{\underset{-}{\overset{\mathbf{P_cP}}{=}}}$	
Granada Tamanrasset La Paz	Z. N.	97.7 104.3 152.5	327 312 51	e 16 32 e 17 29 20 4	? [+13]		_	e 18 4	PP	52.7

Additional readings :---Jena eE =12m.39s. Strasbourg e =12m.53s., 13m.5s., and 14m.8s. Basle e =13m.18s. Salo eZ =12m.49s., e =13m.12s. Long waves were also recorded at Zi-ka-wei.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1949

29

Jan. 20d. Readings also at 0h. (Poona, near Wellington, Auckland, Tuai, New Plymouth, Kaimata and Havelock North), 2h. (Mineral, Boulder City, College, Hungry Horse, Pierce Ferry, and Shasta Dam), 3h. (Poona, Pierce Ferry, and Tucson), 4h. (Boulder City, Pierce Ferry, Tchimkent, Frunse, Almata, near Kulyab, Obi-garm, Stalinabad, Andijan, Samarkand, and Tashkent), 5h. (Wellington and near Apia), 6h. (near Obi-garm, Kulyab, Stalinabad, Andijan, Samarkand, and Tashkent), 7h. (Frunse, near Obi-garm, Kulyab, Stalinabad, Andijan, Tashkent, Samarkand, and Tchimkent (2)), 8h. (Strasbourg), 9h. (College, Hungry Horse, and Pierce Ferry), 12h. (near Ashkabad and near Andijan), 13h. (near Granada), 14h. (Ashkabad), 15h.

(Sofia, La Paz, Tamanrasset, and Ashkabad (2)), 16h. (Ksara, Stuttgart, La Paz, Tamanrasset, and Tananarive), 17h. (Ashkabad), 18h. (Boulder City and near Tucson), 20h. (Ashkabad), 21h. (near Tucson and near Ashkabad), 22h. (Helwan), 23h. (Hungry Horse (2) and Pierce Ferry).

Jan. 21d. 15h. 21m. 2s. Epicentre 10°.5S. 163°.0E. (as on 1937, Jan. 25d.).

A = -.9405, B = +.2875, C = -.1811; $\delta = -1$; h = +6; D = +.292, E = +.956; G = +.173, H = -.053, K = -.984.

		Δ	Az.	Р.	0-C.	s.	0-C.	Su	pp.	L.
		0	•	m. s.	s.	m. s.	s.	m. s.	5.3.434	m.
Brisbane Riverview		$19.3 \\ 25.6$	$208 \\ 203$	i 4 28 e 5 36		$\begin{array}{rrrr} {f i} & {f 8} & {f 9} \\ {f 10} & {f 22} \end{array}$	$^{+7}_{+23}$	i 8 39 e 6 11	SS PP	i 9·9 e 12·9
Arapuni Wellington	Е.	$29.7 \\ 32.4 \\ 60.5$	$159 \\ 164 \\ 334$	e 5 4 (7 32 e 10 14	and the second se	(11 37) e 18 31	$-\overrightarrow{11}$	$e \begin{array}{r} 13 & 58 \\ 13 & 56 \end{array}$	SSS PPP	16.8
Vladivostok		06.9	004	e 10 14	v	e 18 31	+2	6 10 00		
College		83.6	19	e 12 28						
Pasadena	Z.	86.7	55	e 12 49	+ 2			3	1000	
Boulder City		89.8	53	e 13 2	0		-			
Pierce Ferry		90.5	53	e 13 1	- 4	\rightarrow		-		
Hungry Horse		93.1	42	i 13 19		0000				
Ksara	control.	126.5	303	e 21 4	PP					-
Helwan	Z.	131.1	300	e 21 43	PP		2000	e 22 33	PKS	

Additional readings and note :--

Riverview eE = 10m.39s. and 11m.8s.

Wellington PP and S are recorded as S and SS, also S_cS ? = 8m.43s.

College i = 12m.34s.

Long waves were also recorded at Auckland and Perth.

Jan. 21d. Readings also at 0h. (Ashkabad), 1h. (Brisbane), 3h. (Copiapo), 5h. (Copiapo and La Paz), 7h. (3) and 8h. (near Ashkabad), 10h. (Ashkabad and Strasbourg), 11h. (Ashkabad), 12h. (Hungry Horse, near Boulder City, and Pierce Ferry), 15h. (Ashkabad), 16h. (College), 17h. (Boulder City, Pierce Ferry, Shasta Dam, Hungry Horse, College, Kodaikanal, and near Apia), 18h. (Pierce Ferry, Shasta Dam, Hungry Horse, College, Stuttgart, near Ashkabad (2), and near Apia (2)), 19h. (near Apia), 20h. (near Ashkabad and near Alicante), 21h. (near Ashkabad).

Jan. 22d. 5h. South West Pacific.

```
Auckland PN = 38m.10s., PPN? = 38m.24s., SN? = 41m.6s., LN = 42m.0s.
Brisbane iPZ = 38m.35s., iE = 39m.14s., iSN = 41m.58s., iLN = 43m.45s.
Wellington P=39m.0s., PP=39m.39s., i=41m.20s., S=42m.46s., SS=43m.20s., L=
    44m.10s.
Apia eP = 39m.16s.
Riverview iP = 39m.24s.a, ePPEN = 39m.49s., iSE = 43m.20s., iPcPN = 43m.24s.,
    isSE = 43m.37s.
Arapuni eE = 43m.
Pasadena ePZ = 46m.20s., eZ = 47m.34s., eLEZ = 66m.23s.
Vladivostok eP = 46m.20s., eS = 56m.3s.
Pierce Ferry eP = 46m.37s., i = 46m.43s.
Hungry Horse eP = 46m.49s.
Shasta Dam eP = 47m.1s., i = 47m.31s. and 47m.55s.
Tucson e = 47m.54s.
Tamanrasset ePKP?Z = 54m.12s., ePKP,?Z = 55m.19s., ePPZ = 59m.19s.
Stuttgart ePKPZ = 54m.32s., eZ = 54m.49s.
Strasbourg ePKP = 54m.42s.
Long waves were recorded at Berkeley.
```

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1949

8

30

Jan. 22d. Readings also at 0h. (Boulder City), 1h. (Haiwee, Pasadena, Shasta Dam, College, and near Apia (2)), 2h. (Tucson, Boulder City, Pierce Ferry, Hungry Horse, and near Apia), 3h. (Bombay, Calcutta, Hyderabad, Kodaikanal, Poona, Frunse, Sverdlovsk, Tashkent, Helwan, Ksara, Stuttgart, Tamanrasset, Tchimkent (2), Samarkand (2), Kulyab, near Andijan, and Stalinabad (2)), 4h. (College), 5h, Shawinigan Falls and near College), 6h. (near Ashkabad), 7h. (Ksara), 8h. (Andijan, near Kulyab, Samarkand, and Stalinabad), 9h. (Hungry Horse, Pierce Ferry, Tucson, and near Balboa Heights), 10h. (Ashkabad), 11h. (Brisbane, Riverview, and near Stalinabad), 12h. (Auckland, Wellington, Pasadena, Boulder City, Pierce Ferry, Shasta Dam, Hungry Horse, College, Santa Lucia, near Ashkabad, near

Stuttgart, and Triest), 14h. (Hungry Horse), 15h. (Ashkabad), 17h. (Alicante), 19h. (Kulyab and near Stalinabad), 20h. (near Ashkabad), 21h. (near Alicante), 22h. (Hungry Horse and near Ashkabad (2)), 23h. (Copiapo, Santa Lucia, College, and Ashkabad).

Jan. 23d. 1h. 8m. 30s. 1 Epicentre 71°.0N. 18°.0W. 1h. 13m. 50s. II (as on 1940, June 2d.). $A = + \cdot 3115, B = - \cdot 1012, C = + \cdot 9448;$ $\delta = - \cdot 8$; h = -12: D = -.309, E = -.951; G = +.899, H = -.292, K = -.328.Р. 0 - C.S. O - C. Supp. Az. L. 8. m. s. s. m. m. s. m. s. 0 \mathbf{S} I Scoresby Sund 248 (0 44) 1.4 i0 49 Sg i 0 2 44 1.4 Sg 248 i0 57 п distant in the 15.4 7.8 I Aberdeen 146 $\mathbf{2}$ 56 -44E. 18.2 e 2 I Upsala 111 9 P e 4.5 Sec. $^{+70}_{+5}$ i 6 40 I Rathfarnham C. 18.5 i 5 159 29 -6411.0 i 4 18.5 159 24 п And in case of $\mathbf{2}$ I Copenhagen 20.2125 i4 37 11.5 -37 20.2125 i4 $\mathbf{2}$ 10.2II Concession. distant of 52 1 De Bilt 21.7140 e 4 + 9 e 9 e 10.5 -23.3i 5 128 9 k e 10 30 +701 Potsdam e 12.5 Z. 1 -1 Collmberg 24.3 130 e 5 -15 \mathbf{P} e 13.5 5 24.3 130 e 5 19 1 п inter t I Paris $24 \cdot 3$ 147 i 5 21? +1 e 11.8 i 5 18 24.3 147 e 13·2 п -I Strasbourg 25.5138 e 5 34 + 5 \mathbf{PP} e 9 52 6 14 e 12.5 e

a not but send for the same Ca	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		100 C					Contraction and the second second
11	25.5	138	e 5 31	- 1					e 11·7
I Stuttgart	25.7	137	e 5 33	0	e 10 10	+ 9	<u> </u>		e 13.5
11	25.7	137	e 5 32	- 1					
I Basle	26.5	140	e 5 41	0					
II	26.5	140	e 5 34	- 7					_
I Clermont-Ferrand	27.3	148	e 5 49	+ 1					
11	27.3	148	e 5 50	+ 2					
1 Triest	29.7	132	e 5 30	-40					
I Istanbul	38.1	117	e718	- 4			<u></u>)		
II	38.1	117	e 7 20	- 2					-
I College	40.1	331	e 7 45	+6					
1 Ksara	46.8	114	8 30 3	- 3	e 15 34	+10			
I Hungry Horse	47.1	297	e 8 36	+ 1					
II	47.1	297	e 8 52	+17					_
I Helwan	49.2	120	10 42	PP	i 16 3	+ 5	-		11000
11	49.2	120	2011년 - 1977년 - 1977년 - 1977년 - 1977년 - 1977년 - 1977년		e 15 58	0	-	-	
1 Tamanrasset Z.	50.1	152	9 0	+ 1					
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	and the second second								

Additional readings :---

Collmberg II eE = 5m.23s.

Strasbourg I eP = 5m.37s., e = 5m.56s., 6m.38s., and 7m.42s., eSS = 10m.53s., II e = 5m.55s. and 6m.18s.

Stuttgart I eP = 5m.36s.k, e = 5m.48s.

Hungry Horse I i = 8m.43s. and 8m.52s.

Long waves were also recorded at Almeria, Bergen, Kew, and other American Stations.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

#### 1949

# 31

Jan. 23d. 6h. 31m. 3s. Epicentre 11°.7S. 92°.4E.

B.C.I.S. and U.S.C.G.S. suggest depth 100km.

Batavia Colombo Kodaikanal Perth Hyderabad	E. E. N.	$     \begin{array}{r}                                     $	$\overset{\circ}{70}_{324}_{325}_{137}_{334}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	s. -23 +56 - 5 - 1 0	m. s. i 5 41 9 57? i 10 10 11 0 11 49	s49 + 55 - 1 - 2 + 6	m. s. - 11 12 12 17 7 33	$ \begin{array}{c} \mathbf{m} \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 \\ 14 \\ 8 \\ 8 \\ 9 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 1$	4
Calcutta Poona Bombay Dehra Dun Stalinabad	E. N.	$34 \cdot 3 \\ 35 \cdot 2 \\ 36 \cdot 0 \\ 44 \cdot 0 \\ 54 \cdot 7$	353 329 327 342 338	e 6 58 i 6 56 i 7 6 e 9 30	$+ \frac{8}{2} + \frac{1}{1} - \frac{3}{3}$	i 12 37 i 12 35 i 12 50 e 13 42 i 17 12	$^{+20}_{+4}_{+6}_{-61}_{-1}$	i 14 23 8 16 8 24	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 3
Andijan Samarkand Almata Frunse Tashkent		$55.4 \\ 56.3 \\ 56.5 \\ 56.7 \\ 56.9$	$341 \\ 336 \\ 347 \\ 344 \\ 339$	e 9 38 e 9 47 e 9 46 e 9 49 i 9 48	$+ \begin{array}{c} 0 \\ 2 \\ 0 \\ + 1 \\ - 1 \end{array}$	$\begin{array}{cccc} 17 & 29 \\ e & 17 & 37 \\ i & 17 & 39 \\ i & 17 & 48 \\ i & 17 & 43 \end{array}$	+7 + 3 + 2 + 8 + 1	e 13 17		
Miyazaki Riverview Ashkabad Brisbane Hamada		$57.2 \\ 57.7 \\ 58.3 \\ 58.7 \\ 59.7 \\ 59.7 \\ $	$\begin{array}{r} 40 \\ 123 \\ 329 \\ 115 \\ 38 \end{array}$	e 9 48 i 9 55k 10 5 i 9 56 9 45	-30 + 6 + 6 - 24	$\begin{array}{r} &\\ i & 17 & 53\\ & 18 & 13?\\ i & 18 & 8\\ & 18 & 16 \end{array}$	$+12 \\ + 2 \\ - 3$	$i 1 \overline{2} 4$ $i 1 \overline{2} 12$	$\begin{array}{c} \mathbf{PP} & 27 \\ \mathbf{PP} & \mathbf{i} \ 28 \\ \mathbf{PP} & \mathbf{i} \ 29 \\ 29 \end{array}$	3
Osaka Nagoya Irkutsk Tokyo Maebasi		$\begin{array}{r} 61 \cdot 6 \\ 62 \cdot 9 \\ 64 \cdot 5 \\ 64 \cdot 9 \\ 64 \cdot 9 \\ 64 \cdot 9 \end{array}$	$40\\41\\8\\42\\41$	e 10 25 10 24 10 44 e 10 38 e 10 51	+ 36 + 35 + 58	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	+ 8 + 5 + 5 - 1 L	2 <u>6</u> 9	sss 44· sss 29· (29·	5
Baku Vladivostok Sendai Erevan Leninakan		$\begin{array}{c} 65\cdot 1 \\ 65\cdot 4 \\ 67\cdot 3 \\ 68\cdot 1 \\ 68\cdot 8 \end{array}$	$325 \\ 32 \\ 40 \\ 323 \\ 323$	$egin{array}{cccc} 10&49\\ i&10&50\\ 10&59\\ 11&7\\ 11&7\\ 11&3 \end{array}$	+ 4 + 3 + 3 + 5 + 5		$+ \frac{6}{6} + \frac{50}{5} + \frac{5}{4}$	i 14 53	$\stackrel{-}{=} 37 \cdot 37 $	3
Grozny Ksara Helwan Sverdlovsk Kaimata	NE.	$69.3 \\ 70.2 \\ 71.8 \\ 73.2 \\ 74.1$	$326 \\ 312 \\ 307 \\ 343 \\ 131$	e 11 9 i 11 17k 11 23 e 11 32 11 42	$   \begin{array}{r}     - & 2 \\     0 \\     - & 3 \\     + & 2   \end{array} $	$   \begin{array}{r}       i & 20 & 37 \\       20 & 45 \\       i & 21 & 4   \end{array} $	$+ 9 \\ - 1 \\ + 2$	i 14 3 14 22	PP PP	
Theodosia Wellington Yalta Auckland Arapuni	N. E.	76.3 76.7 76.8 77.0 77.6	$322 \\ 130 \\ 321 \\ 125 \\ 127$	e 11 49 11 57 11 59 10 47?	-3+2+4+69	$\begin{array}{r} \mathbf{i} \ \begin{array}{c} 21 & 35 \\ 21 & 28 \\ \end{array} \\ 20 & 27 \\ 22 & 3 \end{array}$	$-\frac{2}{-13}$ $-\frac{78}{+12}$	22 21 $25 4$ $26 45$	PS 35. SS 33. SS 36.	-
Istanbul Tuai Moscow Bucharest Sofia	N.	$78.4 \\78.7 \\81.2 \\81.9 \\83.0$	$316 \\ 128 \\ 332 \\ 318 \\ 316$	e 11 57 e 12 19 e 12 26 e 12 32	$-\frac{7}{0}$ + $\frac{3}{4}$	22 0 21 57 e 22 28 i 22 41 e 22 48	$ \begin{array}{r} 0 \\ - & 6 \\ - & 1 \\ + & 5 \\ + & 1 \end{array} $	$e_{15}^{15} \frac{30}{42}$	PP 40-	-
Belgrade Kalossa Skalnate Pleso Budapest	E. N.	85·7 87·3 87·4 87·6 87·6	$317 \\ 319 \\ 322 \\ 319 \\ 319 \\ 319$	e 12 45 a  e 13 6  e 13 33  12 56  e 13 14	+ 3 + 16 + 43 + 5 + 23	i 23 18 e 22 21 23 22 23 38	+ 4 - 69 - 10 + 6	e 16 14 e 13 11 	$\frac{PP}{=} e \frac{47 \cdot 1}{e 51 \cdot 1}$	-
Ogyalla Zagreb Helsinki Rome Triest		88.2 89.0 89.3 90.3 90.5	$319 \\ 317 \\ 332 \\ 313 \\ 316$	e 13 18 e 12 58 e 13 3 e 13 2 e 13 6	$+24 \\ 0 \\ + 4 \\ - 2 \\ + 1$	e 23 44 e 23 47 e 23 32 i 23 39 [	+ 6 - 1 - 3 + 3]	e 16 29 e 13 37 i 16 36 e 16 42	PP pP PP PP e 43-6	•

Continued on next page,

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1949					32		
Tamanrasset Florence Prato Bologna Potsdam	z.	∆ 91.6 91.7 91.8 91.8 91.8 92.4	Az. 293 314 313 315 323	P. m. s. e 13 8 e 13 25 e 13 21 e 13 13 i 13 19a	0 - C. s. - 2 +15 +10 + 2 + 5	S. $0-C$ m. s. s. e 24 13 + 3 i 24 25 + 14 e 23 50 [+ 7 e 23 48 [+ 1]	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Collmberg Upsala Salo Apia Jena		$92.5 \\ 92.5 \\ 92.7 \\ 92.8 \\ 93.2$	$321 \\ 330 \\ 315 \\ 105 \\ 321$	e 13 11 i 14 47 e 13 13 e 13 14 e 13 17	-3 -22 -22 -0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	e 25 30       PS       e 38.0         e 23 49       SKS       e 42.0         e 23 46       SKS          e 17 13       PP       e 37.0
Chur Copenhagen Stuttgart Zürich Basle		93.6 94.0 94.2 94.4 95.1	$317 \\ 326 \\ 318 \\ 317 \\ 317 \\ 317$	e 13 50 17 12 e 13 21 e 13 23 e 13 51	$^{+31}_{PP} - 1 \\ ^{0}_{+25}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
Strasbourg Algiers De Bilt Uccle Clermont-Ferran	d	95·2 96·4 97·4 97·7 97·8	$318 \\ 306 \\ 322 \\ 321 \\ 315$	$\begin{array}{c} e & 13 & 29 \\ e & 13 & 9 \\ e & 23 & 21 \\ e & 13 & 43 \end{array}$	$+ \frac{2}{-23}$ + 5	e 24 44 + 4 e 24 57 + 7 i 24 21 [+ 7 e 27 577 PPS i 24 25 [+ 9]	— e 53·9
Paris Bergen Tortosa Alicante Kew		$98.6 \\ 98.7 \\ 99.0 \\ 99.4 \\ 100.7$	$318 \\ 330 \\ 310 \\ 307 \\ 321$	$\begin{array}{rrrr} \mathbf{e} \ 14 & 5 \\ & 18 & 13 \\ & 14 & 19 \\ \mathbf{i} \ 18 & 2 \end{array}$	+23 PP +33 PP	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Almeria Jersey Granada Aberdeen Toledo	Е. Е.	$100.8 \\ 101.7 \\ 101.7 \\ 102.1 \\ 102.3$	$305 \\ 318 \\ 306 \\ 326 \\ 308$	13 23 13 35 a 1 18 9 e 18 9	-29 -21 PP PP	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	e 32 39 SS e 55.0 1 18 4 PP 1 52.6 1 27 20 PS 50.3
Lisbon Honolulu College Sitka La Plata	E.	$106.2 \\ 112.4 \\ 113.0 \\ 121.9 \\ 125.8$	$307 \\ 71 \\ 23 \\ 28 \\ 210$	i 18 42k e 14 33 e 20 37	PP PP	$\begin{array}{cccccccc} 27 & 59 & \mathrm{PS} \\ e & 30 & 22 & \mathrm{PPS} \\ e & 29 & 11 & \mathrm{PS} \\ e & 30 & 35 & \mathrm{PS} \\ 37 & 4 & \mathrm{SS} \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Santa Lucia Victoria Saskatoon Hungry Horse Shasta Dam	E.	$132 \cdot 3$ $133 \cdot 4$ $136 \cdot 8$ $137 \cdot 3$ $137 \cdot 9$	$199 \\ 32 \\ 17 \\ 25 \\ 40$	e 21 46 22 19 e 19 10 i 19 8	PP PP [-15] [-19]	e 22 48 PKS e 33 51 PPS 40 19 SS	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Mineral Berkeley Butte Santa Clara Reno	Z. N. Z.	$138.4 \\ 139.5 \\ 139.8 \\ 140.0 \\ 140.2$	$40 \\ 44 \\ 44 \\ 44 \\ 40$	i 19 13 a i 19 27 a e 23 9 e 21 46 e 19 26	$\begin{bmatrix} -14 \\ [-2] \\ PP \\ ? \\ [-5] \end{bmatrix}$		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Lick Bozeman Halifax Fresno Seven Falls	Z. E.	$140.2 \\ 140.7 \\ 141.3 \\ 141.8 \\ 142.0 \\$	$     \begin{array}{r}       44 \\       26 \\       332 \\       43 \\       341 \\     \end{array} $	i 19 35 e 22 34 e 19 33 e 19 42	$\begin{bmatrix} + & 4 \\ PP \\ \end{bmatrix}$	$\begin{array}{c} e & 26 & 36 & [ -4] \\ e & 41 & 31 & SSP \\ e & 41 & 15 & SS \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Shawinigan Falls Logan Haiwee Salt Lake City Pasadena	N. Z.	$143.1 \\ 143.3 \\ 143.4 \\ 144.0 \\ 144.2$	$342 \\ 30 \\ 42 \\ 31 \\ 45$	e 19 52 e 19 28 i 19 32 a e 19 29 i 19 34 a	[+16] [-8] [-8] [-8] [-8] [-4] [-4]	e 41 23 SS e 41 38 SS e 41 45 SS	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Ottawa Riverside Rapid City Boulder City Pierce Ferry	E.	$144.9 \\ 144.9 \\ 145.0 \\ 145.5 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.9 \\ 145.$	345 45 19 40 39	e 20 35k e 19 37 e 20 40 i 19 39 i 19 39	[+56] [-2] [+61] [-1] [-2] [-2]	e 42 17 SSP	$\begin{array}{c} = & = & 73 \cdot 0 \\ e & 23 & 16 & PP & e & 61 \cdot 7 \\ = & = & = & = \end{array}$
La Paz Weston Harvard Fordham Cleveland		$146.0 \\ 146.2 \\ 146.3 \\ 148.6 \\ 149.8 $	215 337 337 339 351	i 19 42 a i 19 40 e 19 38 i 19 47 e 19 54	[+ 1] [- 1] [- 3] [+ 2] [+ 7]	i 29 57 {+ 1] 41 58 SS e 42 55 SS i 42 50 SS	i 20 47 pPKP 69.0 e 20 10 pPKP e 77.0 74.0 e 23 28 SKP

+ C

2.46

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1949					33					
		Δ	Az.	. Р.	0 – C.	m. s.	0 – C. s.	m. s.	upp.	L m
Dhille Jule his		110.0	240	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	8. 8. 4 TI 671	m. s. e 31 24		. o.		e 64·3
Philadelphia Lincoln		149·8 149·9	340 14	e 20 5 e 20		e 42 35	ss	e 24 12	PP	e 62.2
Chicago	E.	150.1	14	e 20 1		e 43 32	SSP			e 60.5
Tucson		150.4	42	e 19 4		e 48 10	SSS	i 20 30	pPKP	
Bermuda		150.5	317	e 20 3	the second se	e 43 25	SSP		•	e 63·3
St. Louis		153-1	4	e 19 5	2 [ 0]	e 30 52	$\{+17\}$	i 20 31	pPKP	8.00
Huancayo		153.4	207	e 19 5		e 43 45	SS	e 49 1	SSS	e 62.9
Fort de France		154.1	279	e 19 4						
Columbia		157.0	346	e 24 1	I PP	e 43 56	SS	e 36 47	PS	e 60·0
San Juan		158.2	290	e 21 1	7. Dia 010 010241.	e 44 25	SS	e 24 20	$\mathbf{PP}$	e 79·4
Bogota		164.9	243	e 20	[+1]	e 31 52	$\{+14\}$			생활
Tacubaya		166.4	55	i 20 5	<b>pPKP</b>	i 27 8	[-1]			

Additional readings :---Perth PP = 6m.49s.Hyderabad SSN = 13m.98. Poona iPPE = 8m.20s., PePE = 9m.17s., PePN = 9m.49s., SSE = 15m.10s.Bombay PPN =8m.17s., iN =8m.41s., iSSEN =15m.39s. Tashkent ePS = 18m.5s., eSS = 21m.21s.Riverview iPPZ = 12m.7s., iPPPE = 13m.20s., iZ = 17m.59s., iPSE = 18m.11s., iN = 18m.44s., iSSE = 21m.48s., iSSSE = 24m.7s. Brisbane iE =13m.51s., iSZ =18m.11s., iSKSE =19m.42s., iN =24m.30s. Irkutsk  $S_cS = 20m.40s$ . Vladivostok  $P_cP = 11m.24s.$ , iSS = 23m.51s. Helwan i =11m.30s., PcPZ =11m.42s., eZ =12m.20s. and 13m.18s., PPPZ =15m.49s., eZ=17m.3s., PSEN=21m.20s., PPSE=21m.36s., SSN=25m.20s. Sverdlovsk PPP = 16m.7s., iPS = 21m.48s., iSS = 25m.26s.?, iSSS = 29m.15s.Wellington PPZ = 14m.37s., PPPZ = 16m.58s., iZ = 21m.59s., SSZ = 27m.10s., SSS = 30m.57s., Q = 31m.44s.Auckland SSSN = 28m.57s.Arapuni eE = 22m.57s.Moscow SS = 27m.58s. Bucharest eN =15m.16s., ePPPN =17m.32s., ePPPE =17m.36s., ePSN =23m.22s., ePSE = 23m.25s.Belgrade e = 13m.25s. Zagreb e = 13m.1s., and 14m.54s.Helsinki ePP=16m.35s., eSKS=23m.31s., ePS=24m.50s., eSS=29m.44s., eSSS= 33m.6s., e = 35m.57s.Rome iPZ = 13m.8s., ePS = 24m.42s., eSSE = 29m.39s.Triest epP? =14m.13s., ipPP? =17m.22s., ePPP =18m.46s., iS =24m.5s., iPS =24m.52s., eSS = 29m.58s.Tamanrasset iPZ = 13m.12s. and 13m.16s., iZ = 13m.37s., isP?Z = 13m.42s., iPPZ =

```
16m.54s., ipPP?Z =17m.11s.
Florence ePSN = 25m.13s.
Bologna ePPP?E = 19m.6s.
Potsdam eE = 14m.57s.?, iZ = 15m.8s.k, ePPN = 16m.39s., iSKKSZ = 24m.32s., eE =
    25m.33s., iZ = 26m.1s., 26m.10s., and 28m.35s.
Upsala eE = 20m.57s., and 24m.43s., eSSE = 30m.25s., eSSN = 30m.35s., eE = 36m.25s.,
    eS_cS_sS_cS_{1}N = 36m.57s.
Salo e = 25m.32s., ePS = 25m.50s.
Copenhagen 24m.35s., PS = 25m.47s., SS = 31m.9s., SSS = 35m.15s.
Stuttgart eP=13m.26s.a, e=14m.44s., eZ=15m.13s., ePPP=19m.18s., eSKKS=
    24m.37s., e = 25m.39s. and 28m.39s., eQ = 42.9m.
Zürich eSKS = 23m.52s.
Basle e = 16m.28s.
Strasbourg e =13m.41s., 14m.5s., 14m.25s., 14m.41s., 15m.17s., and 16m.40s., ePPP =
    19m.23s., and 19m.28s., e=20m.25s., 21m.18s., and 21m.44s., eSKS=23m.59s.,
    ePS = 26m.4s., e = 29m.13s. and 30m.46s., eSS = 31m.18s., eSSS = 35m.15s. and
    35m.48s., e = 39m.17s.
Collmberg eE = 15m.17s. and 23m.51s., eSSE = 30m.29s.
Clermont-Ferrand iPS = 26m.36s., iPPS = 27m.18s., iSS = 31m.56s.
Paris e = 16m.23s. and 16m.56s., i = 17m.4s. and 17m.16s., ePPP = 20m.19s., e = 26m.17s.,
    ePS = 26m.37s., ePPS = 27m.43s., eSS = 31m.45s., eSSS = 36m.29s., e = 38m.15s.
Bergen eE = 31m.55s.?
Alicante PP = 17m.56s., PPP = 19m.33s., PS = 26m.15s., PPS = 26m.49s., SS = 30m.31s.
Kew eZ = 18m.11s., iSIE = 24m.35s., eSSN = 32m.24s., eSSSN = 36m.28s.
Almeria PPP = 19m.31s., SKS = 23m.55s., PS = 26m.19s., PPS = 27m.7s., SS = 31m.47s.,
    SSS = 35m.31s.
Granada PS = 27m.14s., PPS = 28m.6s., iSS = 32m.38s., SSS = 35m.2s., Q = 50m.27s.
Aberdeen iE = 21m.45s., iSSE = 32m.34s.
Toledo i = 27m.15s.
Lisbon Z = 20m.47s.
Sitka eS? = 28m.17s., e = 30m.39s. and 32m.9s.
La Plata PPSE = 38m.17s., Q?E = 54.5m.
```

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

#### 1949

#### 34

Victoria e = 22m.50s., 31m.54s., 44m.51s., and 53m.57s.?
Saskatoon e = 23m.54s.?, e = 41m.13s.?
Mineral iZ = 19m.23s.a
Berkeley iZ = 22m.19s., 26m.59s., 29m.37s., and 31m.37s., iE = 32m.41s., iZ = 36m.4s., eE = 40m.33s., iN = 46m.51s.
Butte eSSN = 39m.58s.
Reno eE = 19m.38s., eN = 19m.55s., eE = 20m.50s., iE = 22m.21s. and 22m.52s.
Lick eZ = 24m.59s.
Bozeman e = 24m.38s., eSKKS = 28m.11s., e = 32m.20s., eSS = 39m.55s.

Fresno eE =19m.45s., eN =24m.18s., eE =24m.40s. Seven Falls eE = 21m.2s. Logan i = 19m.34s., ePPP = 26m.1s., eSSS = 46m.50s.Salt Lake City ePPP = 26m.7s., ePS = 33m.7s.Pasadena iZ = 20m.14s, and 21m.43s. Ottawa e = 21m.37s. Rapid City iE = 21m.0s., eE = 38m.54s.La Paz isPKPZ = 21m.25s., PP? = 23m.17s., iSSZ = 42m.27s., SSS = 47m.13s. Harvard i = 19m.42s. and 19m.51s., e = 20m.57s.? Fordham i = 19m.51s. and 21m.45s. Cleveland iN =19m.57s., eN =20m.12s., iN =20m.25s., eE =23m.25s., eN =23m.51s., eSN = 42m.23s.Lincoln eSKSPE = 33m.25s.Chicago e = 23m.8s. and 31m.10s. Tucson ePP = 23m.25s., ipPP = 24m.12s., e = 28m.57s., 32m.51s., and 40m.5s.Bermuda e = 25m.50s., ePS = 34m.54s., e = 43m.57s.St. Louis e = 19m.55s., i = 20m.0s., 20m.14s., and 20m.39s., e = 31m.22s., eS? = 31m.54s., eSS? = 36m.41s., e = 39m.18s., i = 42m.59s., e = 45m.54s.Huancayo e = 21m.25s., 22m.41s., 31m.34s., and 33m.57s. Columbia eSKKS = 29m.10s. San Juan e = 28m.42s., 35m.25s., 58m.32s., and 66m.27s. Tacubaya i = 21m.16s., esPP = 25m.1s., e = 25m.58s. and 32m.45s.Long waves were also recorded at New Plymouth, Ivigtut, Rathfarnham Castle, Pavia. and Barcelona.

Jan. 23d. Readings also at 0h. and 1h. (2) (near Ashkabad), 2h. (Alicante, Granada, Andijan, Samarkand, near Kulyab, Stalinabad, and near Ashkabad), 3h. (Rome), 4h. (Arapuni, Auckland, Wellington, Riverview, Huancayo, La Paz, Tucson, Helwan, Ksara, and Stuttgart), 5h. (Berkeley and near Ashkabad (2)), 6h. (Ashkabad and Santa Lucia), 7h. (Boulder City, Hungry Horse, College, and Granada), 8h. (Malaga), 10h. (Helwan, College, Andijan, Tchimkent, near Kulyab, Sɛ markand, Stalinabad, near Alicante (3) and near La Paz), 14h. (Ksara, Jena, near Collmberg, Grozny, Leninakan, Tacubaya, and near La Paz), 15h. (College, Hungry Horse, Pierce Ferry, near Irkutsk, 2nd near Malaga), 16h. (Pasadena, Tucson, Boulder City, Pierce Ferry, Shasta Dam, Hungry Horse, and College), 19h. (near Andijan and La Paz)

Pierce Ferry, Shasta Dam, Hungry Horse, and College), 19h. (near Andijan and Murgab), 20h. (near Ashkabad), 21h. (College), 22h. (near Ashkabad and near (Alicante).

Jan. 24d. 9h. 15m. 51s. Epicentre 22°.2S., 176°.1W. Depth of focus 0.015.

Intensity IV-V in the Kermadec Islands, and at Nukualofa (Apia). Epicentres: 21°S. 176°W. (Wellington). 22°S. 176°W. (Strasbourg and Pasadena). Depth of focus 100km.

The Seismological Report for January-March, 1949, Seismological Observatory, Wellington, New Zealand, p. 3.

Α	·{	246, 1	B ==	-0630	, C •	= - ·3	756		δ=	-7;	h =	+4	:	
D	= - •(	068, E	$= + \cdot $	998;		G = +	.37	5, H	= +	··026, E	C = - •	927		
		Δ	Az.	F		0-0	c.	S	3.	0-C.		Su	pp.	L.
		•		m.	8.	s.		m.	8.	8.	m,	8.		m.
Apia		9.3	27	e 2	2	-1	0	3	33	-22		- 1		-
Auckland	N.	16.6	206	3	44		2	6	46	0	4	9	sP	
Arapuni	E.	17.4	203	-	-30		<del>.</del>	7	9	+ 6	- <del>S.</del>	• 2		8.0
Tuai	N.	17.5	198	3	56		1	6	55	-11	e 15	38	ScS	
New Plymouth	E.	18.8	204	4	15	+	3	7	33	0	100000		-	
Wellington	z.	20.5	201	4	29	-	1	8	4	- 3	5	20	PPP	_
Kaimata	NE.	22.8	204	4	54	+	2	8	52	+ 4	24.0		-	
Brisbane	avenan.	28.5	253	i 5	44		1	i 10	24	+ 2	i 6	29	PP	i 12.9
Riverview		31.0	241	i 6	9 a	+	1	i 11	6	+ 4	i 6	30	$\mathbf{pP}$	e 13·1
Melbourne	E.	36.8	236	e 7	1	+	4	i 12	<b>25</b>	- 6			-	_

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1949		35			
	$\triangle$ Az		. S. 0-C. m. s. s.	Supp. L. m. s. m.	
Subic Bay Batavia Branner Z. San Francisco E. Santa Clara	$\begin{array}{cccc} & & & & & & & & & & & & & & & & & $	i 11 31 - 2 i 11 46k 0 i 0 11 48 + 2	(e 20 41) +15		
Berkeley Lick Ukiah Pasadena Riverside	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7
Fresno Haiwee Shasta Dam Mineral Z. Vladivostok	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{ccccccc} i & i & 11 & 56 & 0 \\ i & 112 & 11 & P_cP \\ i & 11 & 58k & 0 \\ \end{array}$	$\begin{array}{r} e \ 21 \ 48 \ + 9 \\ - \\ - \\ e \ 22 \ 3 \ + 7 \end{array}$	e 38 46 P'P' i 38 53 P'P' i 12 13 PcP i 12 25 PP	1
Reno Boulder City Pierce Ferry Tucson Victoria	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		e 22 17 + 2	i 12 35 pP	
Tacubaya Salt Lake City Sitka Logan Butte N.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	i 22 51 - 2	i 12 32 PeP e 12 49 pP i 23 44 PS i 15 47 PP e 36.5 e 13 16 pP e 36.5 e	22
Hungry Horse College Bozeman Rapid City E. Huancayo	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1 5
Saskatoon Lincoln E. La Paz St. Louis Irkutsk	$\begin{array}{cccccccc} 95\cdot 5 & 3 \\ 96\cdot 7 & 4 \\ 99\cdot 7 & 11 \\ 100\cdot 4 & 5 \\ 102\cdot 1 & 32 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		25 14 sS 37.5 i 14 1 pP 49.7 i 17 37 PP - e 18 15 pPP -	
Bogota Calcutta E. Chicago Columbia Cleveland	$\begin{array}{ccccccc} 102 \cdot 9 & 9 \\ 103 \cdot 1 & 29 \\ 103 \cdot 4 & 5 \\ 106 \cdot 1 & 5 \\ 107 \cdot 7 & 5 \end{array}$	$\begin{array}{cccc} 0 & e & 17 & 29 & PP \\ 0 & - & - & - \\ 9 & - & - & - \end{array} \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	e 25 1 SKKS 63. i 25 13 S e 52. i 25 13 pPP -	3
Kodaikanal E. Hyderabad N. Philadelphia Ottawa City College N.Y.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{bmatrix} 24 & 44 & [+1] \\ e & 28 & 27 & PS \\ e & 29 & 57 & PPS \\ e & 26 & 59 & S \end{bmatrix}$	e 34 48 SS e 46.4 (34 45) SS e 34.5 (e 34 43) SS e 34.5	8
Fordham San Juan Poona E. Weston Bombay	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 e 22 9 PPP 2 1 19 25 PP	V #1 AA	e 28 57 PS i 25 55 SKKS i 27 59 SP e 29 22 PS	
Seven Falls E. Almata Frunse Bermuda Andijan	$\begin{array}{ccccccc} 116 \cdot 2 & 4 \\ 117 \cdot 0 & 30 \\ 118 \cdot 7 & 30 \\ 119 \cdot 1 & 6 \\ 120 \cdot 2 & 30 \end{array}$	$\begin{array}{c} 0 \\ 8 \\ 8 \\ 6 \\ 18 \\ 40 \\ 1 \\ 7 \\ 18 \\ 18 \\ 10 \\ 18 \\ 18 \\ 18 \\ 18 \\ 18$	e 26 19 [+63]	(39 91) SSS 39.5 e 30 47 PS e 49.4 e 20 5 PP -	-
Tananarive Halifax Tchimkent Tashkent Samarkand	$\begin{array}{ccccccc} 120 \cdot 9 & 23 \\ 121 \cdot 1 & 5 \\ 122 \cdot 3 & 30 \\ 122 \cdot 5 & 30 \\ 124 \cdot 2 & 30 \end{array}$	$\begin{array}{c} 0 \\ 7 \\ 0 \\ 18 \\ 0 \\ 18 \\ 18 \\ 18 \\ 18 \\ 18 \\$	i 25 37 [+ 9]	36     23     SS       (37     91)     PSS     37.5       29     321     SP	2
Sverdlovsk Ivigtut Baku Moscow Grozny	$\begin{array}{cccccccc} 126 \cdot 4 & 32 \\ 127 \cdot 2 & 2 \\ 137 \cdot 2 & 30 \\ 138 \cdot 2 & 33 \\ 139 \cdot 5 & 31 \end{array}$	9	$\begin{bmatrix} 28 & 27 & 1\\ -28 & 27 & -28 \\ -28 & -28 & -28 \\ -28 & -28 & -28 \\ -28 & -28 & -28 \\ -28 & -28 & -28 \\ -28 & -28 & -28 \\ -28 & -28 & -28 \\ -28 & -28 & -28 \\ -28 & -28 & -28 \\ -28 & -28 & -28 \\ -28 & -28 & -28 \\ -28 & -28 & -28 \\ -28 & -28 & -28 \\ -28 & -28 & -28 \\ -28 & -28 & -28 \\ -28 & -28 & -28 \\ -28 & -28 & -28 \\ -28 & -28 & -28 \\ -28 & -28 & -28 \\ -28 & -28 & -28 \\ -28 & -28 & -28 \\ -28 & -28 & -28 \\ -28 & -28 & -28 \\ -28 & -28 & -28 \\ -28 & -28 & -28 \\ -28 & -28 & -28 \\ -28 & -28 & -28 \\ -28 & -28 & -28 \\ -28 & -28 & -28 \\ -28 & -28 & -28 \\ -28 & -28 & -28 \\ -28 & -28 & -28 \\ -28 & -28 & -28 \\ -28 & -28 & -28 \\ -28 & -28 & -28 \\ -28 & -28 & -28 \\ -28 & -28 & -28 \\ -28 & -28 & -28 \\ -28 & -28 & -28 \\ -28 & -28 & -28 \\ -28 & -28 & -28 \\ -28 & -28 & -28 \\ -28 & -28 & -28 \\ -28 & -28 & -28 \\ -28 & -28 & -28 \\ -28 & -28 & -28 \\ -28 & -28 & -28 \\ -28 & -28 & -28 \\ -28 & -28 & -28 \\ -28 & -28 & -28 \\ -28 & -28 & -28 \\ -28 & -28 & -28 \\ -28 & -28 & -28 \\ -28 & -28 & -28 \\ -28 & -28 & -28 \\ -28 & -28 & -28 \\ -28 & -28 & -28 \\ -28 & -28 & -28 \\ -28 & -28 & -28 \\ -28 & -28 & -28 \\ -28 & -28 & -28 \\ -28 & -28 & -28 \\ -28 & -28 & -28 \\ -28 & -28 & -28 \\ -28 & -28 & -28 \\ -28 & -28 & -28 \\ -28 & -28 & -28 \\ -28 & -28 & -28 \\ -28 & -28 & -28 \\ -28 & -28 & -28 \\ -28 & -28 & -28 \\ -28 & -28 & -28 \\ -28 & -28 & -28 \\ -28 & -28 & -28 \\ -28 & -28 & -28 \\ -28 & -28 & -28 \\ -28 & -28 & -28 \\ -28 & -28 & -28 \\ -28 & -28 & -28 \\ -28 & -28 & -28 \\ -28 & -28 & -28 \\ -28 & -28 & -28 \\ -28 & -28 & -28 \\ -28 & -28 & -28 \\ -28 & -28 & -28 \\ -28 & -28 & -28 \\ -28 & -28 & -28 \\ -28 & -28 & -28 \\ -28 & -28 & -28 \\ -28 & -28 & -28 \\ -28 & -28 & -28 \\ -28 & -28 & -28 \\ -28 & -28 & -28 \\ -28 & -28 & -28 \\ -28 & -28 & -28 \\ -28 & -28 & -28 \\ -28 & -28 & -28 \\ -28 & -28 & -28 \\ -28 & -28 & -28 \\ -28 & -28 & -28 \\ -28 & -28 & -28 \\ -28 & -28 & -28 \\ -28 & -28 & -28 \\ -28 & -28 & -28 \\ -28 & -28 & -28 \\ -28 & -28 & -28 \\ -28 & -28 & -28 \\ -28 & -28 & -28 \\ -28 & -28 & -28 \\ -28 & -28 & -28 \\ -28 & -28 & -28 \\ -28 & -28 & -28 \\ -28 & -28 & -2$	e 20 43 PP 37 27 SS 1 22 39 sPP	

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1.00	1.000	1000	
- 60	<b>6 b b b b b b b b b b</b>	-	
- 10		/ 1	1 C - 1
- 22	2710	10 A C	
- 62	- <b>N</b>		

36

		$\Delta$	Az.		Р.	0 - C.	s.	0 – C.	Supp.		L.
Leninakan Theodosia Copenhagen Yalta Potsdam		$     \begin{array}{r}             0 \\             141 \cdot 6 \\             145 \cdot 6 \\             146 \cdot 6 \\             146 \cdot 6 \\             149 \cdot 0 \\             149 \cdot 0 \\             \end{array}     $	$309 \\ 319 \\ 352 \\ 319 \\ 350 $	m. 19 19 i 19 19 i 19	$     \begin{array}{r}       16 \\       27 \\       26 \\       32     \end{array} $	8. $\begin{bmatrix} 0 \\ + 4 \end{bmatrix}$ $\begin{bmatrix} + 2 \\ + 2 \end{bmatrix}$ $\begin{bmatrix} + 7 \\ + 3 \end{bmatrix}$	т. в. 	8. 	m. s. 	_	m. 
Ksara Raciborzu Collmberg De Bilt Kew	N.	149.6 150.0 150.1 150.1 150.6	$299 \\ 342 \\ 350 \\ 358 \\ 6$	i 19 e 19 e 19 i 19	41 37	[+2] [+11] [+7] [+3]	= e 33 91		23 10 e 19 40 e 42 25	PP PKP SS	e 70·2 e 72·2
Istanbul Ogyalla	z. n.	150.7 151.6 151.9 152.0 152.8	349 318 339 338 338	e 19 e 19 e 20 19 e 19	$     \begin{array}{r}       11 \\       36 \\       43     \end{array} $	[+1] [-22] [+63] [+10] [+9]			e 23 15 19 41 e 21 48 i 21 0 e 19 58	PP pPKP }	
Stuttgart Paris Strasbourg Helwan Basle	z.	$153.1 \\ 153.4 \\ 153.5 \\ 154.2 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.5 \\ 154.$	$352 \\ 354 \\ 293 \\ 354 \\ 354$	e 19 i 19 i 19 e 19 e 19	38 38 39	[+ 1] [+ 3] [+ 3] [+ 3] [+ 3]	e 43 4 e 36 27 e 36 19	$\overset{\mathrm{SS}}{\operatorname{PPS}}_{\operatorname{PPS}}$	e 20 16 i 19 59 i 19 59 21 7 e 20 4	PKP, pPKP	e 90·2 72·6
Zagreb Zürich Triest Salo Clermont-Ferrand		$\begin{array}{r} 154 \cdot 5 \\ 154 \cdot 6 \\ 155 \cdot 2 \\ 156 \cdot 0 \\ 156 \cdot 5 \end{array}$	$340 \\ 353 \\ 344 \\ 349 \\ 2$	e 19 e 19 i 19 e 19 i 19	39 50 38	[+ 4] [+ 2] [+13] [-1] [-1] [+ 5]	i 30 23	skks	e 20 5 i 20 5 e 20 44	PKP, pPKP PKP, pPKP, PKP,	77.2
Pavia Bologna Florence Prato Rome		$156.7 \\ 156.9 \\ 157.6 \\ 157.6 \\ 157.1 \\ 159.1 \\ $	$351 \\ 346 \\ 346 \\ 347 \\ 342$	e 20 e 19 i 20 e 19 i 19	17 a 39	$PKP_{2}$ [+ 3] $PKP_{2}$ [- 2] [- 2]	e 29 45 e 29 19	skks skks skks	$e_{43}^{0} 15 \\ e_{43}^{0} 7 \\ 20 22$	PKP. SS	e 76·2
Toledo Alicante Granada Malaga 2 Almeria	z.	$161 \cdot 1 \\ 163 \cdot 5 \\ 163 \cdot 7 \\ 163 \cdot 8 \\ 164 \cdot 4$	$20 \\ 12 \\ 22 \\ 25 \\ 19$	i 19 19 i 19 i 19 i 19 i 19	46 52 45k 49a 58	[+1] [+5] [-3] [+1] [+10]	a the second second	$[+1] \\ [+15] \\ SKKS \\ [+21]$	$\begin{array}{r} 20 & 36 \\ 20 & 36 \\ 1 & 20 & 30 \end{array}$	PKP PKP PKP PKP	$e \begin{array}{c} 71 \cdot 2 \\ 82 \cdot 2 \\ 79 \cdot 5 \\ 71 \cdot 6 \end{array}$
Algiers Tamanrasset 2	z.	$165.4 \\ 178.4$	3	e 19 e 19	39 58 k	$\begin{bmatrix} -10 \\ + 3 \end{bmatrix}$	e 35 9 e 21 34	sPKP	the second se	pPKP pPKP	

```
Additional readings :--
  Auckland P_cPN = 8m.48s., P_cSN = 11m.25s., S_cSN = 15m.35s., sS_cSN = 16m.9s.,
      S_cSS_cSN = 25m.19s.
  Tuia eN = 6m.51s.
  Wellington iZ = 7m.7s., P_cP = 8m.53s., S_cS = 15m.48s., sS_cS = 16m.37s.
  Kaimata iNE = 6m.54s.
  Brisbane iE =6m.51s., iN =6m.56s., iSE =10m.28s., iSSN =11m.4s., iZ =12m.29s.
  Riverview iPPEZ = 7m.17s., iZ = 7m.29s. and 7m.49s., iEN = 8m.40s., iE = 11m.10s.,
      iS_cPZ = 12m.58s., iS_cSEN = 16m.37s.
  Berkeley ipPZ = 11m.50s., iZ = 22m.23s., iE = 23m.24s.
  Pasadena i =12m.20s., iEN =22m.11s., eSSEN =26m.38s., iPKP,PKP,Z = 38m.54s.
  Vladivostok i = 22m.11s.
  Reno iE = 12m.53s.
  Tucson iPP = 15m.19s., esS = 23m.5s., e = 27m.23s.
  Victoria PP = 12m.59s.
  Salt Lake City ePP = 15m.51s., eS = 22m.42s., i = 23m.35s., eSS = 28m.29s.
  Sitka eSS = 28m.41s., e = 29m.32s.
  Logan i = 12m.49s., e = 15m.52s., ePPP = 17m.52s., isS = 23m.46s., e = 28m.46s.
  Butte esSN = 24m.14s., eSSN = 29m.14s.
  College iS = 23m.5s., eSS = 29m.15s.
  Bozeman eSKS = 23m.12s., e = 25m.29s.
  Rapid City ePP?E = 16m.9s., ePPPE = 17m.46s.
  Huancayo ePP =16m.59s., e =28m.34s. and 30m.56s.
 La Paz iPPZ=17m.35s., ipPPZ=18m.9s., PPPN=19m.57s., iSKSE=24m.1s., iEN=
      25m.9s., iPSN = 26m.19s., iE = 29m.17s., QNZ = 46m.9s.
 St. Louis iSE = 25m.3s., iE = 25m.48s., iPSiN = 25m.52s., iSSN = 31m.58s., eN =
      32m.35s.
  Irkutsk S = 24m.55s., PS = 26m.49s.
  Bogota eEN = 33m.12s.
 Chicago iSKS = 24m.24s., eSS = 33m.5s.
```

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

### 1949

37

```
Cleveland iPKP =18m.45s., eSKKSE =25m.26s., esSKKSE =26m.9s., esSN =26m.49s.,
eN =26m.58s., eE =27m.53s., eSSN =33m.38s., esSSN =34m.21s., eN =37m.8s.,
eSSS?N =37m.41s., eN =38m.7s.
Ottawa e =26m.54s. and 27m.37s.
Fordham i =27m.32s., eSS? =34m.56s.
San Juan i =27m.56s., e =32m.57s.
Bermuda e =27m.23s. and 34m.9s., eSS =36m.59s.
Andijan ePPP =22m.41s.?.
Tananarive SSS? =39m.44s.
Tashkent sPP =20m.51s., iSKKS =26m.23s., pPS =30m.23s.
```

Sverdlovsk ipPP = 21m.9s., iPKS = 22m.34s., SKKS = 27m.31s.Potsdam iZ = 19m.36s. and 19m.42s., eEN = 19m.45s., iZ = 20m.0s. and 20m.4s., ipPKPE = 20m.13s., ipPKPZ = 20m.17s., iZ = 21m.28s., iPPZ = 23m.21s. Jena ePKPiN =19m.36s., iZ =19m.39s., eZ =20m.9s. Stuttgart ePKPZ = 19m.43s., epPKP?Z = 19m.57s., eZ = 21m.19s., ePPZ = 23m.26s., eSS = 43m.42s.Paris i =19m.46s., 20m.27s., and 20m.41s., iPP =23m.36s., e =33m.27s. Strasbourg i=19m.46s., e=19m.51s., epPKP?=20m.27s., ePP=23m.36s., epPP?= 23m.57s. and 24m.1s., e = 24m.53s.,  $ePP_2 = 27m.43s.$ ,  $eSKKS_1 = 30m.17s.$ ,  $eSKKS_2 = 30m.17s.$ 34m.17s., e=37m.15s., eSS=42m.54s., e=43m.42s., 44m.51s., and 44m.57s.,eSSS = 48m.55s., e = 52m.55s., 56m.22s., 60m.33s., 60m.43s., and 65m.9s.Helwan eZ = 19m.47s., 20m.4s., 20m.39s., and 22m.5s., PPZ = 23m.36s., SN = 30m.18s., eZ = 32m.7s., sSZ = 32m.57s., eZ = 33m.49s., SSN = 34m.27s.Zürich e = 19m.47s.Salo  $iPKP_1 = 20m.9s., e = 20m.31s.$ Clermant-Ferrand iPP = 23m.57s.Bologna e = 27m.48s.Florence  $ePKP_{2}$ ?N = 20m.40s. Rome iPKP, =20m.16s., i = 20m.47s. and 24m.28s., eN = 31m.30s., e = 32m.18s., PSKS = 34m.9s., SS = 43m.49s.Toledo i = 20m.57s., iPP = 24m.12s.Alicante PKS = 23m.12s., PP = 24m.30s., PPS = 37m.2s., SS = 43m.44s., SSP = 44m.54s.Granada iPP = 24m.27s., SKSP = 34m.23s., SS = 45m.35s., Malaga iPPZ = 24m.29s. Almeria PP=24m.30s., PPP=28m.18s., SKKS=31m.16s., PPS=37m.58s., SS= 44m.50s., SSS = 51m.2s.Algiers e = 20m.9s., 26m.17s., and 31m.9s. Tamanrasset ePKP₁Z = 21m.49s., iPPZ = 25m.42s., iZ = 28m.49s., and 30m.19s., eZ = 32m.23s., 33m.8s., and 36m.8s. Long waves were also recorded at Honolulu and Upsala.

Jan. 24d. Readings also at 0h. (Ashkabad, near Santa Clara, Berkeley, Lick, Brønner, Fresno, San Frøncisco, Mineral, and Reno), 1h. (Bombay, Pierce Ferry, Tucson, Pasadena, and Haiwee), 2h. (College and Hungry Horse), 3h. (College and Ashkabad), 4h. (near Berkeley, Lick, Brønner, and San Francisco), 5h. (Tamanrasset, Ottawa, Boulder City, Huancayo, Hungry Horse, Pierce Ferry, Shasta Dam, Tucson, Mount Wilson, La Paz, and near Fort de France), 6h. (Bogota and Tananarive), 7h. (Tucson and near Granada), 8h. (College, Hungry Horse, and Ashkabad), 9h. (Tucson, Ottawa, and near Florence), 10h. (Alicante), 11h. (Alicante and near Ashkabad), 13h. (College), 14h. (Santa Lucia), 19h. (Frunse, near Andijan, and Tchimkent), 20h. (Ashkabad, Andijan, near Kulyab, and Stalinabad), 21h. (Auckland, Boulder City, near Branner, Lick, near Balboa Heights, and near Ashkabad (2)), 22h. (Hungry Horse, Ashkabad, Stuttgart, Wellington, and Arapuni), 23h. (College, Hungry Horse, Logan, Pierce Ferry, Shasta Dam, and near Apia).

Jan. 25d. 7h. 53m. 6s. Epicentre 11°.5N. 86°.3W. (as on 1948, March 23d.).

A =  $+ \cdot 0633$ , B =  $- \cdot 9782$ , C =  $+ \cdot 1981$ ;  $\delta = +13$ ; h = +6; D =  $- \cdot 998$ , E =  $- \cdot 065$ ; G =  $+ \cdot 013$ , H =  $- \cdot 198$ , K =  $- \cdot 980$ .

	Δ	Az.	Р.	0 – C.	S.	0-C.	Su	pp.	L.
	0	ō	m. s.	8.	m. s.	s.	m. s.		m.
<b>Balboa</b> Heights	7.0	109	e 1 38	- 8					
Bogota	13.9	119	e 3 12	- 9	e 5 48	- 9	e 11 46	SeP	6.5
Tacubaya	14.7	304	i 3 40	+ 9			e 3 51	$\mathbf{PP}$	_
San Juan	20.6	68		20 - 50 	e 8 46	+17			e 13·4
Huancayo	$25 \cdot 8$	155	e 5 23	-11	(e 9 51)	-11			e 9·8
St. Louis	27.2	354	i549	+ 2			e 11 37	SS	
Tucson	30.6	317	i 6 20	+ 2			ante a concentra a S <del>ector</del> a	-	
La Paz	33.1	147	e 6 38	- 2	i 13 42	SS	7 50	$\mathbf{PP}$	16.8
Ottawa	35.0	13	e 6 57	+ 1		043355-5			18.9
Pierce Ferry	35.0	319	i 6 58	+ 2					

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

- A			<b>A</b>
- T.	63	n.	α.
- <b>R</b>	228		
			1999

38

		Δ	Az.	I		0 -	C.	s.	0-C.	Su	pp.	L.
		•	0	1. The second	8.	8		m. s.	8.	m. s.	8930-4	m.
Boulder City		35.5	319	e 6	0.03102101		2					-
La Jolla	Z.	35.5	313	i 7	4	+	4	_				
Pasadena	SOF 1	36.8	315	17	15k	+	4					
Logan		37.5	329	e 7	17		Ō					-
Tinemaha	z.	38.4	318	i 7	29k	+	4	and the second sec	$\rightarrow$			-
Fresno	z.	39.2	316	е 7	24		7					-
Berkeley	200	41.5	316	17	54k	+	4					e 20·9
Hungry Horse		43.4	333	i 8	A REAL PROPERTY OF A READ PROPERTY OF A REAL PROPER	+	1	taxonana -				
Additional rea Bogota eSc San Juan e La Paz iN Boulder Cit Logan e =7 Fresno ePN Long waves	SEN =8m =15n y iP m.37	=15m. 1.50s. 1.18s. =7m.2 s. n.27s.	8.	ad at	Dom	mud		hiladalah	ia Wost	on and Se	even We	alle.

Jan 25d. Readings also at 0h. (Stuttgart, near Tananarive, and near Almata), 2h. (near Ashkabad (2)), 3h. (Pierce Ferry, Shasta Dam, Hungry Horse, College, and Ashkabad), 4h. (Apia, Auckland, Wellington, Boulder City, Pierce Ferry, Shasta Dam, Berkeley, Reno, Fresno, Hungry Horse (2), Logan, College (2), Clermont-Ferrand, Collmberg, Strasbourg, and Stuttgart), 5h. (Ashkabad and near Mizusawa), 6h. (Pierce Ferry and Shasta Dam,) 8h. (near Ashkabad (2)), 9h. (College (2), Hungry Horse, Almata, Samarkand, near Andijan, Frunse, Kulyab, Murgab, Stalinabad, Tashkent, Tchimkent, and near Klyuchi), 11h. (near Murgab), 13h. (Bogota and Strasbourg), 16h. (Ashkabad), 17h. (Jena and near Collmberg), 18h. (Wellington, College, Hungry Horse, La Paz, near Huancayo, near Ottawa, near Tacubaya (2), and near Ashkabad), 21h. (Hungry Horse), 23h. (Boulder City, Pierce Ferry, and near Ashkabad.)

Jan. 26d. 23h. Undetermined shock. Peru.

La Paz iPZ =40m.20s.k, iP_g =40m.44s., iS =41m.20s., iS_g =41m.50s. Huancayo eP =40m.37s., iS =41m.40s., iL =41m.55s. Bogota eP =44m.9s., eS =47m.59s., eP_cP =48m.33s. Pierce Ferry iP =49m.52s. Boulder City eP =50m.11s. Hungry Horse iP =50m.46s. Shasta Dam iP =50m.46s. Tamanrasset iPZ =51m.48s.k.

Jan. 26d. Readings at 0h. (College, Hungry Horse, Poona, Almata, Stalinabad, near Andijan, Frunse, Kulyab, Murgab, Samarkand, Tashkent, and Tchimkent), 1h. (College), 3h. (Kaimata, New Plymouth, near Tuai, and Wellington), 5h. (Ashkabad), 6h. (Boulder City, Pierce Ferry, Shasta Dam, Hungry Horse, and near Santa Lucia), 7h. (Ashkabad), 8h. (near Alicante), 9h. (2) and 11h, (2) (near Ashkabad), 12h. (Batavia), 13h. and 14h. (Santa Lucia), 16h. (near Ashkabad), 18h. (Ashkabad (2) and Hungry Horse (3)), 19h. (Ashkabad), 20h. (near Tucson), 23h. (Pierce Ferry, Hungry Horse, and Ashkabad).

Jan. 27d. 7h. 18m. 7s. Epicentre 3°.5S. 152°.5E. (as on 1948, Jan. 12d.).

Approximate.

 $A = -.8854, B = +.4609, C = -.0606; \delta = +3;$ h = +7:  $D = + \cdot 462$ ,  $E = + \cdot 887$ ;  $G = + \cdot 054$ ,  $H = - \cdot 028$ ,  $K = - \cdot 998$ . Supp. **L**. O - C. Р. 0-C. s. Az. Δ m. m. s. s. s. m. s. m. s. 0 0  $\begin{array}{rrrr} {f i} \ 5 \ \ 38 \\ {f i} \ 7 \ \ \ 6 \end{array}$ i 12.3 34  $\mathbf{PP}$ i 9 + 4 i 5 14 - 2 23.9 178 Brisbane - 5 - 1 e 11 8 e 12 24  $\mathbf{PP}$ e 13·0 - 3 e 6 11 30.2 182 Riverview i 14.8 +32e 7 26 34.8 191 Melbourne E., +2118.4  $P_cP$ 13 50 151 9 55 39.0 N. Auckland 14 19.9-+155 40.4 152 E. Arapuni SS 17 38 20.9 + 3 14 26  $\mathbf{PP}$ 9 42 42.6 155 Wellington i 21·3 (14 33) -----19S 14 33 22644.6 -Perth -52i 13 28 - 7 i7 32 45.6 264 Batavia  $\mathbf{PP}$ i 10 46 e 15 52 - 9 -17e 8 49 340 50.0 Vladivostok e 25.5 e 17 36 +2660 54.5 Honolulu

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1	949	
_		

39

		Δ	Az.	Р. m. s.	이 방법 방법 방법 이 같이 있는 것 같은 것 같		L. m.				
Calcutta Irkutsk Hyderabad Poona College	E. N. E.	$     \begin{array}{r}                                     $	$296 \\ 331 \\ 289 \\ 289 \\ 289 \\ 22$	$e 11 10 \\ e 12 16 \\ e 11 53 \\ e 12 17$	-1 + 26 + 22 = 0	e 19 35 20 4 21 14 e 22 32	$-\frac{23}{-13}$ $-\frac{13}{-18}$ $+\overline{7}$	2 <u>4</u> 37	ss	31·6 e 33·8	
Bombay Murgab Frunse Sitka Andijan		$81 \cdot 4 \\ 83 \cdot 2 \\ 83 \cdot 5 \\ 83 \cdot 5 \\ 84 \cdot 8$	$290 \\ 309 \\ 314 \\ 32 \\ 311$	e 12 17 12 23 e 12 38 e 12 36	$-\frac{3}{6}+\frac{7}{7}$	e 22 16  e 23 3	$-\frac{15}{-11}$	e 12 34	P _c P 	39·2 e 35·2	
Tchimkent Tashkent Stalinabad Berkeley Shasta Dam		$87.1 \\ 87.2 \\ 87.3 \\ 88.4 \\ 88.5$	$312 \\ 311 \\ 309 \\ 53 \\ 49$	e 12 43? e 12 42 e 12 45 i 13 9a i 13 2	- 6 - 7 - 5 - 5 + 14 + 6	e 23 24 e 29 291 i 23 20 e 23 37	$\begin{bmatrix} -&4\\ & ss\\ & [+&4]\\ -&3\\ & -&- \end{bmatrix}$	e 24 20 i 29 43	PS SS	e 41-0	
Santa Clara Victoria Lick Samarkand Mineral	z. z.	88.6 88.7 88.8 88.8 88.8 89.1	$53 \\ 42 \\ 53 \\ 310 \\ 50$	e 13 15 13 19 e 13 5 e 12 59 e 13 5	$^{+19}_{+22}_{+8}_{+7}$	e 23 28 23 43  e 28 52	$[+ \frac{4]}{6}$	$1 \begin{array}{r} 25 & 7 \\ 1 \begin{array}{r} 7 \\ 1 \end{array} \\ 37 \\ e \begin{array}{r} 16 \end{array} \\ 39 \end{array}$	PPS PP PP	e 41 · 4 37 · 3 e 49 · 5	
Seattle Fresno Reno Pasadena Tinemaha	z. z.	$89.3 \\ 90.2 \\ 90.4 \\ 91.4 \\ 91.5$	43 53 51 56 53	e 13 12 e 13 11 e 13 14 e 13 28	$+ \frac{8}{+ 7} + \frac{5}{+ 18}$	e 22 23 e 24 9 e 30 11	$+\frac{?}{11}$	 i 16_55	PP	e 41.6 38.0	
Boulder City Hungry Horse Pierce Ferry Logan Bozeman		$94 \cdot 2 \\ 94 \cdot 9 \\ 94 \cdot 9 \\ 96 \cdot 6 \\ 97 \cdot 0$	54 42 54 48 44	i 13 33 i 13 30 e 13 28 e 13 49	+11 + 5 + 3 + 16	e 25 23 e 24 22	$\begin{bmatrix} +31\\ +10 \end{bmatrix}$	e 13 31 e 17 39 e 26 33	PeP PP PS	e 45.9 e 44.7	
Tucson Tananarive St. Louis Ksara Cleveland	N.	97.5 103.0 113.3 113.9 118.7	$58 \\ 250 \\ 49 \\ 306 \\ 43$	$\begin{array}{c} e \ 13 \ 39 \\ e \ 19 \ 40 \\ e \ 19 \ 45 \end{array}$	+ 2 PP PP	e 27 29 e 29 19 e 27 46	PPS PS ?	e 17 46 e 40 5 e 39 5	PP Q SSS	$e 41.0 \\ e 50.3 \\ 57.9 \\ 50.5 \\ $	
Ottawa Fordham De Bilt Weston Stuttgart		$120.8 \\ 124.2 \\ 124.5 \\ 125.0 \\ 125.1 \\$	$37 \\ 40 \\ 336 \\ 38 \\ 331$	e 18 57	[+3]	e 37 3 e 38 3 e 39 53 38 9 e 37 53	SSP SSP SSP SS	e 28 35 	PKP	$51 \cdot 3$ $54 \cdot 4$ $e 56 \cdot 9$ $63 \cdot 9$	
Strasbourg Basle Kew Huancayo Bogota		$125.9 \\ 126.8 \\ 127.1 \\ 130.0 \\ 133.5$	332 330 338 108 86	the second se	$[+\overline{20}]$ $[+\overline{14}]$ [+19]	e 38 26 e 34 53 e 39 25 e 23 13	SSP	e 42 33 e 53 537 e 25 5	$\frac{SSS}{Q}$ PPP	e 59·9 e 75·9 e 66·9 e 54·4 66·9	
Bermuda La Paz San Juan Almeria Malaga	z.	$134.9 \\ 135.2 \\ 139.4 \\ 139.6 \\ 140.7$	$45\\117\\64\\328\\330$	e 23 15 i 19 29 e 26 7 e 19 27 e 19 32	SKP [+ 7] PPP [- 3] [ 0]	e 27 1 26 29 e 35 22	[+30] [-2] PPS	$\begin{array}{r} e & 34 & 10 \\ 40 & 7 \\ e & 63 & 57 \end{array}$	PPS SS Q	e 57.2 66.3 e 67.6 e 72.9 73.8	
Lisbon Tamanrasset Fort de France	z.	$141.2 \\ 142.7 \\ 145.0$	336 305 69	The second se	PP [-28] [+15]			e 22 29	рĒ	72.9	
$\begin{array}{llllllllllllllllllllllllllllllllllll$											
Victoria e = 23m.58s. Reno eZ = 13m.21s., eEN = 13m.25s., eZ = 13m.51s., eN = 17m.39s., eE = 24m.13s. and 24m.37s. Pasadena iZ = 13m.23s., eE = 23m.51s.											
				Continu	ed on ne	xt page.					

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

# 1949

### 40

Bozeman eS = 25m.28s. Tucson eSS = 32m.25s. St. Louis e = 25m.55s., eS = 27m.29s., e = 28m.24s. Cleveland eN = 28m.58s., eE = 31m.35s., eEN = 36m.44s.Strasbourg e = 47m.18s. and 51m.30s., eL = 54m.3s.Huancayo e = 22m.37s. and 29m.8s.Bermuda eSS = 40m.1s. La Paz iE = 23m.17s., Q = 58m.17s.Long waves were also recorded at Tacubaya and other European and North American stations.

Jan. 27d. 10h. 59m. 59s. Epicentre 54°.6N. 163°.5E.

	$\cdot \cdot 5579, B = -$ $\cdot \cdot 284, E = +$	+ $\cdot 1653, C = + \cdot 8$ - $\cdot 959; G = -$	133; $\delta = +3;$ .780, $H = +.231,$	h = -7; K =582.	
	∆ Az	P. 0-		m. s.	ь. m.
Klyuchi Vladivostok College Sitka Irkutsk	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	e 5 8 - 15 34 - 15 34 - 15 34 - 15 34 - 15 - 15 - 15 - 15 - 15 - 15 - 15 - 1	$\begin{array}{cccccccc} {\mathfrak{g}} & ({\color{black}{i}} 1 & 17?) & {\color{black}{Sg}} \\ {\color{black}{4}} & {\color{black}{i}} 9 & 46 & {\color{black}{SS}} \\ {\color{black}{1}} & {\color{black}{e}} 1 & 0 & 3 & - & 1 \\ {\color{black}{-}} & {\color{black}{i}} 1 & 2 & 9 & + & 7 \end{array}$	$e \overline{\underline{\overline{6}}}_{27} P\overline{\underline{P}}$	(i 12.0) e 12.3 e 17.5
Hungry Horse Shasta Dam Mineral Z. Berkeley Reno	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	i 11 3 PP	e 25·3
Lick Z. Fresno Z. Tinemaha Z. Logan Pasadena	$52 \cdot 2 77 \\ 53 \cdot 7 76$	i 9 27 + i 9 33 + e 9 32	$ \begin{array}{c} 0 \\ 1 \\ 2 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 17 \\ 40 \\ 0 \\ 17 \\ 40 \\ 1 \\ 3 \end{array} $		
Boulder City Pierce Ferry Tchimkent Murgab Tashkent	$57 \cdot 0$ 73 $57 \cdot 4$ 72 $58 \cdot 9$ 300 $59 \cdot 6$ 294 $59 \cdot 8$ 300	$e 9 53 \\ e 10 9 + \\ 10 18 + 1$			
Tucson Stalinabad Calcutta E. St. Louis Ottawa	$\begin{array}{cccc} 62 \cdot 0 & 73 \\ 62 \cdot 1 & 298 \\ 63 \cdot 4 & 272 \\ 67 \cdot 8 & 55 \\ 68 \cdot 5 & 41 \end{array}$	e 10 19 - e 11 2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	e 12 38 PP i 11 29 pP e 13 39 PP	$\begin{array}{c} \mathbf{e} \ 37 \cdot 0 \\ \underline{} \\ 36 \cdot 0 \end{array}$
Grozny Leninakan Hyderabad N. Philadelphia Stuttgart Z.	73.3 44	e 11 38 + 1 e 13 26	$\frac{1}{\frac{1}{2}} e^{\frac{1}{20}55} - \frac{1}{6} = \frac{1}{2}$	e 11 51 P _c P	e 38·3
Poona E. Bombay E. Strasbourg Paris Basle	A second seco	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} \mathbf{e} \ 11 \ 54 \\ \mathbf{i} \ 11 \ 56 \end{array} \begin{array}{c} \mathbf{P_c P} \\ \mathbf{P_c P} \\ \mathbf{P_c P} \end{array}$	e 36·4 e 46·0
Zürich Clermont-Ferrand Ksara Helwan Riverview E. Tamanrasset Z.	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	e 12 53 PcP e 33 13 SSS	48·0 e 44·8

Additional readings and note :--Klyuchi readings have been reduced by 1 minute. Vladivostok iPP = 8m.23s., L given as SSS at 12m.1s. Berkeley iZ = 9m.21s., eN = 16m.31s.Reno eZ = 9m.33s., ePPE = 11m.41s.

St. Louis esS = 20m.48s.

Strasbourg e = 31m.8s.

Helwan eZ = 13m.3s.

Long waves were also recorded at Bermuda and at other North American and European stations.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

### 1949

.

### 41

Jan. 27d. 14h. 58m. 32s. Epicentre 3°.5S. 152°.5E. (as at 7h.).

		Δ	Az.		0 – C.	s.	0 – C.	the second se	pp.	L.
Brisbane Riverview Melbourne Auckland Arapuni	E. N. E.	39.0	$     \begin{array}{c}                                     $	$\begin{array}{c} \text{m. 8.} \\ \text{i 5 12} \\ \text{e 6 14} \\ \text{e 7 31} \\ \end{array}$		m. s. i 9 36 e 11 9 e 12 28 e 13 46 e 14 28?	s. + 6  + 4  + 3  + 17  + 38	m. s. i 5 43 i 7 18		m. i 12.0 e 13.0 i 14.7 17.5
Wellington Batavia Vladivostok Calcutta Irkutsk	Е.	$\begin{array}{r} 42 \cdot 6 \\ 45 \cdot 6 \\ 50 \cdot 0 \\ 67 \cdot 7 \\ 69 \cdot 3 \end{array}$	$155 \\ 264 \\ 340 \\ 296 \\ 331$	10 10 i 8 27 e 8 55 e 12 35 e 11 15	PPP + 3 + 3 + 4	13 15 e 15 9 i 16 10 e 19 48 e 27 28?	$-68 + 3 + 1 - 10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10$	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	1 PP PP	19.5
Poona College Bombay Murgab Frunse	E.	$   \begin{array}{r}     80 \cdot 4 \\     80 \cdot 8 \\     81 \cdot 4 \\     83 \cdot 2 \\     83 \cdot 5   \end{array} $	$289 \\ 22 \\ 290 \\ 309 \\ 314$	e 12 9 i 12 15 e 12 22 12 26 e 12 53?	-62 + 22 + 22 + 22	e 22 26 e 22 22	+ 19	е 27 21 	ss	e 37 <u>·7</u>
Sitka Andijan Tchimkent Tashkent Stalinabad		$83.5 \\ 84.8 \\ 87.1 \\ 87.2 \\ 87.3$	$32 \\ 311 \\ 312 \\ 311 \\ 309$	e 12 48 e 12 35 e 12 44 e 12 40 e 12 45	$+17 \\ - 2 \\ - 5 \\ - 9 \\ - 5$	i 23 2 e 23 22 ? e 23 20	+10 +10 +10 +10 +10 9	e 28 34 e 29 373	ss ss	e 34.5
Berkeley Shasta Dam Victoria Lick Samarkand	z.	88.4 88.5 88.7 88.8 88.8	$53 \\ 49 \\ 42 \\ 53 \\ 310$	e 13 4 i 13 0 e 13 9 e 12 56	+ 9 + 4 + 12 + 12 - 1	e 23 51 e 23 52	+11 + 9 = -	e 16 41	PP	e 40·9 35·5
Mineral Reno Pasadena Tinemaha Boulder City	z. z.	$89.1 \\ 90.4 \\ 91.4 \\ 91.5 \\ 94.2$	$50 \\ 51 \\ 56 \\ 53 \\ 54$	e 13 2 e 13 10 e 13 14 e 13 16 i 13 31	+ 4++65569	$e_{25}^{-10} 10 e_{25}^{-10} 24$	PS PS	e 16 38 e 16 48	PP PP 	e 38·3
Hungry Horse Pierce Ferry Tucson Stuttgart Kew	z.	$94 \cdot 9 \\ 94 \cdot 9 \\ 97 \cdot 5 \\ 125 \cdot 1 \\ 127 \cdot 1$	42 54 58 331 338	i 13 28 i 13 34 e 13 47 e 19 2	$+ 3 \\ + 9 \\ + 10 \\ [-1]$	 e 43 23		e 17 8	PP 	e 45.5 e 65.5
Rome		127.7	322	e 18 6	1-621				1000	2 <b></b>

Rome		141 1		6 10		[-04]	and the second se	-		10.004	
Huancayo		130.0	108	e 22	<b>46</b>	SKP					e 54·3
La Paz		135.2	117	i 22	4	PP	i 22 39	SKP	-		65.5
Tamanrasset	z.	142.7	305	e 19	40	[+5]			e 22 23	$\mathbf{PP}$	

Additional readings :---

Brisbane iZ =6m.21s. and 7m.18s., iSE =9m39s., iSSN =10m.22s. Vladivostok iP_cP =10m.22s., iS =16m.4s., eSS =19m.28s. College eSSS =32m.1s. Sitka e =23m.16s. Berkeley eN =25m.44s. and 38m.46s. Reno eEN =13m.14s., eN =13m.29s., eE =13m.40s., eN =17m.40s. Long waves were also recorded at Honolulu, Bermuda, Seven Falls, Chicago, and at other European stations.

Jan. 27d. Readings also at 0h. (Shasta Dam, near Bogota, and near Ashkabad (2)),
1h. (near Zürich and near La Paz), 2h. (Brisbane, Riverview, College, Boulder City, Hungry Horse, Pierce Ferry, Shasta Dam, Mount Wilson, and Tinemaha), 3h. (Brisbane, Riverview, Wellington (2), College, Hungry Horse (2), Pierce Ferry, Shasta Dam (2), Mount Wilson, and Tinemaha), 4h. (near Zürich and near Ashkabad), 5h. (Ashkabad and Bombay), 6h. (Hungry Horse, Shasta Dam, and near Klyuchi), 8h. (Hungry Horse), 9h. (Andijan, near Kulyab, and Stalinabad), 10h. (Hungry Horse, Pierce Ferry, and near Andijan), 11h. (Hungry Horse and Ashkabad), 13h. (Hungry Horse), 14h. (near Ashkabad), 16h. (Calcutta), 17h. (Helwan, Ksara, and Ashkabad), 19h. (Pierce Ferry), 20h, (Santa Lucia and near La Paz), 21h. (near Tucson), 22h. (Boulder City, College, Pierce Ferry, and Pasadena), 23h. (Ksara and near Ashkabad).

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

## 1949

42

Jan. 28d. 8h. 18m. 4s. Epicentre 28°.7N. 43°.6W. (as on 1947, June 20d.).

 $A = + \cdot 6362, B = - \cdot 6058, C = + \cdot 4777; \delta = -6; h = +2;$   $D = - \cdot 690, E = - \cdot 724; G = + \cdot 346, H = - \cdot 329, K = - \cdot 879.$ 

		Δ	Az.	Р.	0 – C.	s.	о –с.	Su	pp.	L.
Bermuda Fort de France Halifax San Juan Weston		$     \begin{array}{r}                                     $	287 231 321 248 309	m. s. i 4 16 e 4 47 5 6 e 5 6 i 5 41		m. s. e 7 44 i 8 51 9 6 e 9 16 e 10 16	8. + 6 + 1 + 2 + 7	m. s. $= \frac{5}{5} \frac{27}{20}$	PP PP	m. e 8·9 11·9 e 9·7
Harvard Fordham Seven Falls Philadelphia Ottawa	E.	$26.4 \\ 27.5 \\ 28.1 \\ 28.3 \\ 30.3$	$309 \\ 305 \\ 319 \\ 302 \\ 313$	e 5 43 e 5 59 e 5 56 e 7 0 e 6 12	$^{+3}_{+9}_{+1}_{PP}_{-3}$	i 10 39 e 11 40 e 11 26	$+\overline{9}$ $+\overline{11}$	( <u>7</u> 56?	) PPP	e 11 · 9 13 · 2 7 · 9 e 13 · 9 14 · 9
Columbia Cleveland Malaga Toledo Granada	z. z.	$32.3 \\ 33.3 \\ 33.8 \\ 34.3 \\ 34.4$	$290 \\ 303 \\ 65 \\ 60 \\ 64$	e 6 28 i 4 22 i 6 42k e 6 49 i 6 55k	-5? - 4 - 4 - 4 + 4	e 11 51 i 12 28 i 12 12 e 12 35 13 28	$^{+5}_{+26}_{+26}_{+18}_{+69}$	$i \frac{\overline{8}}{7} \frac{8}{7}$	PP pP	e 15.0 16.8
Almeria Alicante Bogota Tortosa St. Louis	E.	35·3 36·9 37·5 37·8 39·7	$65 \\ 63 \\ 236 \\ 59 \\ 298$	i 7 3 7 17 e 7 29 7 25 i 7 36	$^+ {}^{4}_{5} {}^{+}_{+} {}^{5}_{12} {}^{+}_{+} {}^{5}_{0}$	$\begin{array}{cccccccc} i & 12 & 43 \\ & 13 & 9 \\ e & 12 & 58 \\ & 13 & 28 \\ e & 13 & 47 \end{array}$	$^{+10}_{+11}_{-9}_{+17}_{+7}$	$     \begin{array}{r}       8 & 25 \\       8 & 45 \\       8 & 41 \\       i & 9 & 6     \end{array} $	PP PP PP	$   \begin{array}{c}     18 \cdot 0 \\     19 \cdot 1 \\     15 \cdot 9 \\   \end{array} $
Clermont-Ferrand Paris De Bilt Basle Strasbourg	a	$40.3 \\ 40.4 \\ 42.9 \\ 43.6 \\ 43.8$	$52\\46\\42\\50\\48$	$i \begin{array}{c} i \\ 7 \\ 43 \\ 43 \\ e \\ 8 \\ 9 \\ i \\ 8 \\ 13 \end{array}$	$+ \frac{4}{2}$ + 1 + 4	i 14 1 e 13 38 e 14 18	$+12 \\ -49 \\ -20$	$i \begin{array}{c} 9 & 24 \\ e & 9 & 25 \\ e & 10 & 0 \\ e & 9 & 56 \end{array}$	PP PP PP PcP	19.9 e 17.9 e 15.9 e 21.9
Zürich Tamanrasset Pavia Stuttgart Salo	z. z.	44 · 2 44 · 4 44 · 5 44 · 8 45 · 4	50 85 53 48 53	e 8 13 a e 8 16 e 8 16? e 8 18 e 8 23	$+ 1 \\ + 2 \\ + 1 \\ + 1 \\ + 1 \\ + 1$	e 15 6 e 15 8	$+\frac{17}{13}$	e 10 11	PP	e 21.9
Prato Florence Bologna Jena Rome	z.	$45.8 \\ 45.9 \\ 46.0 \\ 46.6 \\ 46.9$	56 55 55 46 57	e 8 32 e 8 36 e 8 30 e 8 31 i 8 32	$^{+}_{+10}_{+3}_{-1}_{-2}$	14 8 	S _c P ?	 i 10 22	= PP	e 22.6
Collmberg Triest Zagreb Rapid City Lubbock	E.	47 · 5 47 · 7 49 · 3 49 · 3 49 · 5	$45 \\ 52 \\ 53 \\ 305 \\ 291$	e 8 40 1 8 43 e 8 59 e 8 53 1 8 58	$^+ {}^{2}_{+ 3} {}^{+ 6}_{+ 0} {}^{+ 4}$	i 15 47 e 15 56	$+\frac{11}{-3}$	i 10 33 e 10 59	PP PP	e 24·9
Huancayo La Paz Tacubaya Bozeman Butte	N.	50.8 50.8 51.2 54.8 55.8	$222 \\ 211 \\ 272 \\ 308 \\ 309$	$e 9 1 \\ i 9 1 a \\ e 9 44 \\ e 9 42 \\ e 10 11$	-3 -3 +37 +8 +30	i 16 39 c 17 22	$+\frac{19}{8}$	i 11 13 e 11 3	PP PP	24.5 e 20.3 e 28.1
Logan Hungry Horse Tucson Pierce Ferry Boulder City		55·9 56·5 57·2 58·7 59·4	303 311 292 297 297	e 9 39 i 9 45 e 9 49 i 10 0 i 10 7	-31 -22 -22 +1	e 17 32 e 17 42	$+\frac{3}{-\frac{4}{-\frac{4}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-1}}}}}{1}}}}}}}}}}}}}}}}}}}}}}}}}}}$	e 11 42 e 12 9	PP PP	e 29.0 e 37.9
Tinemaha Riverside Reno Pasadena Victoria	Z. E. Z. Z.	$61.8 \\ 62.0 \\ 62.3 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ 62.6 \\ $	299 296 302 296 313	i 10 23 a e 10 24 e 10 26k i 10 28 a 10 41	$+13^{0}$	 19 5	+ 9	i 3940	P'P'	32.9

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1949					43					
		A	Az.	Р.	0 – C.	<b>s</b> .	0 – C.	Su	pp.	L.
		~	•	m. s.	8.	m. s.	8.	m. s.		m.
Freeno	z.	63.1	300	i 10 30	- 2					
Mineral	Z.	63.4	303	i 10 33	- 1	_				
Shasta Dam	1.000	63.9	304	i 10 34	- 3					
Helwan	z.	64.2	68	e 10 39	0			e 14 51	PPP	
Lick	z.	64.3	301	1 10 40	+ 1		1 <del>000</del> 5			
Berkeley		64.6	301	e 10 51	+10	i 19 32	+11		. <del></del>	e 32·7
Branner	z.	64.7	301	i 10 431						
DIGUIDI						- 01 1	O O		and the second sec	

```
Additional readings :---
  San Juan e = 6m.8s.
  Philadelphia i = 7m.45s.
  Malaga S_cPZ = 12m.468.
  Toledo eZ = 11m.22s.
  Granada iPP = 8m.25s., SS = 14m.44s., ScS = 16m.46s.
  Almeria PPP = 8m.48s., P_cP = 9m.19s., P_cS = 13m.5s., SS = 15m.15s., S_cS = 17m.10s.
  Alicante P_cP = 9m.8s., P_cS = 12m.57s., SS = 16m.9s.
  Bogota ePPPEN =8m.59s., ePePEN =9m.36s., eEN =12m.35s.
  St. Louis iZ = 7m.42s. and 7m.56s., eS?E = 13m.27s.
  Clermont-Ferrand iPPP = 9m.53s.
  Paris i = 7m.50s.
  Strasbourg i=8m.20s. and 8m.36s., e=8m.40s. and 9m.4s., ePP =10m.11s., ePPP =
      10m.54s., e = 11m.27s., e_{1}^{2} = 13m.51s. and 15m.52s.
  Tamanrasset iZ = 8m.23s.
  Stuttgart e = 8m.26s.
  Salo eZ = 8m.48s.
  Jena ePiE = 8m.35s., eN = 9m.25s.
  Rome i = 16m.438.
  Collmberg eE = 8m.46s.
  La Paz iE = 22m.32s.
  Tucson e = 14m.19s., 22m.34s., and 28m.27s.
  Reno eN =10m.29s., eZ =10m.34s., iN =10m.43s., iE =10m.46s., iN =11m.6s.
  Pasadena iZ = 10m.34s.
  Fresno ePN = 10m.35s., ePE = 10m.38s.
  Mineral ePN = 10m.36s., ePE = 10m.39s.
  Shasta Dam i = 10m.40s.
  Berkeley ePE =11m.1s., iPZ =11m.42s., ipPZ =11m.48s.
  Branner iZ = 10m.50s.
  Long waves were also recorded at Ivigtut and Lincoln.
```

- Jan. 28d. Readings also at 2h. (near Klyuchi), 3h. (College and near Klyuchi), 4h. (Tananarive), 5h. (Kulyab, Murgab, Samarkand, Tchimkent, near Andijan, and Stalinabad), 7h. (Pasadena, Tinemaha, Tucson, Boulder City, Pierce Ferry, Shasta Dam, Logan, Cleveland, College, Stuttgart, Irkutsk, Leninakan, near Ashkabad, and near Klyuchi), 8h. (Kew), 9h. (Pierce Ferry), 13h. (Hungry Horse, Andijan, Tchimkent, near Kulyab, and Stalinabad), 14h., 17h., 19h. (2), and 20h. (3) (near Ashkabad), 21h. (Santa Lucia, Toledo, near Alicante, Almeria, and Malaga), 22h. (College), 23h. (College, Logan, Shasta Dam, Hungry Horse, Pasadena, Tinemaha, Ashkabad, Tamanrasset, Copenhagen, Collmberg, Jena, Strasbourg, Stuttgart (2), near Basle, and Zürich).
- Jan. 29d. Readings at 2h. (La Paz and near Murgab), 4h. (Stuttgart and near Ashkabad), 5h. (Ksara, Tamanrasset, Huancayo, La Paz, Pierce Ferry, Shasta Dam, Hungry Horse, and College), 6h. (Seven Falls and Paris), 7h. (College), 9h. (Ottawa, Lick, near Berkeley, Branner, and San Francisco), 10h. (near Tananarive), 12h. (Andijan, Samarkand, near Kulyab, Stalinabad, La Paz (2), and Hungry Horse), 13h. (College), 14h. (Auckland, Kaimata, New Plymouth, near Tuai, and Wellington), 16h. (near Istanbul), 17h. (College, Hungry Horse, and Tamanrasset), 18h. (College and near Ashkabad (2)), 20h. (Wellington), 22h. (Ottawa, Paris (2), and Ashkabad), 23h. (Ivigtut and near Ashkabad).

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

# 1949

44

Jan. 30d. Readings at 0h. (Hungry Horse), 1h. (Ashkabad, College, Strasbourg, Clermont-Ferrand, Paris, Almeria, Toledo, Stuttgart, Alicante, Tamanrasset, and near Collmberg), 2h. (Boulder City, Pierce Ferry, Bermuda, Scoresby Sund, Hungry Horse, College, near Ashkabad (2), near Andijan, Kulyab, Murgab, Samarkand, Stalinabad, Tashkent, and Tchimkent), 3h. (Ashkabad and Stuttgart), 4h. (Hungry Horse), 5h. (Tacubaya), 6h. (Tamanarive and near Stalinabad), 7h. (Boulder City, Hungry Horse, and Scoresby Sund (2)), 8h. (Alicante and Scoresby Sund), 9h. (Ashkabad), 10h. (Ashkabad, Merida, Oaxaca, and Tacubaya), 11h. (Ashkabad), 12h. (Ashkabad, Tucson, and Santa Lucia), 13h. (Ashakbad and Mizusawa), 14h. (near Ashkabad (2), near Boulder City, and Pierce Ferry), 15h. (Tucson, Pierce Ferry, and near Hungry Werther Scoresby City, and Pierce Ferry), 15h. (Tucson, Pierce Ferry, and near Hungry

Horse), 16h. (Batavia), 17h. (College and Pierce Ferry), 18h. (Ashkabad), 19h. (near Grozny and Leninakan), 20h. (Ashkabad (2), Santa Lucia, and near Tucson), 22h. (Ashkabad, La Paz, near Berkeley, Branner, Lick, and San Francisco), 23h. (Ashkabad, Ottawa, Sitka, Victoria, Hungry Horse, College, near Berkeley, Branner, Lick, Santa Clara, and San Francisco).

Jan. 31d. 6h. 38m 22h. 58m			1	Epice (	ntre as or	36°-9N. 1 Jan. 10	121°·7W. 1.).			
$\mathbf{A} = - \mathbf{\cdot}$	4213,	B = -	6821	, C =	= + ·8	5978;	$\delta = \pm 12$	; h	= -1.	
		$\triangle$	Az.	1 C C C C S S	>.	0 – C.	s.	0 -C.	Suj	pp.
		D	•	m.	8.	8.	m. s.	s.	m. s.	
1 Lick		0.4	6	i 0	11	- 2	i0 17	- 4		
11		0.4	6	i 0	13	0	i021	0		
I Santa Clara	N.	0.5	336	e 0	19	+ 5	e 0 20	- 3		-
11	N.	0.5	336	e 0	10	- 4	e 0 20	- 3		-
I Branner		0.6	323	i 0	15a	0	i0 25	- 1		-
п		0.6	323	i 0	17	+ 2	i0 28	+ 2	i0 34	S.
II San Francisco	ę	1.0	325	i 0	24	+ 3	i041	+ 5	<u>(11.98</u>	
I Berkeley		1.1	335	i 0	22k	0	10 37	- 2		
11		1.1	335	i 0	23a	+ 1	i041	+ 2		
I Fresno		1.5	96		28	0	i048	- 1	i 0 31	Pr
11		1.5	96	i 0	27	- 1	i046	- 3	i0 30	Ps
1 Reno		3.0	29	e 1	0	$\mathbf{P}_{\mathbf{g}}$	e 1 41	$S_g$		
11		3.0	29	e 1	1	$P_{g}$	e 1 40	SE		-
II Mineral	Z.	3.4	1	i 1	2	PŤ	i2 6	Sg	i1 5	P.
II Shasta Dam	20.412	3.8	352	e 1	14	$\mathbf{P}_{\mathbf{g}}$	-	_		
II Pierce Ferry		6.2	94	e 1	58	P.	3 <b></b> (2	· · · · · ·		

IL L ICLOG POLLY

0 4 01 01 00 Ig

Additional readings :---Berkeley II iNZ = 26s. Reno I eE = 1m.4s., iZ = 1m.51s., II eN = 1m.11s., eE = 1m.17s., iZ = 1m.32s. and 1m.37s., iN = 1m.45s., iZ = 1m.50s., iE = 1m.56s. Mineral II iZ = 1m.11s. Shasta Dam II iP = 1m.18s.

Jan. 31d. Readings also at 0h. (Brisbane, Andijan, Frunse, Stalinabad, Tashkent, Sverdlosvk, Pierce Ferry, Shasta Dam, Hungry Horse, College, Seven Falls, Stuttgart, Tamanrasset, La Paz, and near Bogots), 1h. (Tamanresset and near Ashkabad), 2h. (near Ashkabad (2)), 3h. (Boulder City (2), Pierce Ferry (2), Hungry Horse (2), Shasta Dam (2), College, and near Ashkabad), 7h. and 9h. (Ashkabad), 13h. (Ashkabad (2) and Piatigorsk), 14h. (Ashkabad (2), Boulder City, Pierce Ferry, Bogota, Huancayo, La Paz, La Plate, Santa Lucia, and Copiapo), 15h. (Pasadena, Tinemaha, Tucson, Boulder City, Berkeley, Reno, Shasta Dam, Hungry Horse, Logan, and Ottawa), 16h. (College and near Zürich), 19h. (near Ottawa), 20h. (near Andijan), 22h. (near Tacubaya), 23h. (Haiwee, Mount Wilson, Tinemaha, Boulder City, Pierce Ferry, Shasta Dam, Hungry Horse, College, Stuttgart, and near Apia (2)).

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

### 1949

22

45

Feb. 1d. 18h. 15m. 52s. Epicentre 3°.6S. 135°.5E.

A = $7119$ , B = $+.6996$ , C = $0623$ ; $\delta = +.12$ ; $h = +.7$ ; D = $+.701$ , E = $+.713$ ; G = $+.044$ , H = $044$ , K = $998$ .											
	D = 4	Δ.	s = + Az.	Р.	x = + 0 O - C.	44, н = - S.	0 – C.	Su	pp.	L.	
Batavia Brisbane Riverview Perth Melbourne	E	28.7 29.1 33.4 33.7 35.2	$264 \\ 147 \\ 157 \\ 211 \\ 167$	e6 0 i645k i1152	s 2 - 4 + 3 + 34 + 34	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$^{B.}$ + 5 - 2 + 0 + 8 0	m. s. e 6 46 i 7 58 13 28	$\frac{PP}{PP}$	m. i 14·7 i 16·3	
Kagosima Miyazaki Koti Hukuoka Sumoto		$35.3 \\ 35.5 \\ 37.0 \\ 37.3 \\ 37.7$	$352 \\ 354 \\ 357 \\ 353 \\ 0$	$e \begin{array}{ccc} 7 & 0 \\ 7 & 11 \\ 7 & 14 \end{array}$	$     \begin{array}{c}       0 \\       0 \\       2 \\       - 2 \\       - 1     \end{array} $	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$-\frac{2}{2}$ $-\frac{2}{2}$ $+\frac{2}{6}$			15·8 18·2	
Osaka Hukusima Sendai Mizusawa Akita	E.	$38.0 \\ 41.4 \\ 41.9 \\ 42.8 \\ 43.3$	0 7 7 7 6	7 48 7 33 8 3	$^{+3}_{-21}{^{+21}_{+8}}$	$\begin{smallmatrix}&13&2\\&14&6\\&14&13\\e&14&30\\&15&0\end{smallmatrix}$	$^{-12}_{+1}$ $^{+0}_{+27}$			$\frac{17 \cdot 6}{18 \cdot 8}$	
Vladivostok Auckland Arapuni Wellington Tuai	N. E. N.	$50.2 \\ 51.4$	$357 \\ 138 \\ 139 \\ 143 \\ 139$	$     i \begin{array}{c}       8 & 30 \\       8 & 26 \\       \overline{ \begin{array}{c}       8 & 19 \\       9 & 11     \end{array}} \\       e \begin{array}{c}       9 & 11   \end{array} $	$-24 \\ -24 \\ -\overline{50} \\ +1$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$^{+2}_{-30}{^{+30}}$	$     \begin{array}{r}       i & 9 & 53 \\       16 & 4 \\       \overline{\  \  8 \  37} \\       e & 11  2     \end{array} $	$\frac{\mathbf{PeP}}{\mathbf{PS}}$	$22 \cdot 1 \\ 23 \cdot 1 \\ 24 \cdot 3$	
Calcutta Apia Colombo Hyderabad Irkutsk	E. E. N.	53.0 56.5	$302 \\ 105 \\ 281 \\ 292 \\ 339$	e 9 26 e 9 20 9 41 e 10 12 10 20	$+ 6 \\ - 1 \\ - 5 \\ + 1 \\ - 2$	$i \begin{array}{ccc} 17 & 1 \\ 17 & 44 \\ 18 & 19 \\ 18 & 40 \end{array}$	+13 + 7 + 7 + 4 - 3	i 20 43 	ss 	e 26.2 28.5 27.6	
Poona Bombay Almata Frunse Andijan		$64.5 \\ 65.6 \\ 70.3 \\ 71.7 \\ 72.4$	$292 \\ 292 \\ 319 \\ 317 \\ 314$	i 10 40 e 10 45 e 11 17 e 11 26 e 11 31	$\begin{array}{c} - & 1 \\ - & 3 \\ & 0 \\ 0 \\ + & 1 \end{array}$	e 19 20 e 19 30 e 20 33	$+ 1 \\ - 3 \\ + 4 \\$	i 11 18 e 12 9 		$\overset{31\cdot 1}{\overset{32\cdot 3}{-}}$	
Obi-garm Stalinabad Tashkent Tchimkent Samarkand		73.774.374.874.976.0	$312 \\ 312 \\ 314 \\ 315 \\ 312$	i 11 35 i 11 41? i 11 44 i 11 43 e 11 53	-300 - 12 + 2	i 21 5 i 21 17? i 21 17? i 21 17 i 21 21	$     \begin{array}{r}       - 3 \\       + 2 \\       - 3 \\       - 1 \\       - 1     \end{array} $	i 14 30	PP	1       [	
Ashkabad Sverdlovsk Tananarive College Baku		$82 \cdot 1 \\ 84 \cdot 8 \\ 86 \cdot 9 \\ 87 \cdot 6 \\ 89 \cdot 0$	$309 \\ 328 \\ 251 \\ 25 \\ 310$	e 12 26 i 12 37 e 12 53	$+\frac{2}{0}{-\frac{-}{5}}$	$i \begin{array}{ccc} 23 & 2 \\ e \begin{array}{c} 23 & 5 \\ e \end{array} \\ e \begin{array}{c} 23 & 32 \end{array}$	$\begin{bmatrix} -\frac{3}{8} \\ -\frac{8}{0} \end{bmatrix}$	i 15 55 23 27	PP S	e 43·3 e 42·1	
Grozny Sitka Piatigorsk Moscow Ksara		$92.3 \\ 92.6 \\ 94.2 \\ 97.4 \\ 100.0$	$313 \\ 33 \\ 314 \\ 326 \\ 303$	$ \begin{array}{r}     13 & 36? \\     13 & 17 \\     e & 13 & 35 \\     e & 13 & 51 \\ \end{array} $	$+23 \\ -5 \\ -2 \\ +3 \\ +3$	i 23 509 e 24 18 24 3 e 24 8 26 43	$[+ \ 4] \\ 0 \\ \{- \ 9\} \\ [- \ 6] \\ PS$	i 17 34? e 31 14 e 24 58	PP SS S	e 37-9	
Yalta Shasta Dam Berkeley Santa Clara Helsinki		$100.6\\101.5\\101.9\\102.2\\103.2$	$314 \\ 50 \\ 53 \\ 53 \\ 332$	i 13 55 e 18 22	PP	e 25 31 e 25 56 e 43 48 e 24 45	$+ \frac{6}{+20}$ [+ 3]	i 27 16 e 25 47	$\frac{1}{s}$	e 54.5 e 56.5 e 54.1	
Reno Fresno Helwan Istanbul Pasadena	z.	$103.6\\103.9\\104.1\\104.7\\105.5$	$51 \\ 53 \\ 300 \\ 312 \\ 56$	e 14 10 e 14 6 e 17 18 e 18 23 e 14 15	+ 6 0 ? PP + 1	e 24 53 25 2 i 24 58	$\begin{bmatrix} + & 7 \\ + & 7 \\ + & 13 \\ + & 5 \end{bmatrix}$	e 18 21 e 18 28 e 18 28 i 18 28 i 18 42	PP PP PP	e 43·2	
Hungry Horse Upsala Boulder City Pierce Ferry Logan		$106.2 \\ 106.8 \\ 108.0 \\ 108.6 \\ 109.2$	$     \begin{array}{r}       41 \\       332 \\       54 \\       54 \\       47 \\       47 \\     \end{array} $	e 14 16 e 18 44 e 14 29 e 14 14 e 18 20	P PP P [-11]	i 18 40 e 24 57	[ – 2]	$     \begin{array}{c}       e & 30 & 5 \\       e & 26 & 20 \\       e & 26 & 20 \\       e & 19 & 0 \\       e & 28 & 27 \\     \end{array} $	PKKP S PP PS	e 44·1 e 49·8	

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1949					46			
Saskatoon Belgrade Ogyalla Copenhagen		∆ 109.7 110.1 110.8 111.1	Az. 35 317 321 330	P. m. s. e 19 11k e 19 15 i 19 18	O -C. s. PP PP PP	S. $0 - C$ . m. s. s. e 28 30 PS e 25 14 [+ 1] e 25 2 [-13] 25 23 [+ 6]	Supp. m. s. e 31 12 PKKP e 21 38 PPP 29 8 PS	L. m. 58·1 63·1
	Z. N.	$   \begin{array}{r} 111 \cdot 6 \\     111 \cdot 9 \\     112 \cdot 2 \\     113 \cdot 6 \\     114 \cdot 4 \\     116 \cdot 0 \\   \end{array} $	353 57 326 325 319 324	e 18 34 e 19 20 e 19 34 e 19 49 e 18 51	$\begin{bmatrix} - & 3 \\ PP \\ PP \\ PP \\ [+ & 6] \end{bmatrix}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	e 19 26 PP e e 35 27 SSP e e 29 35 PS e	49·9 58·1 56·1 58·1
Bologna	z.	$116.4 \\ 116.5 \\ 116.6 \\ 116.6 \\ 116.9$	319 320 328 316 324	e 20 22 e 18 49 i 20 6 i 19 58k e 19 54	PP [+3] PP PP PP	$\begin{array}{c c} & - & - \\ e & 29 & 38 & PS \\ e & 25 & 36 & [- & 2] \\ e & 25 & 50 & [+11] \end{array}$	e 29 32 PS	57 · 1 56 · 2
Aberdeen Uccle Durham Kew Paris	E. Z.	$   \begin{array}{r}     117.0 \\     117.7 \\     118.3 \\     119.8 \\     119.8 \\     119.8   \end{array} $	336 328 333 330 326	i 19 44 e 20 10 i 19 25 e 20 22 e 18 53	PP PP [+36] PP [+ 1]	i 29 48 PS i 32 57 ? e 30 14 PS e 25 56 [+ 7]	i 23 6 PPP e e 22 42 PPP e	$58.2 \\ 64.1 \\ 48.1 \\ 61.1 $
Clermont-Ferrand Jersey St. Louis Alicante Tamanrasset	Е.	$121.0 \\ 122.0 \\ 125.8 \\ 127.1 \\ 128.0 \\$	$322 \\ 329 \\ 44 \\ 317 \\ 297$	e 20 26 e 21 38 e 20 56 19 33 e 19 10	PP 1 [+27] [+2]	e 30 81 PS e 33 18 PKKS e 26 14 [+ 6] 26 25 [+13] e 31 9 PS	e 22 53 PPP e 22 12 PKS 21 39 PP e e 21 7 PP	58.1 63.6 59.7
Toledo Almeria Granada Cleveland Ottawa		$128.6 \\ 129.2 \\ 129.8 \\ 129.8 \\ 129.8 \\ 130.2 \\$	$320 \\ 316 \\ 317 \\ 36 \\ 28$	e 19 10 19 19 21 24 a e 19 14	[ + 1] + 9] = PP =	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	e 21 17 PP 21 31 PP 28 13 SKKS e 39 12 SS	$   \begin{array}{r}       69 \cdot 4 \\       72 \cdot 0 \\       77 \cdot 2 \\       \overline{} \\       67 \cdot 1   \end{array} $
Malaga Lisbon Weston Huancayo Bermuda	z.	$130.6 \\ 132.5 \\ 134.6 \\ 145.6 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.7 \\ 145.$	$317 \\ 322 \\ 28 \\ 118 \\ 31$	i 21 18 a 21 39 ? i 19 28 e 19 45 e 20 43	PP PP [+ 7] [+ 5]	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22 49 PKS e 39 38 SS e 23 8 PP e	74.4 55.3 61.7 68.3
La Paz		149·3	132	i 19 50k	[+ 4]	i 26 27 [-26]	i 23 24 PP	71·4 69·1

```
87 i 19 55 [+ 7] e 27 27 [+33] e 23 42
                                                                            \mathbf{PP}
                                                                                   69.1
                    150.5
Bogota
                                                 e 30 27 {-14} e 43 35
                                                                            SS
                                                                                  e 64·7
                            53 e 28 19
                                              1
                    154.2
San Juan
  Additional readings :--
    Brisbane iZ = 6m.5s., iQE? = 12m.16s.
    Riverview iZ = 7m.4s., iPPN = 8m.2s., iPcPZ = 9m.22s., iSSE = 14m.4s., iSSSE = 14m.31s.
    Vladivostok ePP = 10m.35s., iSS = 18m.56s.
    Auckland PcSN =12m.49s., SSN =19m.30s., SSSN =20m.58s.
    Wellington iZ = 9m.8s., PcP = 9m.27s., i = 9m.58s., PPZ = 10m.28s., PPPZ = 11m.8s.,
        e = 11m.22s. and 11m.42s., P_cS = 12m.39s., PS = 16m.21s., SS = 20m.16s., SSS = 12m.39s.
        22m.32s., Q = 23m.8s.
    Calcutta iE =17m.17s., iSSSE =22m.23s.
    Apia e = 9m.31s.
    Poona iE =11m.27s., eE =11m.51s., iPPE =12m.58s., iPSE =19m.33s., iEN =20m.45s.,
        SSN = 23m.24s., SSSN = 26m.17s., QN = 26m.55s.
    Tashkent ePPP = 16m.3s.1
    Sverdlovsk iScS = 23m.18s., iPS = 24m.6s.
    Tananarive SS? = 29m.51s.
    Sitka e = 29m.48.
    Berkeley iN = 32m.14s., eN = 38m.7s., iE = 38m.22s., eE = 49m.20s.
    Helsinki e = 25m.27s.
    Reno eE =14m.17s., eN =14m.20s., eZ =18m.29s.
    Helwan eZ = 17m.38s., eN = 26m.18s., eE = 27m.32s.
    Pasadena eZ = 17m.43s., iEN = 26m.16s.
    Hungry Horse i = 14m.28s. and 14m.57s.
    Upsala eSKSN = 25m.2s., eSiN = 26m.32s., ePPSiE = 28m.38s., eSSE = 33m.8s.?.
        eSSN = 34m.8s.1, eSSSE = 37m.53s.
    Copenhagen PS = 28m.43s., SS = 34m.50s., SSS = 39m.2s.
    Tucson ePS = 28m.58s., eSSS? = 39m.52s.
    Potsdam iZ = 19m.25s. and 19m.30s., eZ = 29m.20s.
    Triest iSS = 35m.19s.
    Stuttgart ePPP = 22m.8s., e = 23m.32s., ePPS = 30m.40s.
    De Bilt eSS = 36m.8s.1
```

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

### 1949

47

Rome ePPSE = 30m.56s. Strasbourg ePP = 19m.58s., e = 20m.39s., 21m.7s., 21m.14s., and 21m.20s., ePPP = 22m.29s., ei = 23m.30s., 23m.47s., and 23m.55s., ePS = 29m.39s., ePPS = 30m.48s. and 30m.52s., e = 31m.56s. and 34m.15s., eSSi = 35m.15s., e = 37m.28s. and 38m.50s., eSSS = 40m.10s., and 40m.16s. Aberdeen iE = 32m.34s. Kew ePPSiZ = 32m.22s., eSSZ = 36m.38s., eEN = 44m.0s. Paris ePS = 29m.59s., ePPS = 31m.56s., e = 35m.26s., eSS = 36m.56s., eSSS = 41m.50s., e = 45m.26s.

St. Louis ePS? = 30m.52s., iPPS = 32m.27s., iSS = 37m.56s. Alicante PKS = 22m.53s., PPP = 24m.29s., SKKS = 28m.29s., PS = 31m.33s., SS = 38m.21s., SSP = 38m.55s., SSS = 42m.39s., Q = 52m.39s. Tamanrasset e = 32m.4s. Almeria PKS=22m.49s., PPP=24m.15s., PPS=33m.13s., SS=38m.45s., SSS= 43m.35s. Granada pPKP = 22m.39s.k, pPP = 24m.14s.k, PPS = 32m.57s., SS = 38m.54s; record wrongly interpreted. Cleveland iPPSE = 33m.6s.Lisbon iPKS?EZ = 22m.53s., E = 27m.13s., SS?N = 39m.50s.Huancayo e = 34m.48s., eSS = 41m.59s.Bermuda e = 21m.50s. and 24m.18s. La Paz SKKSN = 30m.20s., SS = 42m.48s.San Juan e = 46m.20s.Long waves were also recorded at Bergen, Collmberg, La Plata, Fort de France, and other North American stations.

Feb. 1d. Readings also at 0h. (Hungry Horse and near Apia), 2h. (Tacubaya), 4h. (San Juan), 6h. (Ottawa), 7h. (Huancayo and La Paz), 9h. (Tucson, Hungry Horse, Boulder City, and near Pierce Ferry), 10h. (Klyuchi, Hungry Horse, Shasta Dam, Boulder City, and near Pierce Ferry), 11h. (Samarkand, near Andijan (2), Stalinabad (2), Obigarm, Tashkent, and Tchimkent), 12h. (Shasta Dam, Hungry Horse, near Boulder City, Pierce Ferry, and near Andijan), 13h. (Berkeley, Branner, Fresno, Lick, Mineral, Reno, Ukiah, Pierce Ferry, Hungry Horse, near Shasta Dam and near Stalinabad), 14h. (Haiwee, Mount Wilson, Tucson, Bermuda, Scoresby Sund, De Bilt, Kew, Paris, Clermont-Ferrand, Strasbourg, Stuttgart, and Tamanrasset), 15h. (near Tacubaya), 16h. (Zi-ka-wei), 17h. (Ashkabad, Hungry Horse, and near Nanking), 18h. (Basle), 22h. (near Tucson (2)).

Feb. 2d. 17h. 41m. 33s. Epicentre  $52^{\circ} \cdot 8N$ .  $173^{\circ} \cdot 2W$ . Depth of focus  $0 \cdot 030$ .  $A = -\cdot 6029, B = -\cdot 0719, C = +\cdot 7945; \delta = -11; h = -6;$  $D = -\cdot 118, E = +\cdot 993; G = -\cdot 789, H = -\cdot 094, K = -\cdot 607.$ 

		Δ	Az.	P. m. s.	0-C.	s. m. s.	0 -C.	Supp. m. s.	L. m.
Klyuchi College Sitka Victoria Seattle		$     \begin{array}{r}             0 \\             15 \cdot 5 \\             17 \cdot 7 \\             22 \cdot 0 \\             31 \cdot 3 \\             32 \cdot 4 \\             32 \cdot 4         $	294 37 63 77 78	e 4 281 i 3 49 i 4 35 6 5 a e 5 56	$+60 \\ - 4 \\ - 2 \\ + 4 \\ -15$	e 7 208 e 6 58 i 8 25 11 3 e 10 59		$\begin{array}{ccc} \mathbf{i} \ 15 \ 10 & \mathbf{S_{eS}} \\ 5 \ 5 \ 15 & 15 \\ \mathbf{e} \ 7 \ 15 & \mathbf{PP} \\ \mathbf{e} \ 7 \ 7 \ \mathbf{sP} \end{array}$	e 8.9 i 9.3 e 12.2
Honolulu Mizusawa Arcata Ferndale Shasta Dam	Е. Е.	33.6 34.0 35.0 35.1 36.1	153 265 89 91 89	e 6 18 6 27 i 6 34 a i 6 17 i 6 43	-3 + 3 + 1 + 1 + 17 + 1	e 11 32 7 6 1 11 55 e 11 33 i 12 9	+ 6 pP + 7 -16 + 5	e 7 53 PPP (7 6) pP i 8 15 PPP i 8 6 PPP i 16 35 ScS	e 14·0
Ukiah Mineral Hungry Horse Vladivostok San Francisco	z. E.	$36.6 \\ 36.8 \\ 36.9 \\ 37.2 \\ 37.9 \\ 37.9 \\ $	$91\\89\\72\\277\\92$	e 6 42 i 6 48 i 6 50 i 6 49 i 6 58	-40 + 12 + 1	e 12 13 i 12 16 i 12 18 i 12 22 i 12 36	+ 1 + 1 + 1 + 1 + 4	e 13 11 sS i 8 15 PP i 16 40 ScS i 7 32 pP	e 16·2
Berkeley Branner Reno Santa Clara Lick		$38.0 \\ 38.3 \\ 38.4 \\ 38.5 \\ 38.7$	92 92 88 92 92	$     \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$+ 1 \\ + 1 \\ + 2 \\ - 1 \\ + 60$	i 12 37 i 12 38 i 12 39 e 16 3 i 13 39	$^{+}_{0}^{0}_{0}_{888}_{+55}$	i 7 52 pP e 12 43 ? i 8 6 PP i 8 59 PPP i 8 10 PP	
Butte Saskatoon Bozeman Fresno Tinemaha	N.	$39.0 \\ 39.3 \\ 40.1 \\ 40.2 \\ 40.9$	74 64 74 91 90	i 7 6 i 7 9 i 7 15 i 7 7 15 i 7 7 15 i 7 25 a	0 0 0 9 + 3	i 12 49 12 56 i 13 4 i 13 12 i 13 26	+ 1+ 3+ 6+ 10	i 8 46 PP 8 46 PP e 8 47 PP i 12 45 ScP i 8 19 PP	e 16.0 21.4 e 16.3

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1949					48					
Logan Salt Lake City Pasadena Riverside Boulder City		∆ 41·9 42·4 42·9 43·5 43·7	Az. 80 81 93 93 88	P. m. s. i 7 28 i 7 20 i 7 39 a i 7 43 a i 7 45	0 - C. 8. - 2 -14 + 1 0 0	S. m. s. i 13 16 i 13 25 i 13 50 i 17 20 i 14 1	$\begin{array}{c} 0 - C. \\ 8. \\ -15 \\ -13 \\ + 5 \\ 8cS \\ + 4 \end{array}$	Suj m. s. e 8 36 i 8 36 i 8 30 a i 8 36 i 17 22	$^{sP}_{pP}$	L. m. e 16·3 e 17·2
Pierce Ferry Irkutsk Tucson Lincoln Scoresby Sund	E.	$\begin{array}{r} 44 \cdot 1 \\ 47 \cdot 5 \\ 48 \cdot 7 \\ 51 \cdot 3 \\ 55 \cdot 3 \end{array}$	88 305 89 71 12	i749 e814 i824 i842 i911a	$^{+ 1}_{0 0}_{- 1}_{- 1}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$^{+ 6}_{+ 1}_{+ 1}_{+ 3}$	$\begin{array}{rrrrr} {\bf i} \ {\bf 17} \ \ {\bf 25} \\ {\bf 9} \ \ 0 \\ {\bf i} \ {\bf 9} \ \ {\bf 5} \\ {\bf e} \ {\bf 10} \ \ {\bf 42} \\ {\bf i} \ {\bf 10} \ \ {\bf 1} \end{array}$	SeS pP pP PP pP	e 20·1 e 21·0
Chicago St. Louis Little Rock Ivigtut Cincinnati		$55.7 \\ 56.5 \\ 58.0 \\ 58.2 \\ 59.3$	$     \begin{array}{r}       65 \\       69 \\       74 \\       28 \\       65 \\     \end{array} $	i 10 13 i 9 18 i 9 28 i 9 31 i 8 44	$P_{c}P_{-3} = 3$ - 3 - 2 - 56	i 16 41 i 16 51 i 17 12 i 17 16 i 16 26	$-1 \\ -2 \\ 0 \\ +1 \\ -63$	e 18 15 i 10 8 10 15 i 13 31	sS pP pP PPP	e 22.6
Cleveland Ottawa Shawinigan Falls Seven Falls Pennsylvania	N. E. N.	$59.3 \\ 59.5 \\ 60.1 \\ 60.6 \\ 61.7$	61 55 51 50 59	i 9 38 9 39a e 9 33 9 46 i 11 5	$   \begin{array}{c}     - & 2 \\     - & 3 \\     - & 13 \\     - & 3 \\     pP   \end{array} $	i 17 26 17 29 17 48 i 19 10	$-\frac{3}{-\frac{3}{3}}$ $+\frac{2}{3}$	i 10 25 10 25 	$\mathbf{p}_{\mathbf{p}\mathbf{P}}^{\mathbf{p}\mathbf{P}}$	30.8 25.2 29.6
Sverdlovsk Mobile Fordham Philadelphia Weston		$\begin{array}{c} 62 \cdot 2 \\ 63 \cdot 3 \\ 63 \cdot 7 \\ 63 \cdot 7 \\ 63 \cdot 8 \end{array}$	330 74 56 58 54	i 10 0 e 10 7 i 10 9 i 10 10 i 10 9	$     \begin{array}{c}       0 \\       0 \\       - 1 \\       0 \\       - 1     \end{array} $	18 9 e 18 6 i 18 25 i 18 26 i 18 19	$^{+3}_{-14}_{0}_{+1}_{-7}$	i 10 46 e 14 9 i 10 58 i 10 54	pP PPP pP	e 31·1 e 26·9 26·3
Columbia Tacubaya Apia Almata Bergen		$\begin{array}{c} 65 \cdot 0 \\ 65 \cdot 2 \\ 66 \cdot 3 \\ 66 \cdot 9 \\ 67 \cdot 2 \end{array}$	$     \begin{array}{r}       66 \\       90 \\       178 \\       312 \\       1     \end{array} $	e 10 17 e 10 19 10 28 e 10 31 11 21	$-1 \\ 0 \\ +2 \\ +1 \\ pP$	e 18 39 i 18 47  20 7	-1 + 4 + -4 + 60	e 19 49 e 19 58  e 22 40		e 27 · 7 e 28 · 8
Upsala Frunse Moscow Aberdeen Tchimkent	E.	$67 \cdot 4 \\ 68 \cdot 3 \\ 68 \cdot 9 \\ 70 \cdot 2 \\ 70 \cdot 9$	$354 \\ 313 \\ 342 \\ 6 \\ 316$	$ \begin{array}{r} 11 & 14 \\ e & 10 & 41 \\ i & 10 & 42 \\ \hline i & 10 & 55 \end{array} $	$pP \\ + 2 \\ 0 \\ + 1$	i 19 9 e 19 25 i 19 27 i 19 46 i 19 53	-1 + 5 + 0 + 4 + 3	e 23 303 e 11 33 i 11 32	SS pP pP	i 27 <u>·9</u>
Andijan Copenhagen Tashkent Murgab Obi-garm		71.0 71.8 71.9 72.2 73.8	$313 \\ 357 \\ 315 \\ 310 \\ 313$	i 10 56 i 10 59 e 11 0 11 3 i 11 9	$+ 1 \\ - 1 \\ 0 \\ + 1 \\ - 3$	i 19 57 i 20 3 i 20 4 20 10 e 20 23	+ 52 + 22 + 50	e 11 41 ? i 11 48 e 11 43	pP pP pP	
Samarkand Stalinabad Bermuda Potsdam De Bilt		74.274.474.975.175.4	$316 \\ 314 \\ 56 \\ 356 \\ 1$	e 11 16? i 11 16 e 11 9 i 11 19a i 11 23a	+ 2 + 1 + 9 + 2 + 2	e 20 29 i 20 32 i 20 35 i 20 40 i 20 47	$^{+2}_{+20}_{+36}$	$\begin{array}{r} e & 11 & 57 \\ e & 21 & 24 \\ i & 12 & 6 \\ i & 12 & 11k \end{array}$	pP sS pP pP	e 30.0
Second and the second	N. E.	75.9 76.1 76.6 77.3 77.3	$5\\357\\357\\290\\355$	i 11 23 e 11 24 e 11 27 e 15 45 i 11 36	$\begin{array}{c} - & 1 \\ - & 1 \\ 0 \\ PPP \\ + & 5 \end{array}$	e 20 47 e 20 50 e 20 55 i 22 35 i 21 2	$^{+1}_{+2}_{+1}_{PS}_{+1}$	i 12 15 e 12 15 i 12 19	pP pP pP	e 28·4
Jersey Grozny Piatigorsk Paris Stuttgart	E.	78.1 78.6 78.6 78.7 78.8	$332 \\ 335 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 \\ 358 $	e 11 37 e 12 27? i 11 38 i 11 39a	$\frac{\mathbf{p}\mathbf{P}_{1}}{\mathbf{p}\mathbf{P}_{1}}$	e 21 12 i 21 20 e 21 18 e 21 18	+ 2 + 5 + 2 + 1	i 12 26 e 12 26	 pP pP	e 34 · 4
Strasbourg Ogyalla Theodosia Simferopol Sotchi		79.0 79.2 79.5 79.8 79.9	$359 \\ 352 \\ 340 \\ 341 \\ 336$	i 11 41 e 12 18 e 11 44 e 12 35 e 11 48	+ 1 pP + 1 pP + 3	i 21 23 e 21 32 21 28	+ 4 + 11 + 4	i 12 28 e 12 32? e 12 37	pP pP pP	32.5
Basle Baku Zürich Yalta Neuchatel		80.0 80.0 80.2 80.3 80.6	$\begin{array}{r} & 0 \\ 328 \\ 359 \\ 340 \\ 0 \end{array}$	i 11 46 a i 11 46 a i 11 46 e 11 48	$-\frac{0}{-1}$	e 21 34 e 21 30 e 21 36 i 21 34	+ 4 0 + 4 + 1 - 1	e 12 39 e 12 35 i 12 35 e 12 40	pP pP pP	

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1949		49	
Chur Clermont-Ferrand Triest Erevan Salo	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccc} 0 - C. & S. & 0 - C. \\ s. & m. s. & s. \\ + 1 & e & 21 & 39 & + & 2 \\ & 0 & i & 21 & 53 & + & 5 \\ & 0 & i & 21 & 53 & + & 5 \\ & 0 & i & 21 & 497 & + & 1 \\ pP & & & & & & & \\ 0 & i & 21 & 51 & + & 2 \end{array}$	Supp.       L.         m. s.       m.         e 12 42       pP         i 12 44       pP         i 12 44       pP         i 12 47       pP         i 12 48       pP
Belgrade Pavia Bologna Padova Florence	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	i 12 48 pP e 12 51 pP e 12 55 pP
Istanbul Brisbane San Juan Hyderabad N. Toledo	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	i 11 51 pP e 22 17 SKS i 22 29 S e 42.6 24 11 PS 13 9 pP
Poona Bombay Alicante Granada Ksara	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Malaga z. Almeria Fort de France Riverview Bogota	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Kodaikanal Wellington Helwan Huancayo Tamanrasset Z. La Paz	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{bmatrix} & 0 & 21 & 7 & & 2 \\ & & 23 & 1 & [-6] \\ & & 23 & 53 & [-6] \\ & & 1 & 23 & 53 & +4 \\ [-1] & 1 & 24 & 0 & [+4] \\ & & [+3] & 1 & 24 & 37 & [+8] \end{bmatrix} $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Additional readings :---College iPeS = 11m.53s. Victoria SS =13m.15s. Seattle ePP = 7m.18s., esS = 12m.2s.Arcata iN =6m.41s., iZ =7m.58s. and 12m.26s. Shasta Dam  $iS_cP = 12m.29s$ . Ukiah ePP = 8m.1s., ePeP? = 8m.45s.Mineral eN = 8m.21s., iSN = 12m.20s., iZ = 12m.31s., eN = 16m.39s.Hungry Horse  $iS_cP = 12m.33s$ . Vladivostok isS = 13m.40s. Berkeley iN =7m.13s., iPPN =8m.35s., iE =8m.53s., iN =10m.45s. and 15m.43s., iE = 15m.57s., eEN =16m.48s., iN =17m.41s. Reno iE =7m.6s., i =7m.15s., iE =7m.18s., iZ =7m.27s., iPPN =7m.42s., iZ =12m.45s., iE = 13m.18s.Santa Clara iPPEZ = 12m.37s., eSE = 18m.22s.Lick iZ = 8m.58s. Butte iN =10m.6s. Saskatoon i = 16m.53s. Bozeman ipP? = 7m.42s., ePPP = 9m.31s., esPP? = 9m.42s., eS = 12m.53s.Tinemaha  $iS_{c}P = 12m.50s.$ ,  $iS_{c}S = 17m.8s.$ Logan i = 7m.48s.,  $iS_cP = 12m.50s.$ ,  $iS_cS = 17m.6s.$ Salt Lake City iPP = 9m.7s., iPPP = 9m.47s.,  $eS_cP = 12m.40s.$ ,  $iS_cS = 17m.0s.$ Pasadena iZ = 7m.48s. and 7m.56s., isPZ = 8m.49s.,  $iP_cPZ = 9m.19s$ .,  $iS_cP = 12m.56s$ ., iSeS = 17m.16s.Riverside iZ = 17m.55s.,  $iS_cP = 12m.58s.$ Boulder City iSeP = 13m.0s. Pierce Ferry ScP = 12m.59s. Irkutsk eSS = 16m.4s. Tucson isP = 9m.30s., iPcP? = 9m.58s., iPP = 10m.19s., epPP = 11m.0s., iScP = 13m.21s., eSeS = 17m.55s., eSS? = 19m.7s.Lincoln iScSE = 18m.10s., eSS?E = 19m.44s.Chicago e =12m.19s., ePPP =12m.39s., eSeP =13m.39s., iSeS =18m.41s., eSS? =21m.1s.St. Louis  $iP_cP_i = 10m.21s$ ,  $ipP_cP_i = 11m.23s$ , i = 12m.47s, and 13m.54s, isS = 18m.11s, isSP? = 18m.47s.Ivigtut 18m.51s., 23m.51s. Cincinnati i = 12m.13s. and 18m.6s. Cleveland eEN = 13m.18s., iE = 13m.30s., iPSE = 18m.16s., isSEN = 19m.7s., eSSEN = 21m.34s. Ottawa PP = 11m.50s.,  $S_cS = 18m.9s.$ , SSS = 23m.31s.Continued on next page,

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

### 1949

### 50

Sverdlovsk sS = 19m.29s. Mobile e = 22m.6s. Fordham i = 19m.16s. Philadelphia e = 14m.0s., iS_cS = 19m.18s., i = 20m.13s. Columbia ePPP = 14m.15s. Bergen ePcPZ = 11m.58s., ePcSN = 15m.58s. Upsala ipP = 11m.19s., sP = 11m.50s., epSiN = 19m.59s., ipSE = 20m.5s., eE = 21m.9s. Moscow iPS = 20m.19s., epPS = 21m.33s. Copenhagen e = 12m.9s. and 21m.9s. Tashkent isS = 21m.26s.

```
Stalinabad esS = 21m.56s.
Bermuda e = 12m.19s., eS_cS = 20m.57s., eSS? = 25m.5s.
Potsdam eN =11m.27s.?, iZ =12m.3s.a and 12m.11s.a, iN =12m.33s., eN =13m.58s.,
    iZ = 16m.42s., esS?Z = 21m.39s.
De Bilt eSSS = 30m.27s.?
Kew isPZ = 12m.27s., ipPPZ = 14m.59s., epSEN = 21m.51s., eSSN = 22m.22s.
Collmberg epPPZ = 14m.56s., epPPPZ = 16m.53s.
Jena eN = 13m.9s.
Paris i = 12m.42s., e = 18m.53s., pS = 22m.33s., sS = 22m.51s., eSS? = 25m.45s., eSSS? = 25m.45s.
    30m.45s.
Stuttgart iZ =12m.43s., eZ =13m.0s., epPPZ =15m.13s., ePS =22m.21s.
Strasbourg e = 11m.53s. and 12m.0s., ipP = 12m.33s., e = 12m.43s., esP = 12m.47s. and
    12m.57s., i=13m.24s. and 13m.43s., e=13m.49s. and 13m.56s., ePP=14m.29s.,
    epPP=15m.26s., e=17m.48s., ePS=22m.29s. and 22m.32s., isS=22m.52s., i=
    23m.36s., eSS? = 26m.30s., eSSS? = 29m.27s.
Zürich ePP = 15m.18s.
Clermont-Ferrand i = 12m.47s.
Salo eZ = 12m.43s., iZ = 13m.5s.
Belgrade e = 15m.33s.
Bologna e = 22m.13s.
Florence eSN = 22m.10s.
Brisbane iZ = 15m.32s.
San Juan ePP! = 15m.54s., eSS! = 28m.27s.
Toledo iZ = 12m.36s. and 13m.16s., sPZ = 13m.29s., ePPZ = 15m.49s.
Poona ePePE = 12m.40s., eE = 13m.34s., esPE = 13m.53s., iPPE = 15m.7s., iPPPE = 15m.7s.
    17m.0s., iPSEN = 24m.10s., isSEN = 24m.24s.
Alicante PP =16m.21s., PPP =18m.21s., S =23m.29s., PS =24m.17s., PPS =24m.49s.,
    SS = 28m.41s., SSS = 32m.31s.
Malaga PPZ = 16m.5s.
Almeria PPP = 18m.21s., S = 23m.30s., PPS = 25m.9s., SS = 29m.33s., SSS = 33m.9s.
Riverview iZ =13m.50s., iE =23m.32s., esPE =24m.24s., ePSZ =24m.42s., iZ =25m.8s.
Bogota ePPEN = 16m.25s., iPSEN = 24m.40s.
Wellington e = 23m.8s., PS = 24m.27s.
Helwan sPZ = 14m.12s., PPZ = 16m.51s., eZ = 17m.27s., ipPPZ = 17m.39s., iZ = 16m.51s.
    17m.51s. and 19m.24s., SKKSEN = 23m.15s., eN = 24m.43s. and 26m.13s.
```

Huancayo iPP = 18m.4s., epPP = 18m.55s., esS = 26m.40s., eSS = 32m.46s., eSSS = 36m.43s.

Tamanrasset eZ = 17m.2s., ePPZ = 18m.2s., ipPPZ = 18m.52s.a, isPP?Z = 19m.6s.k, ePPPZ = 20m.19s., iZ = 29m.45s.

La Paz iPKPN =18m.23s., iN =28m.18s.

Feb. 2d. Readings also at 3h. (Pierce Ferry, Hungry Horse, and Shasta Dam), 5h. (Hungry Horse, near Huancayo, and near Tacubaya), 6h. (Ashkabad (2), College, and Tucson), 8h. (Pierce Ferry, Shasta Dam, Hungry Horse, and near Chur), 9h. (Shasta Dam, Hungry Horse, and College), 10h. (De Bilt, Boulder City, Pierce Ferry, Shasta Dam, Hungry Horse, Pasadena, Riverside, Tinemaha, and Tucson), 11h. (Ksara, Samarkand, Tchimkent, near Andijan, Kulyab, Obi-garm, Stalinabad, and near Tacubaya), 12h. (Ashkabad), 13h. (Tucson, Boulder City, Pierce Ferry, Shasta Dam, Hungry Horse, near Ashkabad), 14h. (near Ashkabad), 15h. (Hungry Horse, Shasta Dam, and near Mizusawa), 16h. (Cepiapo and Hungry Horse), 17h. (Ashkabad and near Ottawa), 18h. (Hungry Horse, Stuttgart, Andijan, and near Istanbul), 19h. (Stuttgart, near Ashkabad, and near Tucson (2)). 20h. (near Ashkabad (2), near Rome, and near Tucson), 21h. (Samarkand, Tashkent, near Andijan, Kulyab, Obi-garm, Stalinabad, Tchimkent, near Tucson, near Boulder City, and Pierce Ferry).

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

### 1949

# 51

Feb. 3d. 16h. 29m. 15s. Epicentre 18°.9S. 173°.2W.

Felt in Kermadec Isles. Seismological report, Observatory, Wellington, New Zealand, January-March, 1949, p. 5.

> $A = -.9401, B = -.1121, C = -.3220; \delta = +4; h = +5;$ D = -.118, E = +.993; G = +.320, H = +.038, K = -.947.

	Δ	Az.	P. m. s.	0 – C. s.	S. m. s.	0 – C. s.	m. s.	pp.	L. m.
Apia Auckland N Wellington Kaimata Brisbane	5.3 20.8 24.6 26.9 32.1	$     \begin{array}{r}             06 \\             208 \\             203 \\             206 \\             248 \\         \end{array} $	e 1 23 4 44 5 19 5 51 e 6 29	$+ 1 \\ - 1 \\ - 4 \\ + 6 \\ - 2$	1 2 16 8 38 	- 9 + 5 	e 5 34	PP PP	e 2.8 11.2 e 12.6 e 16.2
Riverview Mount Wilson z. Riverside z. Shasta Dam Tinemaha z.	74·8 75·8	237 45 45 38 43	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	+ 3 - 1 + 19 + 1	e 12 29	+ 1	8 19 	PP 	e 17·4
Boulder City Tucson Vladivostok Hungry Horse College	77.6 78.4 79.7 85.2 85.7	$46 \\ 50 \\ 323 \\ 36 \\ 11$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- 8 0 - 1 - 1 2	e 22 17 e 22 53	$+\frac{-}{4}$ [-12]	e 12 35	pP 	e 39.7 e 39.6
Huancayo La Paz De Bilt Collmberg Z. Jena N.	No. 10.2 Contraction of the second state of	$104 \\ 111 \\ 2 \\ 353 \\ 354$	e 15 8 e 11 9 e 19 45? e 19 46 e 19 50	? [+ 3] [+ 3] [+ 6]	• 23 57	[+ 5]	e 25 45	PS 	e 45·4 48·4
Paris Ksara Stuttgart z. Strasbourg Clermomt-Ferrand	150.0 150.1 150.1 150.4 153.0	7 306 357 359 7	i 19 56 e 19 52 e 19 51 e 19 53 e 20 3	[+ 9] [+ 4] [+ 3] [+ 5] [+11]			2 <u>3</u> 28 	PP 	e 84.8
Salo z. Helwan z. Alicante	155.2	353 301 18	e 20 10 e 20 23 e 24 16	[+18] [+28] PP			e 22 23	<u>"</u>	

Aucauco 100 0 AO 0. z. 176.0 -- e 20 16 [+ 4] Tamanrasset Additional readings :---Auckland iN =5m.48s., SSN =9m.23s.Riverview eZ = 8m.42s.,  $iS_cSE = 17m.23s.$ Shasta Dam i = 12m.27s. Tucson e = 13m.29s. Huancayo ePS = 25m.55s., eSS? = 30m.57s.Collmberg eE = 19m.52s.Jena eE = 20m.5s.Paris i =20m.25s. Stuttgart eZ = 20m.5s. Strasbourg e = 20m.6s., 20m.50s., and 20m.54s. Helwan eZ = 20m.33s. and 20m.51s.

Long waves were recorded at Arapuni, Philadelphia, and Kew.

Equilibrium (Signature 100)

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

### 1949

## 52

Feb. 3d. 22h. 29m. 20s. Epicentre 46°.5N. 13°.0E. (as on 1937, Jan. 9d.).

Felt throughout the whole of Carniole, Haut Fioul, and Gail Valley (Carinthia). Intensity VIII at Paularo; V at Subio and Tolmezzo; IV at Claut. Macroseismic area in Austria more than 13,000 sq. km.

Suggested epicentres 46°·5N. 13°·1E. (Rome). 46°31'N. 13°11'E. (Triest).

Jahrbücher der Zentralanstalt für Meteorologie und Geodynamik. Jahrgang, 1949. Vienna, 1950. New Series, Vol. 86, p. E.1. Macroseismic chart, p. E.2.

A = + .6731, B = + .1554,	C = +.7231;	$\delta = +9$ ;	h=-4;
$D = + \cdot 225, E = - \cdot 974;$	G = +.705,	$\mathbf{H}=+\cdot163,$	K =691.

	Δ	Az.	P. m. s.	0 – C. s.	S. m. s.	0 – C. s.	m. s.	p.	L. m.
Triest Padova Salo Zagreb Chur	$     \begin{array}{c}             0 \\             1 \cdot 0 \\             1 \cdot 4 \\             2 \cdot 0 \\             2 \cdot 2 \\             2 \cdot 4 \end{array}     $	$\overset{\circ}{149} \\ 216 \\ 242 \\ 108 \\ 279 \\ \end{array}$	$\begin{array}{c} \mathbf{e} \ 0 \ 18 \\ 0 \ 27 \\ \mathbf{e} \ 0 \ \mathbf{35a} \\ \mathbf{e} \ 0 \ \mathbf{37k} \\ \mathbf{e} \ 0 \ 0 \ \mathbf{37k} \\ \mathbf{e} \ 0 \ \mathbf{18k} \\ \mathbf{e} \ \mathbf{18k} \\mathbf{18k} \\ \mathbf{e} \ \mathbf{18k} \\ \mathbf{e} \ \mathbf{18k} \\ \mathbf{e} \ \mathbf{18k} \\mathbf{18k} \18k$	$-30 \\ -00 \\ -14 \\ -4$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	- 4 + 1 + 3 + 5 + 2	i 0 23 i 1 6 e 0 40	P Sg Pg	i 1.5
Ravensburg Bologna Prato Florence Pavia	2.62.82.93.03.03.0	$299 \\ 210 \\ 207 \\ 204 \\ 244$	$egin{array}{cccc} e & 0 & 48 \\ e & 0 & 46 \\ i & 0 & 50 \\ e & 1 & 27 \\ e & 0 & 49 \end{array}$	+ 4 - 1 + 2 $P_{g}$ - 1	e 1 23 e 1 15 i 1 20 1 36? e 1 49	+ 6 - 7 - 4 S*	e 0 52 i 1 2 e 1 50? e 0 55	Pr Pr Pr	
Zürich Ebingen Stuttgart Cheb Prague	3·1 3·2 3·5 3·6 3·7	$286 \\ 302 \\ 312 \\ 353 \\ 15$	$\begin{array}{c} e & 0 & 52 a \\ e & 0 & 54 \\ e & 0 & 55 k \\ e & 1 & 0 \\ e & 1 & 7 \end{array}$	+ 1 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2	e 1 33 e 1 49 e 1 38 i 1 56 i 1 56	+ 4 S#2 S#	$     \begin{array}{c}       e & 1 & 45 \\       e & 1 & 2 \\       i & 1 & 12 \\                                   $	Sr P* Pr	
Basle Ogyalla Kalossa Strasbourg Neuchatel	$3.8 \\ 3.8 \\ 4.1 \\ 4.1 \\ 4.2$	$285 \\ 67 \\ 88 \\ 300 \\ 276$	$\begin{array}{cccccccccccccc} i & 1 & 1 & 1 \\ e & 1 & 3 & 3 \\ e & 1 & 3 & 9 \\ i & 1 & 6 & a \\ e & 1 & 6 & \end{array}$	$+ {\begin{array}{c} 0 \\ 2 \\ P_{e} \\ + 1 \\ - 1 \end{array}}$	e 1 56 e 1 55 e 2 15 i 2 13 e 2 22	******	$e \frac{1}{1} \frac{17}{23}$	P.	
Budapest E. Jena Rome Collmberg Raciborzu	4·3 4·5 4·6 4·8 5·0	$74 \\ 342 \\ 185 \\ 0 \\ 42$	$e \frac{1}{1} \frac{25}{9} \\ e \frac{1}{1} \frac{13}{13}$	$\frac{\mathbf{P}_{\varepsilon}}{-\frac{2}{2}}$	$\begin{array}{c} & \\ e & 2 & 5 \\ e & 2 & 24 \\ e & 2 & 6 \\ e & 2 & 17 \end{array}$	$\mathbf{s}^{\bullet}_{= 1}^{0}$	$\begin{array}{r} & & & \\ e & 1 & 31 \\ i & 2 & 47 \\ e & 1 & 34 \\ e & 2 & 37 \end{array}$	Pg Sg Pg S	2·3 
Belgrade Skalnate Pleso Potsdam Clermont-Ferrand Uccle z.	$5.5 \\ 5.6 \\ 5.9 \\ 6.9 \\ 7.1$	$105 \\ 59 \\ 0 \\ 267 \\ 310$	$e \begin{array}{c} 2 & 54 \\ e \\ 1 & 16 \\ i \\ 1 & 43 \\ e \\ 3 & 20 \end{array}$	$-\frac{s_s}{-\frac{11}{2}}$	e 2 55 e 3 0 i 3 48 (e 3 20)	s* s* s* +10	$i \frac{1}{3} \frac{23}{57}$	S. S.	
Paris De Bilt Kew Alicante Almeria Tamanrasset Z.	$7 \cdot 4$ 7 \cdot 6 10 \cdot 1 12 \cdot 8 15 \cdot 0 24 \cdot 4	$292 \\ 320 \\ 304 \\ 236 \\ 236 \\ 197$	$\begin{array}{r} \mathbf{i} \ 1 \ 51 \\ \mathbf{e} \ 2 \ 40 \\ 3 \ 1 \\ \mathbf{e} \ 3 \ 15 \\ \mathbf{e} \ 5 \ 30 \end{array}$	-1 +12 -5 -20 +9	$\begin{array}{r} e & 3 & 13 \\ i & 4 & 18 \\ \hline 5 & 27 \\ 5 & 51 \\ \hline \end{array}$	$-\frac{5}{3}$	i <u>2</u> 9 <u>-</u> <u>3</u> 35	P•  P	
Additional reading Salo iE = 40s., is Zagreb iP _g E = 50 Ravensburg eS* Bologna iN = 1m Florence eE = 1m Pavia e = 1m.138 Ebingen eS _g = 1m Stuttgart iP = 1m Strasbourg eP = 2m.22s. Budapest PN = 1 Jena eN = 1m.119 2m.21s. Collmberg eE = Raciborzu iN = 9 Belgrade e = 3m	SN = 568 68., iPS = 1m.2 n.118., e n.268.8 n.578. m.48., il = 1m.11 1m.28s. 28., ePN 1m.52s. 2m.41s.	gE = 1 8s., iS = im $P_g = 1$ 8., e I = 1m , $eS_gZ$	$m.3s., iP_{s}$ = 1m.316 28s. m.21s., i = = 1m.14s., 1.18s., ePI = 2m.31s.	$S_s = 1m$ s. = 1m.25s iP = 1i S = 1m.2 , $eEN = 1m$	., iS =1m.4 n.18s., eH 2s., eN =1	$r_{s} = 1m$	26s., i=2	m.7s.,	is _e =

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

## 1949

58

Potsdam eE =3m.4s., iZ =3m.8s.k, iN =3m.12s. and 3m.15s., iZ =3m.31s., iN =3m.38s., iZ =3m.48s., iN =4m.2s. and 4m.38s. Clermont-Ferrand i =3m.55s. Uccle eZ =4m.7s., iZ =4m.14s. Paris S =3m.44s., iS_g =4m.9s. Almeria  $P_cP = 6m.34s$ .

Feb. 3d. Readings also at 0h. (near Andijan), 1h. (near Ashkabad, near Ottawa, near Tacubaya and Manzanillo), 2h. (near Copiapo), 3h. (Obi-garm, near Stalinabad, Hungry Horse, and near Shasta Dam), 7h. (Boulder City, Hungry Horse, Logan, and near Ashkabad (2)), 9h. (near Ashkabad), 11h. (Ashkabad, Hungry Horse, Shasta Dam and Wellington), 14h. (near Ashkabad), 15h. (Strasbourg, near Alicante, and near Tucson), 16h. (near Obi-garm), 19h. (Wellington), 20h. (Bogota and College), 21h. (La Paz, near Huancayo, and near Tucson).

Feb. 4d. 15h. 44m. 42s. Epicentre 38°·0N. 21°·0E. (as on 1948, Dec. 28d.). Strasbourg suggests foreshock of Feb. 5d. The determination is tentative.

> $A = + \cdot 7375, B = + \cdot 2831, C = + \cdot 6131; \delta = -6; h = -1;$ D = + \cdot 358, E = - \cdot 934; G = + \cdot 572, H = + \cdot 220, K = - \cdot 790.

	Δ	Az.	Р.	0 – C.	s.	0 – C.	Su	pp.	L.
	Ó	•	m. s.	8.	m. s.	8.	m. s.		m.
Taranto	3.8	312	e1 0	- 1	e 2 22	Sr		-	
Sofia	5.1	21	e 1 16	- 4	i 2 24	+ 4	-		
Belgrade	6.8	357	e 1 43k	- 1	e 3 16	+13	2 18	Pr	
Istanbul	7.0	61	e 2 4	$\mathbf{P}^*$	3 31	S*			-
Bucharest	7.4	30	e 2 24	$\mathbf{P}_{\mathbf{g}}$	i328	+10	i3 40	S*	
Rome N.	7.6	304			e 3 56	S*	-	<u>منبور</u>	e 4.6
Kalossa	8.7	351			e4 9	+19	e 4 45	Sg	
Florence N.	9.4	311			e 4 49	S*			e 6.6
Padova	9.4	316	e 3 9	Pr					e 5·7
Triest	9.4	327	e 1 55	1	e 4 37	S*			
Bologna	9.8	315	e 2 49	?	e 4 35	+18			
Salo	10.9	318	e 2 55	+15	e 4 46	+ 2			
Ksara	12.8	105	e 4 27	3					e 7·5
Prague	13.0	341	i1 3	?			-		e 6·8
Basle Z.	13.7	319	e 4 18	+60	1000 C				
Stuttgart	13.7	326	e 3 16	- 2	e 6 18	+26			e 8·0
Strasbourg	14.3	322	e 3 26	0	e 6 56	$^{+26}_{+50}$	e 3 35	$\mathbf{PP}$	e 8·1
Clermont-Ferrand	15.4	306	3 51	+11					9.3
Paris	17.2	315	i4 10	+ 7					
De Bilt	17.9	327			i7 48	+18		<u></u> 2	e 9·3
Tamanrasset	20.2	226	e 4 48	+ 9			e 4 59	PP	e 10·2
Hungry Horse	85.2	332	i 12 36	- 3					-

Additional readings :---

Sofia e = 1m.59s. and 2m.12s. Strasbourg e = 4m.0s., 7m.22s., and 7m.57s. Long waves were also recorded at Alicante and Kew.

Feb. 4d. Readings also at 0h. (Toledo, near Malaga, and near Ashkabad), 2h. (Samarkand, near Kulyab, Stalinabad, and near Tucson), 4h. (La Paz), 8h. (Batavia), 10h. (Boulder City, Shasta Dam, Hungry Horse, Logan, and Tucson), 11h. (Logan), 13h. (Andijan, near Kulyab and Stalinabad), 14h. (Hungry Horse and near Alicante), 16h. (near Tacubaya), 19h. (Bozeman), 20h. (Auckland and Wellington), 21h. (Ashkabad), 22h. (Toledo, Zagreb, and near Hungry Horse), 23h. (Alicante and near Shasta Dam).

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

### 1949

### 54

Feb. 5d. 0h. 28m. 15s. Epicentre 39°.8N. 29°.6E. (as on 1948, Nov. 13d.).

Felt in districts of Eskisehir, Kütahye, Bözöyük, Kokaeli, Bursar, where a number of buildings were destroyed.

Monthly Seismological bulletin from Istanbul, Feb. 1949. Epicentre suggested by Strasbourg.

$$A = + \cdot 6698, B = + \cdot 3805, C = + \cdot 6376; \qquad \delta = -5; \qquad h = -2; \\D = + \cdot 494, E = - \cdot 869 \qquad G = + \cdot 554, H = + \cdot 315, K = - \cdot 770.$$

		494, E	2	1010-000 SP4	Ng Ngre	04, H ≡ + C	0-C.	원 이 가슴에서 가슴		L.
Istanbul		∆ 1·3	Az. 342	P. m. s. i024	0-C. s. - 1	m. s. i 0 41	s. - 3	m. s.	р. —	m. —
Bucharest Sofia Yalta Simferopol		5·3 5·5 5·8 6·1	330 303 35 31	e 1 22 e 1 24 1 29 e 1 35	$- \begin{array}{c} 0 \\ 1 \\ 0 \\ + \end{array} \\ + \end{array}$	i 2 25 i 2 54 i 2 38 2 47		i 1 54 	$\frac{\mathbf{P}_{\mathbf{s}}}{=}$	
Campulung Theodosia Ksara Belgrade Sotchi		6.4 6.8 7.8 8.4 8.5	329 37 138 309 60	$\begin{array}{c} e \ 1 & 33 \\ e \ 1 & 44 \\ e \ 1 & 58 \\ e \ 2 & 3a \\ e \ 2 & 15 \end{array}$	$-500 \\ -38 \\ +8$	$e \frac{-}{3} \frac{181}{40}$		i 4 24		
Helwan Kalossa Budapest Piatigersk Erevan		$10.0 \\ 10.3 \\ 10.8 \\ 10.9 \\ 11.4$	$172 \\ 314 \\ 319 \\ 63 \\ 83$	$\begin{array}{c} \mathbf{i} \ 2 \ 29 \\ \mathbf{e} \ 4 \ 27 \\ 2 \ 49 \\ \mathbf{e} \ 3 \ 0 \end{array}$	$+ \frac{2}{8}$ $+ \frac{9}{17}$	e 4 19 e 4 24 (e 4 27)	$   \begin{bmatrix}     3 \\     - 6 \\     -15 \\     \hline   \end{bmatrix} $	e 5 30	s•	6.1 6.2 e 5.8 e 6.6
Skalnate Pleso Zagreb Grozny Triest Raciborzu		$11.5 \\ 11.7 \\ 12.6 \\ 13.0 \\ 13.1$	328 306 68 302 326	e 3 20 3 457 i 3 13 e 3 19 e 2 47	$^{+32}_{+54}_{+10}_{+10}_{-23}$	e 6 20 e 6 55?	L ss	e 4 0	PP	e 6.8 (e 6.3) e 7.8 e 7.5 e 7.2
Rome Florence Bologna Prague Salo	N.	$13.1 \\ 14.3 \\ 14.4 \\ 14.8 \\ 15.2$	$284 \\ 292 \\ 295 \\ 319 \\ 299$	e 3 16 e 4 20 e 3 36?	$-\frac{-11}{+48}$ - 2	e 5 53 e 6 40 e 6 9 e 5 55	+15 + 34 = 0 - 33	е <u>3</u> 57	PP 	e 8·9
Chur Jena Moscow Petsdam Zürich		$16.2 \\ 16.8 \\ 16.8 \\ 17.0 \\ 17.0 \\ 17.0 $	$302 \\ 317 \\ 18 \\ 324 \\ 303$	e 3 47k e 4 2 e 3 527 e 3 58 e 3 58	- 3 + 6 3 3					e 8.3 e 9.1 e 9.8 e 8.8
Stuttgart Basle Neuchatel Strasbourg Copenhagen		$17.1 \\ 17.7 \\ 17.9 \\ 17.9 \\ 17.9 \\ 19.5$	$308 \\ 304 \\ 301 \\ 309 \\ 331$	e 3 59 e 4 8 e 4 11 i 4 14k 4 32	-32 -12 +12 +12	e <u>7</u> 29	-1	i <u>4</u> 28		e 8.8 e 10.0 e 10.0 e 8.8
Clermont-Ferran Uccle Paris Ashkabad Alicante	d z.	$20.3 \\ 20.8 \\ 21.3 \\ 22.4 \\ 23.4$	296 310 304 85 278	$     \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	-1 + 17 + 17 - 4 - 1 + 11	$     \begin{array}{r}       8 & 30 \\       1 & \overline{8} & 7 \\       e & \overline{9} & 30     \end{array} $	+7 - 36 + 9	$e \frac{4}{9} \frac{59}{18}$ $e \frac{9}{5} \frac{18}{47}$	ss_	e 12.8 e 11.8 e 11.3
Kew Almeria Toledo Granada Sverdlovsk	z.	$23 \cdot 8$ $25 \cdot 2$ $25 \cdot 7$ $26 \cdot 0$ $26 \cdot 4$	$310 \\ 274 \\ 281 \\ 276 \\ 39$	i 5 15 e 5 58 (i 5 31) e 5 41 i 5 44	$^{+29}_{-22}$ $^{+3}_{+4}$	e 9 31 10 40 i 5 31 e 10 15 10 20	+ 3 +48 P + 9 + 8	<u>6</u> 48 <u></u>	PPP 	e 12.8 13.9 14.4
Tamanrasset Samarkand Tchimkent Stalinabad Andijan	z.	$26.5 \\ 28.6 \\ 30.1 \\ 30.2 \\ 32.4$	238 77 71 79 74	i 5 39a e 6 5 i 6 15 e 6 33	$-2^{2}+5^{-1}$ +1 -1	e 9 59 i 11 7 i 11 17 e 11 38	$-15 \\ -5 \\ +4 \\ -10$	e 6 21	PP 	
College Hungry Horse Boulder City		75.7 86.5 97.8	359 337 332	i 11 47 i 12 43 i 13 39	$-23 \\ -31 \\ +1$			_		Ξ
Additional rea Bucharest e 2m.58s.	P*N	l = 1m.	and N		.44s., i	S*EN =2n	1.44s.,	$iS_{g}E = 2m$	.55s.,	iS _s N =
Sofia $i = 2m$ .	178.,	e = 2m	.348.	Continued	t on nes	rt page.				

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

# 1949

55

Helwan iZ = 2m.37s., eZ = 4m.36s., eN = 6m.31s.Kalossa eN =4m.33s., eE =5m.6s., eN =5m.10s. and 5m.45s. Rome eS?N = 6m.10s., eN = 6m.41s.Stuttgart iPZ = 4m.3s.a, eZ = 5m.16s. Strasbourg ePPP = 4m.40s., e = 5m.16s., eSSS = 8m.5s., e? = 8m.19s.Clermont-Ferrand ePPP = 5m.12s. Uccle eZ = 11m.42s, and 12m.12s. Paris i = 4m.59s. Alicante SS = 10m.8s., SSS = 10m.22s.Kew eE = 9m.37s. Almeria  $P_{c}P = 9m.10s.$ , SS = 12m.12s.,  $P_{c}S = 12m.52s.$ Toledo ePZ =1m.12s., iZ =1m.22s. and 2m.30s. Tamanrasset iZ = 5m.46s. a and 5m.57s.k, ePPPZ = 6m.34s., eZ = 8m.6s. College i = 11m.51s, and 12m.35s. Long waves were also recorded at Padova, Pavia, Collmberg, and De Bilt.

Feb. 5d. 8h. 55m. 20s. Epicentre 31°.2N. 79°.9E. (as on 1947, Aug. 19d.).

Calcutta readings do not fit this determination. If these were suited a very different time of origin would be required and would, therefore, be very much at variance with the majority of recording stations.

 $A = + \cdot 1503, B = + \cdot 8436, C = + \cdot 5155; \delta = -1; h = +2;$ D = + .985, E = - .175; G = + .090, H = + .508, K = - .857.Supp. L. O - C. S. 0 - C.  $\mathbf{P}$ . Az. Δ m. m. s. s. 8. m. s. m. s. 0 i024 -32-381.8 247 i - 0 6aDehra Dun N.  $-\frac{4}{1}$ 8.7 + 3 3 46 2 13 327 _ Murgab ----e 2 38 4 38 0 10.7 311 Kulyab -e 4 48 - 6 4 e 2 42 11.3 329 -Andijan e 4 41? -13 6 e 2 40? 11.3 315 Obi-garm e 2 5 e 2 50? -68 -43i 3 51 11.5 137 Calcutta E. -1 + 4 - 2Ξ 312 e 4 55? - 9 11.7 Stalinabad 4 e 3 12.3 350 3 Almata -----2 e 2 59 12.4 341 Frunse -15e 5 25 323 13.2 Tashkent -SS 6.6 6 25 e6 9 +15i 3 6 25+209 13.8Bombay SS 6 52  $7 \cdot 4$ 1 e 6 11 +1713.8 3 18 186 -Hyderabad N.  $\mathbf{PP}$ 4 e 3 47 e 3 15  $\rightarrow$ i 5 48 13.8 - 6 205 -Poona 0 e 3 19

Irkutsk Sverdlovsk		$27.6 \\ 28.9$	34 339	e 6 e 6	91 5	$^{+18}_{+2}$	10 51	- 2			_	
Grozny		29.5	304	e 6	2	- 6						1
Stuttgart		55.0	311	e 9	33	- 2						e 30·7
Tamanrasset	z.	65.7	283	e 10	44	- 4			e 13	0	$\mathbf{PP}$	
College	्यत्राहरः	77.3	19	i 11	52	- 6			—		—	
Additional re Dehra Du Bombay F	n iN =	108.	SSSI	EN = 0	3m.29	)s.						

-

2

The second

----

Hyderabad N =6m.26s. Poona eE = 3m.19s., 3m.24s., and 4m.10s., iEN = 6m.2s., iSSEN = 6m.12s.

e 4 24

Long waves were also recorded at Kodaikanal, Ksara, De Bilt, and Alicante.

Feb. 5d. 15h. 24m. 17s. Epicentre 38°.0N. 21°.0E. (as on 4d.).

326

297

13.8

19.0

Tchimkent

Ashkabad

		Δ	Az.	Р.	0-C.	s.	0 – C.	Sul	op.	L.
		•	0	m. s.	s.	m. s.	8.	m. s.	17.000	m.
Taranto		3.8	312	e 1 48	S	(e 1 48)	+ 1	3 8	8	
Messina		4.3	274			e 2 20	Sg			
Sofia		5-1	21	e 1 15	- 5	e 2 14	- 6	e 2 53	Se Pe	
Belgrade		6.8	357	e 1 39a	- 5	e 2 52	-11	e 2 18	Pr	
Istanbul	E.	7.0	61	e 1 47	+ 1	3 27	S*		_	-
Bucharest	N.	7.4	30	e 1 49	- 3	e 3 21	+ 3			
Rome	252252	7.6	304	e 2 11	- 3 P*	e 3 38	+15	e 4 16	SE	
Zagreb		8.6	336	2 13	+ 4	e 3 39	- 9	e 4 38	Sr	
Florence		9.4	311	e 2 13	- 5	e4 4	- 3		<u></u>	_
Padova		9.4	316	e3 2	Pe					

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1949					56					22
		Δ	Az.	Р. m. s.	0 ~ C.	s.	0 - C.		pp.	L.
Triest Prato Bologna Ogyalla Salo		9.4 9.5 9.8 10.1 10.9	327 311 315 348 318	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	s. - 6 S. + 3 - 5	m. s. 3 0 	P.	$\begin{array}{c} \mathbf{m.}\\\mathbf{i} \ 5 \cdot 4\\ \\ \mathbf{e} \ 6 \cdot 2\\ \\ \end{array}$
Pavia Helwan Yalta Chur Basle		$11.4 \\ 11.8 \\ 11.8 \\ 12.2 \\ 13.7 \\$	$313 \\ 130 \\ 53 \\ 320 \\ 319$	e 3 43? e 4 37 e 2 46 e 2 55 e 3 22	+56 -7 -3 +4	$\begin{array}{r} e & 5 & 17 \\ e & 5 & 17 \\ 7 & 30 \\ e & 5 & 11 \\ e & 6 & 6 \end{array}$	+11 L -5 +14			(7 · 5) e 8 · 7
Stuttgart Strasbourg Collmberg Jena Clermont-Ferrar	E. N. nd	13.7 14.3 14.4 14.5 15.4	$326 \\ 322 \\ 340 \\ 336 \\ 306$	e 3 15 i 3 34 e 3 32 e 3 29 e 3 47	-38 + 51 + 7	e 7 8		1111		(e 7 · 1) e 8 · 2 e 8 · 9 e 8 · 4 10 · 2
Potsdam Alicante Paris Copenhagen Toledo		$15 \cdot 4$ 16 $\cdot 9$ 17 $\cdot 2$ 18 $\cdot 6$ 19 $\cdot 6$	$341 \\ 278 \\ 315 \\ 345 \\ 284$	$egin{array}{cccc} { m e} & { m 3} & { m 42} \\ { m e} & { m 5} & { m 12} \\ { m i} & { m 4} & { m 6} \\ { m 4} & { m 17} \\ { m e} & { m 4} & { m 34} \end{array}$	$+ {}^{2}_{?}$ + {}^{3}_{-} + {}^{4}_{2}	$e^{\frac{9}{9}48}$	L + 50	i <u>4</u> 20	PP	e 9·1 (9·8) e 8·2
Tamanrasset Upsala Ottawa College Hungry Horse	z. z.	$20.2 \\ 22.0 \\ 68.3 \\ 77.1 \\ 85.2$	$226 \\ 356 \\ 312 \\ 355 \\ 332$	$\begin{array}{r} {\rm e} \ 4 \ \ 35 \\ {\rm e} \ 4 \ \ 467 \\ {\rm e} \ 11 \ \ 2 \\ {\rm i} \ 11 \ \ 51 \\ {\rm i} \ 12 \ \ 35 \end{array}$	-4 -12 -3 -6 -4			i <u>5</u> 17 k		e 13·4
Additional rea Messina eS Bucharest e Rome eN = Zagreb e =4 Triest iS _s S _s Helwan eZ Stuttgart e Stuttgart e Strasbourg Collmberg e Jena eEN =	= 3m E = 3m 4m.3 = 3m i = 4m i = 4m i = 4m i = 4m i = 4m i = 4m	85.2 s: 11s. 3m.2s. 8s., iN ., eE = 1.9s. 53s. n.31s. n.9s., e m.34s. 55s.	332 =4m 5m.8 and 4 =4m	i 12 35 .52s. s., i = 5m.1 m.1s. .52s.	- 4					

Paris i = 4m.10s, and 4m.30s.

Toledo e =4m.50s. and 7m.4s. Tamanrasset iZ =4m.42s.a. Hungry Horse i =12m.40s. Long waves were also recorded at Ksara, Budapest, De Bilt, and Granada.

Feb. 5d. 20h. 18m. 37s. Epicentre 19°·6N. 69°·4W. Depth of focus 0·020. (as on 1946, November 14d.).

> A =  $+ \cdot 3317$ , B =  $- \cdot 8825$ , C =  $+ \cdot 3334$ ;  $\delta = -1$ ; h = +5; D =  $- \cdot 936$ , E =  $- \cdot 352$ ; G =  $+ \cdot 117$ , H =  $- \cdot 312$ , K =  $- \cdot 943$ .

		Δ	Az.	Р.	0-C.	s.	0-C.	Su	pp.	L.
			0	m. s.	8.	m. s.	s.	m. s.	26242	m.
San Juan		3.3	111	e 0 50	- 2	i 1 29	- 3			i 2.0
Fort de France		9.2	120	e 2 6	- 4					
Bogota		15.6	198	i 3 27	- 5	e6 6	-14	e 6 27	SS	-
Weston		22.8	357	i5 5	+16	i 8 56	+13			_
Harvard		22.9	357	i 4 55	+ 5	18 58	+13			
St. Louis		26.2	321	e 5 26	+ 4	e 10 2	+22	-		e 12·7
Ottawa	Z.	26.3	350	e 5 25	+ 4 + 3	e 10 28	+47			
La Paz	0995	35.9	178	i 6 51	+ 3 + 5			i8 9	PP	17.9
Tucson		39.1	298	e 7 11	- 2			e 8 44	$\mathbf{\tilde{P}}\mathbf{\tilde{P}}$	e 26.8
Logan		42.1	313	e 7 28	-10			e 8 9	pP	
Boulder City		43.0	303	17 43	- 2		<u></u>			-
Riverside	z.	44.8	300	e 7 58	- 1					
Pasadena	Z.	45.4	300	e 8 2	- 2					
Hungry Horse	0.241	45.9	320	18 7	- ī		with the second s			
Tinemaha	z.	45.9	304	18 6	- 2		<u></u>			

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1949					57					
		Å	Az.	P. m. s.	0 – C. s.	S. m. s.	0 – C. s.	. Su	pp.	L. m.
Shasta Dam		49.6	308	i 8 34	- 2		19 <u>20</u>			
Granada		59.4	57	9 23	-25		_			29.3
Almeria		60.3	58	9 40	-14	18 0	+ 6	11 56	$\mathbf{PP}$	28.9
Alicante		61.8	56	9 46	-18	e 17 50	-23			e 28·6
College		67.5	334	i 10 41	Ō				-	
Tamanrasset	z.	69.2	72	e 11 4	+13					

Additional readings :---San Juan i =1m.38s. Tucson i =7m.16s. Almeria PPP =13m.26s., SS =21m.56s. Long waves were also recorded at Bermuda, Philadelphia, Chicago, and Berkeley.

Feb. 5d. Readings also at 0h. (Pasadena, Riverside, Tinemaha, Tucson, Boulder City, Shasta Dam, Hungry Horse, College, near Bogota, near Apia, and near Istanbul), 1h. (Paris, Strasbourg, Stuttgart, and Tamanrasset), 2h. (near Andijan and near Istanbul), 4h. (Ashkabad), 5h. (Auckland, Boulder City (2), Shasta Dam, Hungry Horse (2), near Logan, and near Istanbul), 7h. (Ashkabad, College, Hungry Horse, Shasta Dam, and near Klyuchi), 8h. (Auckland, Wellington, Pasadena, Tinemaha, Tucson, Boulder City, and Hungry Horse), 10h. (near Ashkabad (2), and near Batavia), 12h. (Hungry Horse and Shasta Dam), 13h. (Ashkabad), 15h. (Copiapo, Ottawa, and near Cleveland), 17h. (Wellington, Andijan, Samarkand, near Obigarm, and Stalinabad), 18h. (Kulyab and near Stalinabad), 19h. (Samarkand, near Andijan, Obi-garm, Kulyab, Stalinabad, and Tchimkent), 20h. (Ottawa, Stalinabad, near Kulyab, and Obi-garm).

Feb. 6d. 9h. 16m. 25s. Epicentre 18°·5N. 146°·0E. Depth of focus 0·020. (as on 1943, March 15d.).

> A = -.7867, B = +.5307, C = +.3154;  $\delta = +2$ ; h = +5; D = +.559, E = +.829; G = -.261, H = +.176, K = -.949.

		Δ	Az.	Р.	0 – C.	_S.	0-C.		pp.	L. m.
Vladivostok Brisbane Irkutsk Riverview Auckland	z. N.	46.8 52.3	$337 \\ 172 \\ 326 \\ 175 \\ 154$	m. s. i 6 14 i 8 7 e 9 59	s. PP - 3 PP	m. s. e 10 0 i 14 43 e 14 52 i 16 5 18 10	s. + 2 + 2 + 1 = 0 + 3 + 2	m. s. i 11 0 i 10 53 18 41 e 19 52	$\mathbf{SS}_{\mathbf{SS}}$	23-3
College Tuai Kaimata Wellington Tchimkent	N.	$63 \cdot 3 \\ 63 \cdot 8 \\ 65 \cdot 1 \\ 65 \cdot 2 \\ 67 \cdot 8$	$26 \\ 153 \\ 159 \\ 157 \\ 309$	$\begin{array}{ccccccc} i & 10 & 14 \\ 10 & 7 \\ 10 & 25 \\ 10 & 22 \\ \end{array}$	$-10 \\ -10 \\ -1 \\ -4 \\$	$18 & 34 \\ 18 & 49 \\ 18 & 45 \\ 19 & 26$	$-\frac{4}{-5}$	i 10 55 e 11 22	pP 	
Obi-garm Tashkent Stalinabad Sverdlovsk Mineral	z.	$68.1 \\ 68.2 \\ 68.9 \\ 72.2 \\ 80.0$	$305 \\ 308 \\ 305 \\ 326 \\ 51$	e 11 127 e 11 20 i 10 50 e 11 10 i 11 55	pP pP + 1 + 1 + 2	$i 19 39 \\ e 20 15$				
Berkeley Lick Reno Fresno Hungry Horse		$   \begin{array}{r}     80 \cdot 2 \\     80 \cdot 8 \\     81 \cdot 6 \\     82 \cdot 4 \\     82 \cdot 8   \end{array} $	$54 \\ 54 \\ 52 \\ 54 \\ 41$	$\begin{array}{ccccccc} i & 11 & 57 \\ i & 13 & 0 \\ i & 12 & 4 \\ i & 12 & 8 \\ i & 12 & 10 \\ \end{array}$	+63	i 21 51 i 22 13 e 22 11	$+\frac{7}{-7}$	115 2 112 14 112 52	PP P pP	e 39·1
Tinemaha Pasadena Moscow Riverside Boulder City	z.	$83.5 \\ 84.5 \\ 84.8 \\ 85.2 \\ 86.5 \\ 86.5 \\ 100000000000000000000000000000000000$	$54\\56\\328\\56\\53$	i 12 16k 12 18k e 13 10 i 12 21k i 12 27	$^{+}_{+}{}^{5}_{+}{}^{2}_{+}{}^{+}_{+}{}^{2}_{+}{}^{+}_{1}$	i 22 27 23 38	50 SeS	$   \begin{array}{ccccccccccccccccccccccccccccccccccc$	pP pP pP	e 33.6
Logan Tucson Tamanrasset La Paz	z. z.	$86.6 \\ 90.9 \\ 123.7 \\ 147.4$	$47 \\ 56 \\ 315 \\ 91$	i 12 24 i 12 49 e 19 51 e 19 18	$\begin{bmatrix} - & 2 \\ + & 2 \\ PP \\ [-4] \end{bmatrix}$	e 22 47 e 24 42 	$\frac{1}{SP}$	i 13 6 i 13 31 e 21 2 i 19 27	pP pPP pPKP	

Additional readings :---

Brisbane iE = 14m.40s. College iP_cP? = 10m.31s. Wellington eZ = 9m.57s.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

# 1949

# 58

Berkeley iPZ = 12m.57s.k, iZ = 13m.39s.Lick iPPZ = 13m.42s.Hungry Horse ePP? = 15m.14s.Tinemaha iPPZ = 15m.30s.Logan ePP = 15m.50s., eSKS? = 22m.35s., eSP = 23m.47s.Tucson ePP? = 16m.16s.Tamanrasset ePPZ = 20m.26s.La Paz iE = 20m.45s.

- Feb. 6d. Readings also at 1h. (near Stalinabad), 3h. (Copiapo), 4h. (Mount Wilson, Tinemaha, and Hungry Horse), 6h. (Ashkabad), 7h. (near Ashkabad), 8h. (Ashkabad, Belgrade, Sofia, Zagreb, Bologna, Messina, Padova, Rome, Salo, Triest, Stuttgart, Tamanrasset, near Shasta Dam and Hungry Horse), 9h. (Hungry Horse), 10h. (near Alicante (3)), 13h. (Stuttgart and Tucson), 16h. (Collmberg, Strasbourg, Stuttgart, College, Hungry Horse, Shasta Dam, and near Apia), 17h. (Shasta Dam), 22h. (Erevan, and near Tacubaya), 23h. (Ksara and near Istanbul).
- Feb. 7d. Readings at 0h. (Ashkabad (2)), 1h. (near Ashkabad, Boulder City, Hungry Horse, and near College), 2h. (Mount Wilson), 3h. (Ashkabad), 4h. (College and near Alicante), 6h. (Ashkabad, Ottawa, Shasta Dam, and near Istanbul), 9h. (Ashkabad, Almata, Frunse, Obi-garm, Stalinabad, Tchimkent, Irkutsk, Tashkent, Hungry Horse, and Shasta Dam), 10h. (Andijan, near Obi-garm, Kulyab, Stalinabad, near Ashkabad (2), Boulder City, Tucson, near Tacubaya and Puebla), 11h. (College, Hungry Horse and Stuttgart), 12h. (Logan and near Ashkabad), 14h. (Granada (2)), 15h. (Ashkabad and Shasta Dam), 17h. (Ashkabad), 18h. (Bogota and near Balboa Heights), 19h. (Brisbane), 20h. (near Ashkabad, near Tucson, and near Tacubaya), 21h. (Bucharest, Sofia, near Istanbul, and near Tucson), 22h. (near Ashkabad), 23h. (near Ashkabad and near Tacubaya).
- Feb. 8d. 4h. Shock apparently from the same neighbourhood as that of 5d. 20h. The readings do not suggest a repetition from that epicentre.

```
San Juan eP = 32m.8s., i = 32m.15s., iS? = 32m.32s., iL = 33m.4s.
Fort de France eP = 33m.21s.
Bogota eP = 34m.58s., iS = 37m.32s., iP<sub>c</sub>P = 37m.59s., eEN = 39m.8s.
Weston iP = 36m.58s., iS = 41m.14s.
Ottawa eZ = 37m.26s. and 42m.37s.
Tucson eP = 39m.8s., e = 40m.39s.
Boulder City iP = 39m.37s.
Hungry Horse iP = 40m.4s.
Tinemaha iPZ = 40m.5s., iZ = 40m.24s.
Shasta Dam iP = 40m.30s.
```

College iP = 42m.34s. Seven Falls eE = 43m.13s.

- Feb. 8d. Readings also at 1h. (Clermont-Ferrand), 3h., 4h., and 5h. (near Ashkabad), 12h. (Sofia), 13h. (Santa Lucia, Catania, and near Messina), 17h. (near Tacubaya), 18h. (Hungry Horse and Shasta Dam), 19h. (Ottawa), 21h. (Hungry Horse, near Ottawa, and near Tucson).
- Feb. 9d. 13h. Undetermined shock.

Taranto eP = 28m.16s. Sofia eP = 29m.55s., e = 30m.35s. and 31m.4s.,  $iS_s = 31m.19s.$ Istanbul eP = 30m.2s.,  $iS_{g} = 30m.50s.$ Bucharest eN = 30m.24s., 30m.33s., and 30m.47s., eE = 30m.55s. and 31m.3s., eN =31m.25s., L?EN = = 31.6m.Belgrade eP = 31m.2s.s,  $eP_g = 31m.24s.$ , eS? = 32m.10s. Cheb eP? = 31m.44s., eS? = 35m.16s.Rome eZ = 31m.18s., eSN = 32m.49s., eQN = 34m.0s.Zagreb eP = 31m.23s., eE = 34m.6s., e = 34m.37s.Bologna e = 32m.23s. and 35m.32s.? Stuttgart eZ = 32m.32s.Strasbourg eP = 32m.42s., L = 37m.Triest ePgPg? = 32m.50s., iS? = 33m.49s., iSgSg? = 34m.47s., iQ? = 34m.56s. Ksara e = 33m.2s. and 34m.46s. Tamanrasset ePZ = 33m.59s. Budapest eEN = 34m.15s., LE = 34m.30.Padova e = 35m.55s. Helwan eZ == 36m.12s. and 40m.25s. Alicante  $eS_g = 38m.24s., eL = 41m.26s.$ Hungry Horse eP = 40m.28s., e = 41m.32s.Long waves were also recorded at De Bilt and Almeria.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

## 1949

63

# **5**9

Feb. 9d. 17h. 30m. 49s. Epicentre 39°.9S. 174°.2E. Depth of focus 0.025.

Felt throughout both Islands. Intensity VI near the epicentre.

### R. C. Hayes.

Earthquake Origins in New Zealand during 1949. New Zealand Journal of Science and Technology, Sect. B., Vol. 31, No. 4. Jan., 1950, p. 443, with Isoseismic chart in an appendix. Epicentre as adopted.

$$A = -.7653, B = +.0777, C = -.6389; \delta = -9; h = -2;$$

 $D = + \cdot 101$ ,  $E = + \cdot 995$ ;  $G = + \cdot 636$ ,  $H = - \cdot 065$ ,  $K = - \cdot 769$ .

		Δ	Az.	P. m. s.	0 – C. s.	S. m. s.	0 −C. s.	m. s.	pp.	L. m.
New Plymouth Wellington	E.	$0.8 \\ 1.5 \\ 2.1$	$353 \\ 163 \\ 84$	$\begin{smallmatrix} 0 & 31 \\ 0 & 37 \\ 0 & 113 \end{smallmatrix}$	$^{+3}_{+4}_{-28}$	$     \begin{array}{ccc}       0 & 51 \\       1 & 2 \\       0 & 40     \end{array} $	$^{+1}_{+3}_{-30}$			
Havelock North Tuai Auckland	N. N.	$ $	70 9		+13	${\stackrel{{\scriptstyle\circ}}{1}}\;{\stackrel{{\scriptstyle\circ}}{1}}\;{\stackrel{{\scriptstyle\circ}}{2}}5$			$\equiv$	
Kaimata Riverview Brisbane Batavia Vladivostok		$3 \cdot 4 \\ 19 \cdot 4 \\ 21 \cdot 5 \\ 68 \cdot 7 \\ 91 \cdot 1$	$218 \\ 281 \\ 299 \\ 281 \\ 330$	$     \begin{array}{r}       1 & 11? \\       i & 4 & 13k \\       i & 4 & 34 \\       i & 12 & 40 \\     \end{array} $	$+16 \\ 0 \\ 0 \\ -4$	$\begin{array}{rrrrr}1 & 50 \\ i & 7 & 44 \\ i & 8 & 21 \\ i & 19 & 31 \\ i & 23 & 24 \end{array}$	+13 + 7 + 5 + 5 + 2	i 4 39 i 5 42	PP sP	i 10·2 i 9·5
Shasta Dam Ottawa Sverdlovsk Piatigorsk Tamanrasset	z.	98.8 129.8 134.6 143.8 160.4	$44 \\ 59 \\ 315 \\ 293 \\ 212$	e 13 12 e 18 42 e 19 9 e 19 36	$\begin{bmatrix} - & 7\\ - & 5 \end{bmatrix}$ $\begin{bmatrix} - & 3 \end{bmatrix}$	38_56 	ss			

Additional readings :---

Riverview is PE = 5m.10s., iE = 7m.50s., iZ = 7m.54s., iEZ = 8m.43s.Brisbane iZ = 4m.48s., iN = 4m.57s., iZ = 5m.34s. and 5m.51s., iE = 6m.27s. and 8m.37s., iN = 8m.41s. and 13m.16s.

Feb. 9d. Readings also at 0h. (College, Tucson, and near Stalinabad), 2h. (Bologna), 3h. (Pavia, Padova, Prato, Stuttgart, near Florence, Salo, and Zürich), 5h. (near Florence), 6h. (near Alicante), 7h. (near Alicante (2) and near Mizusawa), 8h. (near Berkeley, Branner, and Lick), 9h. (Shasta Dam), 10h. (Basle), 11h. (near Alicante), 12h. (Santa Lucia, Shasta Dam, and near Alicante), 13h. (Bogota), 14h. (Ashkabad, near Berkeley (2), Branner (2), Lick (2), San Francisco (2), and Mineral), 15h. (Ashkabad), 16h. (Copiapo and near Alicante), 17h. (Hungry Horse, near Ottawa, near Granada, near Andijan, and Obi-garm), 18h. (Almata, Kulyab, near

Andijan, Murgab, Obi-garm, Samarkand, Stalinabad, Tashkent, and Tchimkent), 19h. (Tchimkent, near Andijan, Kulyab, Obi-garm, Samarkand, Stalinabad, and Tashkent), 20h. (Andijan and near Murgab), 21h. (Ashkabad and Santa Clara), 22h. (Ashkabad, Boulder City, Hungry Horse).

Feb. 10d. 21h. 56m. 36s. Epicentre 15°.8S. 172°.8W.

Intensity V at Apia. Preliminary Seismological Bulletin, Western Samoa, Jan.-March, 1949, p. 3.

Suggested epicentres :— $16^{\circ} \cdot 0S$ .  $171^{\circ} \cdot 5W$ . (Wellington).  $15^{\circ} \cdot 75S$ .  $172^{\circ} \cdot 75W$ . (Strasbourg).

> $A = -.9551, B = -.1207, C = -.2706; \delta = +1; h = +6;$ D = -.125, E = +.992; G = +.268, H = +.034, K = -.963.

		Δ	Az.	P. m. s.	0 – C. s.	S. m. s.	0 – C. s.	m. s.	pp.	L. m.
Apia Auckland Arapuni Tuai	N. E. N.	$2 \cdot 2$ $23 \cdot 7$ $24 \cdot 4$ $24 \cdot 6$	$26 \\ 205 \\ 203 \\ 199$	i 0 38 5 23 6 1	$+\frac{0}{9}$ +38	$e \begin{array}{c} 0 & 58 \\ 9 & 42 \\ e & 9 & 54 \\ - & - \\ - & - \\ \end{array}$	-8 + 15 + 15	i <u> </u>	PP	 13·2
New Plymouth	E.	25.9	203	5 25	-10					
Wellington Kaimata Brisbane Riverview Perth	E.	27.6 29.9 33.7 37.1 66.2	$201 \\ 204 \\ 244 \\ 234 \\ 242$	5 53 6 12 i 6 43 i 7 14 a	$+ 2 \\ - 2 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 $	$ \begin{array}{c} - \\ - \\ - \\ 1 \\ 1 \\ 1 \\ 52 \\ 52 \\ \end{array} $		7 6 i 8 42	PP PP	14·4 i 17·0 e 17·6 i 34·5

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

÷1.

1949		<b>.</b> ?			60					
		Δ	Az.	Р. m. s.	0 - C.	S. m. s.	0 – C. s.		ıpp.	L.
Branner Santa Clara Berkeley Lick Pasadena	z. z.	$71.3 \\ 71.4$	° 41 41 41 41 46	i 11 25 e 11 27 i 11 26 i 11 27	+ 2 + 4 + 2 + 3	$\begin{array}{c}     \text{e} & 20 & 50 \\     \text{i} & 20 & 46 \\     \text{i} & 20 & 51 \end{array}$	$+ \frac{9}{4} + \frac{3}{3}$	m. s. 11 40 14 37 =	PP PP	m. e 32·7 e 33·6 e 30·1
Fresno Riverside Shasta Dam Mineral Tinemaha	z. z.	72·3 73·1	43 46 38 39 43	i 11 32 e 11 32 i 11 36 i 11 38 e 11 40	+ 33224					e 32·5
Reno Boulder City Pierce Ferry Tucson Vladivostok	z.	73·9 75·2 75·8 76·1 77·5	41 46 46 51 332	i 11 43k i 11 50 i 11 54 i 11 56 e 11 59	$^{+ 4}_{+ 4}_{+ 4}_{+ 5}_{0}$	e 21 40 i 21 46	+ 5 - 4	= e 14 42 e 14 43	PP PP	e 34-8
Salt Lake City Logan Butte Hungry Horse College	N	79-7 80-2 82-0 82-5 82-6	43 42 38 35 11	i 12 6 i 12 15 e 12 20 i 12 57 i 12 27	$-5+1\\+3\\+31\\+1$	e 22 8 1 22 21 e 22 39 i 22 40	-5+2+2+2 +2-3	e 15 34 e 22 46 e 39 18	PP ScS P'P'	e 36.1 e 36.4 e 38.0 e 36.7
Rapid City Huancayo St. Louis Irkutsk La Paz	E.	$86.9 \\ 93.8 \\ 94.1 \\ 98.1 \\ 99.1$	$43 \\ 104 \\ 51 \\ 322 \\ 110$	i 12 54 e 13 31 i 13 22 e 13 53? 14 10	$+ 6 + 11 \\ 0 + 13 + 26$	$i 23 31 \\ e 24 10 \\ i 24 34 \\ 25 7 \\ i 25 5$	$^{+5}_{[+16]}$ $^{+3}_{+3}$ $^{+8}_{-8}$	e 16 32 e 17 44 i 23 57 e 24 12? 18 14	PP PP SKS SKS PP	e 40.9 e 45.2 48.4
Bogota Columbia Philadelphia Fordham Weston		99.6 100.1 105.7 106.8 108.9	88 57 52 51 50	e 18_36	PP [+11]	e 25 23 e 24 38 e 24 59 i 25 5 i 25 17	+ 6 [+11] [+ 5] [+ 6] [+ 9]	e 24 9 e 27 56 e 27 59 i 28 30	SKS PS PS PS	e 40 · 1 e 43 · 0 52 · 4
San Juan Kodaikanal Bermuda Bombay Tashkent	E.	${}^{110\cdot 3}_{111\cdot 6}_{113\cdot 4}_{117\cdot 6}_{121\cdot 2}$	$76 \\ 275 \\ 61 \\ 283 \\ 309$	e 19 28 e 19 41 e 20 22 e 18 59	PP PP [+ 4]	e 25 20 e 23 54 e 25 4 e 25 53	[+,7] [-22] [-1]	e 28 50 e 29 14 e 20 40	$\frac{\mathbf{PS}}{\mathbf{PS}}$	e 42·3 e 53·7
Stalinabad Sverdlovsk Moscow Copenhagen Potsdam	z.	$121 \cdot 8 \\ 122 \cdot 8 \\ 133 \cdot 8 \\ 140 \cdot 0 \\ 143 \cdot 2$	$306 \\ 328 \\ 336 \\ 355 \\ 354$	e 19 2 e 19 0 e 19 23 e 19 49 i 19 51 a	[+ 6] [+ 2] [+ 4] [+18] [+15]	$\begin{array}{cccc} 26 & 0 \\ 26 & 1 \\ 23 & 1 \\ 23 & 11 \\ - \end{array}$	[+ 4] [+ 2] PKS PKS	e 20 46 i 20 41 e 21 51 i 23 2k	PP PP PP	69·4 e 69·4
Yalta De Bilt Kew Raciborzu Jena	Z. N.	$143.4 \\ 143.7 \\ 143.9 \\ 144.7 \\ 144.8 \\ 144.8 \\ $	$326 \\ 2 \\ 7 \\ 348 \\ 354$	e 19 47 e 19 51? e 19 54 e 19 41 e 19 43	[+11] [+14] [+17] [+2] [+2] [+4]	e 22 54	PKS	e 22 55 e 24 2	PP PP	e 67.4 e 66.4
Prague Cheb Ogyalla Paris Stuttgart		$145.3 \\ 145.6 \\ 146.8 \\ 146.9 \\ 147.1 \\$	$351 \\ 354 \\ 346 \\ 5 \\ 357$	e 19 29 e 18 29 19 55 i 19 47 e 19 46	$\begin{bmatrix} -11 \\ [-71] \\ [+13] \\ [+5] \\ [+3] \end{bmatrix}$	e 23 54	PKS	$\begin{array}{r} e & 21 & 20 \\ e & 23 & 12 \\ i & 19 & 59 \\ i & 20 & 0 \end{array}$	PP PKP: PKP:	e 74·4 e 73·4
Strasbourg Istanbul Zürich Ksara Neuchatel		$147.3 \\ 148.5 \\ 148.5 \\ 148.5 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.9 \\ 148.$	358 327 358 309 359	i 19 48 19 50 e 19 51k e 19 51 e 19 53	$[ + 5] \\ [ + 5] \\ [ + 6] \\ [ + 6] \\ [ + 7] \end{bmatrix}$	e 33 44		$\begin{array}{ccc}\mathbf{i} \ 20 & 2 \\ & & \\ 23 & 26 \\ & & \\ \end{array}$	PKP.	e 68·4
Belgrade Chur Triest Clermont-Ferran Salo	d	$149.0 \\ 149.0 \\ 149.7 \\ 149.9 \\ 150.2$	$341 \\ 357 \\ 351 \\ 5 \\ 353$	e 19 54k e 19 43 i 19 55 i 19 54 e 19 51	[+ 8] [- 3] [+ 8] [+ 7] [+ 3]	e 33 52 e 42 34	PS SS	i 20 24 i 23 40	PKP.	e 78.6 72.9
Padova Bologna Florence Rome Helwan	Z. Z. E.	$151 \cdot 1$ $151 \cdot 2$ $151 \cdot 9$ $153 \cdot 6$ $153 \cdot 8$	352 353 353 350 306	e 20 5 e 19 54 e 20 2 e 19 43 19 57	[+16] [+5] [+12] [-10] [+4] [+4]	e 36 54 23 30	PPS PKS	$e \begin{array}{c} 20 & 58 \\ - & - \\ e \begin{array}{c} 20 & 24 \\ 20 & 18 \end{array}$	PKP, PKP, PKP,	e 73-0

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1949						<b>61</b> [']							
		Δ	Az.	Р		0 – C.	S	<b>.</b>	0 – C.		Su	pp.	L.
		0	0	m.	s.	8.	m.	8.	8.	m.	8.		m.
Toledo	z.	154.1	20	e 20	0	[+7]	e 26	49	[-10]	e 20	19	PKP,	e 78·4
Alicante		156.5	15	20	31	PKP,	31	24	$\{+30\}$	24	16	PKS	e 73·8
Granada		156.6	$     \begin{array}{r}       15 \\       22     \end{array} $	20	34 a	PKP,	27	31	[+30]	20	48k	pPKP,	73.8
Malaga	z.	156.7	23	i 19	58k	[+1]	26	18	[-43]	i 20	26k	PKP,	76.3
Almeria	1. 3390	157-4	20	i 20	15	[+17]	27	13	[+11]	20	47	PKP:	81.8
Algiers		158.8	8	e 20	43	PKP,	e 30	17	$\{-49\}$	e 24	31	PP	-
Tamanrasset		172.9	12	e 20	17	[+ 6]	80 j -	2.8	· ·	e 21	42	PKP ₂	-

33

```
Additional readings :---
  New Plymouth iE =5m.44s.
  Wellington iZ = 6m.48s., e = 11m.18s., SS? = 12m.50s.
  Brisbane iZ =6m.57s. and 7m.52s., iE =8m.3s., iZ =8m.6s., iE =8m.21s., iN =14m.41s.
  Riverview iZ = 8m.57s., iPPPN = 9m.6s., iZ = 9m.12s., iE = 10m.45s. and 12m.45s., eZ = 10m.45s.
      13m.15s., iE = 13m.26s., eN = 14m.52s.
  Berkeley iE =11m.34s. and 12m.21s., iN =12m.25s., eQN =31m.36s., eQE = 32m.6s.
  Pasadena i = 11m.31s., iZ = 12m.16s.
  Reno iE = 11m.48s., iZ = 11m.54s.
  Boulder City i =13m.30s.
  Tucson i = 12m.7s., iS = 21m.43s., eScSi = 22m.21s.
  Vladivostok iP_{c}P = 12m.9s., iS_{c}S = 22m.8s., iPS = 22m.43s., SSS = 30m.37s.
  Salt Lake City e = 12m.30s., iS = 22m.36s.
  Logan i = 12m.32s.
  College i = 22m.9s.
  Rapid City iE = 13m.2s., iSKSE = 23m.19s.
  Huancayo iS = 24m.54s., eSS = 31m.14s.
  St. Louis e = 18m.1s., iPS = 25m.59s.
  Irkutsk eSS = 31m.42s.
  La Paz iSKSE = 24m.43s., SS = 32m.14s., QN = 42m.24s.
  Bogota eSKKSN = 25m.3s.
  Philadelphia e = 19m.31s. and 22m.57s.
  San Juan eS = 27m.3s.
  Bermuda e = 26m.42s., eS? = 27m.41s., ePPS = 30m.14s.
  Tashkent ePS = 30m.24s., iSS = 37m.0s.
  Stalinabad eSS = 37m.0s., SSS = 40m.12s.
  Sverdlovsk ePS = 30m.37s., eSS = 37m.12s.
  Moscow ePPP = 24m.42s., eSS = 39m.30s.
 Copenhagen 23m.25s.
  Potsdam eZ = 22m.24s.?
  Kew ePKP_{1}Z = 20m.3s.
  Raciborzu eE = 20m.6s. and 22m.7s.
  Jena eEN = 20m.49s.
  Paris i = 20m.12s., 20m.16s., and 21m.2s., e = 21m.38s. and 22m.11s.
  Stuttgart iPKP<sub>2</sub>Z = 20m.12s.a.
  Strasbourg iPKP, =20m.6s., i =20m.36s., 20m.58s., and 21m.36s., e =22m.25s., 23m.47s.,
```

and 24m.59s., eSSS? = 49m.44s., e = 54m.2s. and 57m.30s. Zürich e = 20m.51s., 22m.4s., and 22m.40s. Belgrade e = 21m.43s. and 25m.32s.Triest eSSS = 48m.41s. Clermont-Ferrand i = 20m.20s. and 20m.34s. Salo eZ =19m.57s., e =20m.16s., 21m.1s., and 22m.30s. Rome iE = 20m.42s. and 23m.6s., ePPE = 23m.32s., ePSKSE = 33m.56s., eSSE = 43m.56s. Helwan eZ = 20m.6s. and 21m.11s., PPZ = 24m.3s., iZ = 24m.36s., SSN = 43m.36s. Toledo iZ = 20m.31s., ePPZ = 23m.49s.Alicante PKP, =21m.10s., PP=24m.50s., PPP=28m.40s., SKSP=35m.0s., SS= 44m.24s., SSP = 45m.48s., SSS = 50m.32s. Granada PKP, =21m.16s.k, SKP =23m.48s., PP =25m.3s., SS =43m.30s. Malaga iPPZ = 24m.0s., PPPZ = 28m.6s.Almeria PKS = 23m.43s., PP = 24m.27s., PPP = 27m.59s., SKKS = 31m.11s. Algiers ePKP₂ = 20m.54s., e = 28m.17s., ePSKS = 35m.47s., e = 38m.24s.7 Tamanrasset ePPZ = 25m.33s., ePPPZ = 29m.31s.Long waves were also recorded at Honolulu, Fort de France, Ivigtut, Scoresby Sund. and other American and European stations.

Feb. 10d. Readings also at 0h. (Shasta Dam, Samarkand, near Obi-garm, and Stalinabad), 3h. (near Ashkabad), 4h. (near Pierce Ferry), 5h. (near Ashkabad), 6h. (Santa Clara and Shasta Dam), 8h. (near Messina), 11h. (near Alicante and near Murgab), 12h. (La Paz, near Granada, and near Andijan), 13h. (Hungry Horse), 14h. (Samarkand, Tchimkent, near Andijan, Murgab, and Stalinabad), 15h. (Ashkabad (2)), 16h. (near Tucson), 17h. (near Alicante), 20h. (Andijan, near Kulyab, Obi-garm, Samarkand, and Stalinabad), 21h. (Hungry Horse, Branner, San Francisco, near Berkeley, and Lick), 22h. (Rome and near Mizusawa), 23h. (near Istanbul, near Tucson, near Boulder City, and Pierce Ferry),

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

### 1949

# 62

¥7.

Feb. 11d. 3h. 51m. 29s. Epicentre 34°.0N. 39°.0W.

Rough.

$$A = + \cdot 6457, B = - \cdot 5228, C = + \cdot 5566; \delta = +5; h = 0;$$
  

$$D = - \cdot 629, E = - \cdot 777; G = + \cdot 433, H = - \cdot 350, K = - \cdot 831.$$
  

$$\triangle Az. P. O - C. S. O - C. L.$$
  

$$m. s. s. m. s. s. m. s. s. m.$$

Granada		20.9	13	03	13	1			
Paris		34.0	52	e 6	46	- 2			
Stuttgart	Z.	38.4	52	e 7	25	0			
Tamanrasset	z.	40.4	94	07	42	+ 1			
Hungry Horse	1000	56-1	310	110	11	+28			
La Paz		57.4	214	9	55	+ 2	i 17 55	+ 6	29.0
Tucson		59.0	291		52	-12		<u> 105</u>	
Pierce Ferry		60.0	296	i 10	11	0			
Boulder City		60.6	296	i 10	15	Ò			
Pasadena	Z.	63.9	295	e 10	37	0	-		
Shasta Dam	1210	64.3	303	i 10	37	- Ž			1 <b>1</b>
			The second se	the second se					

Additional readings :---Paris i =6m.51s.

Tamanrasset eZ = 8m.11s.

Long waves were also recorded at Bermuda, San Juan, De Bilt, Rome, and Punta Arenas.

Feb. 11d. 7h. 23m. 45s. Epicentre 35°.0S. 108°.5W.

Rough.

 $A = -.2605, B = -.7786, C = -.5710; \delta = +12; h = 0;$ D = -.948, E = +.317; G = +.181, H = +.541, K = -.821.

		Δ	Δz.	Р.	0-C.	S.	0 – C.		pp.	L.
Santa Lucia Puntas Arenas Huancayo La Paz Bogota	N.	$31 \cdot 1$ $32 \cdot 0$ $37 \cdot 7$ $40 \cdot 4$ $51 \cdot 0$	99 137 61 74 47	m. s. e 6 25 e 7 20 i 7 41 e 8 58		m. s. e 11 29 e 13 19 e 13 14 i 13 51 e 16 13	8. + 1 SS + 4 + 1 - 9	m. s. e 13 26 i $\overline{\begin{array}{c}8}43\\9\\15\end{array}$	SS PeP PP	m. e 14.6 16.3 e 15.9 19.2 24.2
Wellington San Juan Tucson Pasadena Boulder City		58.8 66.6 66.9 69.4 70.8	239 44 358 352 355	i 10 15 e 11 26 i 10 56 i 11 13 i 11 21	+13 + 32 + 32 + 1 + 1 + 1	e 19 38 e 20 55	-7 Ses	e 26 59 e 13 44	sss PP	e 29.2 e 28.1 e 32.7 e 32.2
Pierce Ferry Tinemaha Reno St. Louis Shasta Dam		$\begin{array}{r} 70.9 \\ 72.2 \\ 74.9 \\ 75.2 \\ 76.4 \end{array}$	$356 \\ 353 \\ 342 \\ 15 \\ 350$	e 11 18 e 11 33 e 11 47 i 11 45 i 11 53	- 3 + 4 + 3 - 0	e 21_15	$-\overline{\overline{10}}$	e 22 4	PS	
Riverview Hungry Horse Stuttgart Helwan Istanbul Ksara	Z. Z.	$78.8 \\83.1 \\132.9 \\145.9 \\146.3 \\150.7$	237 357 53 87 67 82	i 12 29 e 19 21 19 45 e 19 45 e 19 45 e 19 46	$ \begin{bmatrix} + & 3 \\ + & 3 \\ [+ & 4] \\ [+ & 4] \\ [- & 2] \end{bmatrix} $	e 22 23	+19	e 23 25 e 15 21 e 21 42 	PPS PP PP	e 36·8
Additional rea Santa Lucia Punta Aren Huancayo a La Paz SSN Wellington Pasadena i Pierce Ferry Reno iZ =1 St. Louis e Riverview e Helwan iZ =	eN as N =71 PZ =11 y iP =251 SSE =20n	=12m.3 =14m. n.29s. 6m.45s. =10m.37 n.32s. =11m.2 3s. n.34s. Zf =27) n.7s. an	32s. s. 2s. m.43s d 20r	s., eE = 34) n.17s.	m.3s.	ekland, a	nd Grai	ada.		

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

### 1949

60

63

Feb. 11d. 21h. 5m. 21s. Epicentre 37°.1N. 117°.8W.

Intensity VI at Ash Mountain, Bakersfield, Big Pine, Fresno, Lone Pine, Olancha, etc. Macroseismic area 18,000 sq. miles. Epicentre 37°05'N., 117°45'W.

L. M. Murphy and F. P. Ulrich. United States Earthquakes, 1949, serial No. 748, Washington, 1951, p. 9, with macroseismic chart, p. 12.

 $A = -3729, B = -7072, C = +6006; \delta = -9; h = -1;$ 

G = -.280, H = -.531, K = -.800.D = -.885, E = +.466;

		^	Az.	P. m. s.	0 – C. s.	S. m. s.	0 −C. s.	m. s.	pp.	L. m.
Tinemaha Haiwee Fresno Boulder City Reno	z.	0·3 1·0 1·6 2·6 2·9	$262 \\ 188 \\ 283 \\ 115 \\ 328$	i 0 8k i 0 18k i 0 30 i 0 45 0 51a	$-3 \\ -3 \\ 0 \\ +1 \\ +3$			i57	 P_s	
Pasadena Lick Riverside Pierce Ferry Santa Clara		$3 \cdot 0 \\ 3 \cdot 1 \\ 3 \cdot 1 \\ 3 \cdot 2 \\ 3 \cdot 3 \cdot 3$	$187 \\ 276 \\ 174 \\ 107 \\ 276$	i 0 48k i 0 51 i 0 50k i 0 53 i 0 58	-20 -11 ++5	$     \begin{array}{r}       i & 1 & 33 \\       i & 1 & 38 \\       i & 1 & 38 \\       e & 1 & 38 \\       e & 1 & 43 \\     \end{array} $	s* s* s*	i 0 56 i 1 8	P* Pe	
Branner Berkeley San Francisco Mineral Ukiah		3.5 3.6 3.8 4.4 4.7	$277 \\ 284 \\ 282 \\ 319 \\ 297 \\$	i 0 58 i 0 59k i 1 3 i 1 12	+ 1 + 1 + 2 + 2	i 1 49 i 1 47 i 2 28 e 2 26	s. s.	$     \begin{array}{ccccccccccccccccccccccccccccccccc$	P P P P F	i 2.7 e 2.7
Shasta Dam Salt Lake City Ferndale Arcata Logan		$5.1 \\ 5.9 \\ 6.1 \\ 6.2 \\ 6.5$	$317 \\ 49 \\ 306 \\ 310 \\ 43$	$e 1 15 \\ e 1 24 \\ i 3 9 \\ i 2 1 \\ e 1 41$	- 5 - 7 S* P=2	e 2 22 i 3 25 i 3 6 i 2 52	-18 S S - 3		P Sg Pg	i 2.7 e 2.6  i 3.3
Tucson Butte Bozeman Hungry Horse Rapid City	N. E.	$7.5 \\ 9.7 \\ 10.0 \\ 11.6 \\ 13.1$	$128 \\ 22 \\ 28 \\ 12 \\ 53$	i 1 53 e 3 21 e 3 12 i 2 52 i 3 13	$^{+59}_{+45}_{+3}$	$\begin{array}{c}\mathbf{i} \begin{array}{c}3 \\ \mathbf{i} \begin{array}{c}2\\5 \\ 43\end{array}\\ \\ \mathbf{e} \begin{array}{c}5 \\ 7\end{array}\end{array}$	$-\frac{18}{?}$ $-\overline{31}$	$     \begin{array}{c}             i & 2 & 22 \\             i & 5 & 11 \\                                 $	P _s ? PP	i 3.4 e 6.3 e 4.5 e 6.0
Lubbock Lincoln St. Louis College	E.	$13.4 \\ 16.9 \\ 21.8 \\ 33.0$	$100 \\ 71 \\ 77 \\ 337$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	${ m PP} \\ + 2 \\ - 1 \\ + 1$	7 8 i 9 4	$+\frac{\mathbf{L}}{12}$	i 9 19	ss	e ^(7·1) e ^{9·1}

```
Additional readings and note :---
  Reno IN = 0m.54s. and 1m.3s.
  Lick iEN = 1m.32s.
  Santa Clara e = 1m.19s.
  Branner iN = 1m.8s.
  Berkeley eN =1m.2s., iN =1m.6s., iE =1m.15s. and 1m.18s., iZ =1m.23s.
  San Francisco iN = 1m.6s.
  Ferndale readings were given as iPE and iPN respectively.
  Arcata iN = 2m.33s.
  Tucson i = 2m.3s.
  St. Louis iPZ = 4m.59s.
  Long waves were also recorded at Chicago, Columbia, Seattle, Sitka, and Tacubaya.
```

- Feb. 11d. Readings also at 3h. (Samarkand, Tchimkent, near Andijan, Kulyab, Murgab, Obi-garm, and Stalinabad), 6h. (Andijan, Samarkand (2), Tashkent, near Kulyab, Murgab, Obi-garm (2), and Stalinabad (3) ), 7h. (Copiapo, Pasadena, Boulder City, Pierce Ferry, Shasta Dam, and Hungry Horse), 9h. (Tucson, Boulder City, and Pierce Ferry), 12h. (near Copiapo and Santa Lucia), 13h. (near Ashkabad), 14h. (Balboa Heights, Bogota, Pierce Ferry, Hungry Horse, Tamanrasset, Clermont-Ferrand, Paris, and Stuttgart), 15h. (Hungry Horse, Boulder City, and Shasta Dam), 16h. (Frunse, Tchimkent, near Andijan, Murgab, Obi-garm, and Stalinabad), 17h. (Saskatoon), 19h. (near Ashkabad), 22h. (Hungry Horse and Sitka).
- Feb. 12d. Readings at 2h. (Rome, Tacubaya, Fresno, near Berkeley, Branner, Lick, San Francisco, Santa Clara, and near Shasta Dam), 3h. (Hungry Horse, Tucson, Pierce Ferry, Huancayo, and near La Paz), 5h. (Tucson, Shasta Dam, near Boulder City and Pierce Ferry), 11h. (Boulder City, Shasta Dam, and Hungry Horse), 13h. (near Copiapo), 14h. and 15h. (Ashkabad), 17h. (near Alicante, near Ashkabad and near Murgab), 19h. (near Triest), 20h. (near Ashkabad), 22h. (near Berkeley, Branner, and Lick), 23h. (near Ashkabad (2) and near Triest).

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

### 1949

### 64

Feb. 13d. 18h. 24m. 17s. Epicentre 32°.8S. 178°.1W.

U.S.C.G.S. and Strasbourg suggest a depth of 60km.

Auckland Tuai New Plymouth Wellington Kaimata	N. N. E.	7.1	$233 \\ 211 \\ 223 \\ 212 \\ 217 \\ 217 \\$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		m. s. 3   9 3   1 3   23 4   8 5   12		m. s.  15_52	$\mathbf{s}_{\mathbf{c}}\mathbf{s}$	m. 
Apia Brisbane Riverview Melbourne Honolulu	E.	$19.8 \\ 25.5 \\ 25.7 \\ 30.4 \\ 57.2$	$20 \\ 274 \\ 258 \\ 250 \\ 23$	$\begin{array}{r} 4 & 37 \\ i & 5 & 33 \\ i & 5 & 36 \\ i & 6 & 14 \\ e & 9 & 51 \end{array}$	+ 2 + 1 + 3 - 2 = 0	$     \begin{array}{c}       e & 8 & 5 \\       i & 9 & 59 \\       i & 10 & 5 \\       i & 17 & 51     \end{array} $	$-\frac{8}{+}\frac{2}{4}$ + $-\frac{4}{5}$	$e \begin{array}{ccc} e & 4 & 54 \\ i & 6 & 9 \\ i & 5 & 46 \\ e & 18 & 24 \\ \end{array}$	PP PP pP	e 11.7 e 24.6
Batavia Mizusawa Santa Lucia Branner Pasadena	N. Z.	$74.1 \\ 81.0 \\ 85.1 \\ 87.2 \\ 87.2 \\ 87.2$	$273 \\ 329 \\ 126 \\ 41 \\ 46$	i 11 37 12 44 12 35 i 12 50 i 12 50 a	-3 + 26 - 4 + 1 + 1	e 20 57 21 43 23 0 e 23 13	$-15 \\ -44 \\ [-1] \\ [-2]$	i 13 2	pP	$39 \cdot 7$ $38 \cdot 7$ $36 \cdot 1$
Santa Clara Berkeley Lick Riverside Ukiah	N.	87 · 2 87 · 4 87 · 4 87 · 6 87 · 8	41 41 41 46 39	i 12 49 i 12 51 a e 12 51 e 12 52	+ 1 + 1 + 1 + 1	e 23 39 1 23 35 e 24 35	+11 + 5 			e 40.0 e 40.1 e 39.3
Fresno Vladivostok Arcata Copiapo Tinemaha	Z. N.	88.0 88.3 88.6 89.0 89.2	$43 \\ 326 \\ 38 \\ 121 \\ 44$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$^{+ 1}_{-54}$	$e 23 38 \\ e 23 18 \\ 23 11 \\ 23 11$	$\begin{pmatrix} + & 2 \\ - & 4 \end{bmatrix}$ $(-\overline{16}]$	i 23 48 	$s_{cS}$	39.7
Shasta Dam Mineral Reno Boulder City Klyuchi		89.4 89.6 90.0 90.5 90.5	39 40 41 47 348	i 14 0 i 13 0 i 13 3a i 13 5 e 16 36?	$+60 \\ -1 \\ 0 \\ 0 \\ PP$	e 23 53	- <u>1</u>			e 42.7
Tucson Pierce Ferry Tacubaya La Plata Huancayo		$90.6 \\ 91.1 \\ 91.4 \\ 92.3 \\ 94.1$	$51\\47\\68\\135\\107$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} - & 1 \\ 1 \\ + & 4 \\ - & 1 \\ - & 1 \end{array} $	e 24 5 e 24 11 23 37 e 24 19	+ 5 + 4 [- 9] + 7]	i 13 32 i 13 38 16 49 17 19	pP pP PP PP	e $38 \cdot 2$ e $41 \cdot 5$ $39 \cdot 4$ e $38 \cdot 7$
Victoria Salt Lake City Logan La Paz Butte	N.	$94.5 \\ 95.3 \\ 96.0 \\ 97.1 \\ 98.3$	33 44 43 115 39	e 13 27 e 13 16 i 13 27 i 13 34 a e 17 20	$^{+}_{-11}^{4}_{-3}_{-11}_{-11}$	$\begin{array}{cccc} (24 & 7) \\ e & 23 & 58 \\ e & 24 & 8 \\ i & 24 & 3 \\ e & 26 & 33 \end{array}$	[+ 9] [- 5] [+ 1] [- 9] PS	i 17 31 e 17 33 i 17 30 e 36 9	PP PP SSS	24 · 1 e 39 · 9 e 41 · 5 44 · 7 e 42 · 3
Bozeman Hungry Horse College Colombo Bogota	E.	$\begin{array}{r} 98.9 \\ 99.0 \\ 100.2 \\ 103.8 \\ 104.3 \end{array}$	41 37 12 269 93	e 14 30 i 13 42 17 35 e 18 35	sP - 2 PP PP	e 24 16 [	[+3] [-12] [-2] PS	e 17 49 i 18 25 e 25 54 (e 32 55) e 21 11	PP sPP pS SS PPP	e 42.5 e 46.0 e 32.9 62.7
Calcutta Saskatoon Kodaikanal St. Louis Irkutsk	Е. Е.	$104.7 \\ 105.0 \\ 107.6 \\ 108.1 \\ 108.3$	287 37 271 55 321	$\begin{array}{r} \mathbf{e} \ 17 \ 33 \\ \mathbf{e} \ 14 \ 26 \\ \mathbf{e} \ 14 \ 21 \\ 19 \ 10 \end{array}$	PP P PP	i 24 46 [ e 26 13 25 6 [ i 25 26 [ 25 4 ]	$   \begin{bmatrix}     - & 3\\     +11 \\     + & 4\\     + & 22\\     + & 22\\     - & 1   \end{bmatrix} $	i 33 12 e 27 53 19 6 e 18 52 21 46	SS PS PP PP PPP	50·4 53·7
Hyderabad Chicago Tananarive Columbia Poona	N.	$110.3 \\ 111.3 \\ 112.6 \\ 112.7 \\ 112.7 \\ 114.7$	$278 \\ 52 \\ 227 \\ 63 \\ 276 \\ 276 \\ $	e 19 5 e 19 18 e 19 18 19 18 19 56	PP PP PP	25 9 [ e 27 18 e 25 30 [ e 28 54 25 24 [	- 4] + 7] PS - 7]	28 47 i 28 48 e 26 27 5 22 24	PS PS SKKS PPP	e 52.4 52.7 e 47.4

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1

Ē.

1949		65			
Cleveland Bombay New Kensington E. Pennsylvania N. San Juan	116.3 57	P. 0-C. m. s. s. i 19 10 PP e 18 15 [-29] e 19 40 PP i 20 5 PP	S. $O-C.$ m. s. s. i 29 27 PS e 25 30 [- 5] e 25 43 [- 5] e 29 53 PS e 29 55 PS	Supp. m. s. e 35 52 SS e 19 53 PP e 29 45 PS i 36 40 SS	L. m. 55.6 52.7 e 58.4 50.8 e 50.2
Philadelphia Fort de France Fordham Ottawa Murgab	Contraction and Contraction Contraction Contraction	$\begin{array}{ccccccccc} e & 20 & 11 & PP \\ e & 18 & 47 & [-6] \\ i & 18 & 54 & [0] \\ i & 18 & 52 & [-2] \\ & 18 & 57 & [-1] \end{array}$	e 25 58 [+10] i 30 12 PS 30 9 PS	29 52 PS i 20 20 PP e 20 32 PP	e 49·8 56·7
Harvard Weston Frunse Andijan Seven Falls E.	124.4 299	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$e 27 48 \{+\overline{15}\}$ = 31 3 PS	e 46 13 Q e 20 49 PP e 20 59 PP	e 58.7
Bermuda Obi-garm Stalinabad Tashkent Tchimkent	$\begin{array}{ccccccc} 124\cdot 8 & 70 \\ 125\cdot 8 & 296 \\ 126\cdot 4 & 296 \\ 126\cdot 8 & 300 \\ 126\cdot 8 & 301 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	e 37 48 SS i 27 177 (-36) i 27 52 {-4} i 26 9 [-2]	e 20 43 PP 1 20 27? PP e 21 9? PP	e 51.7
Samarkand Halifax Sverdlovsk Ivigtut Scoresby Sund	128.8 56	e 19 13 [+ 5] i 22 30 PKS i 19 18 [- 1] 23 0 PKS 19 25 [- 5]	$ \begin{array}{c}$	i 23 6 PKS 40 37 SS 22 27 PP	63·7 71·7
Baku Grozny Erevan Leninakan Moscow	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	i 29 57 { 0}	= = = = i 23 13 PKS	
Piatigorsk Sotchi Helsinki Upsala Theodosia	148.6 301 148.7 339 151.0 344	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	e 33 41 PS e 20 5 pPKP i 20 17 PKP.	e 61.7 e 62.7
Ksara Yalta Helwan Aberdeen E. Copenhagen	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{c} i \ 19 \ 49 \\ i \ 19 \ 50 \\ 1 \ 19 \ 53a \\ [-1] \\ -1] \\ i \ 19 \ 53a \\ [-1] \\ -1] \\ i \ 19 \ 55 \\ [-1] \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	23 55 PP i 43 43 SS i 20 51 pPKP	• 79·1 71·7
Istanbul Bucharest N. Potsdam Raciborzu Collmberg	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$e 28 54 ?1 31 29 {+23}e 31 7 {-4}$	1 24 16       PP         e 24 31       PP         1 24 16a       PP         e 24 17       PP         e 24 22       PP	e 73·7 e 78·0
Budapest Prague Sofia Jena De Bilt	160.4 307 e 160.5 340 e	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	e 31 13 $\{-1\}$ e 30 54 $\{-20\}$ e 31 11 $\{-4\}$ i 38 5 PPS	e 24 5 PP e 23 31 PKS e 20 51 PKP	e 72·7
Ogyalla Kalossa Cheb Belgrade Kew	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	e 31 17 (-3)	e 25 12 PP e 20 50 PKP e 24 23 PP i 20 45 PKP	e 84.8 e 74.7
Uccle Stuttgart Zagreb Jersey Strasbourg	163·1 324 e 163·4 9 e	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	e 31 31 $\{ + 3 \}$ e 31 28 $\{ + 3 \}$ e 31 28 $\{ - 3 \}$ e 31 28 $\{ - 3 \}$	i 24 33 PP i 24 39 PP e 20 10 PKP e 29 46 3 e 21 5 PKP,	e 78.7 e 83.7 56.7 76.7

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

$     \begin{array}{r}                                     $	359 e 2 329 e 2	n. s. 20 3   20 9   20 4	0 - C. s. [-2] [+4] [-1]	S. m. s. i 31 49 i 31 31	0 - C. s. $\{+16\}$ $\{-3\}$	Supp. m. s. i 24 41 PP i 21 4 PKP,	L. m. e 77 · 7 e 63 · 7
$164.2 \\ 164.6 \\ 164.7$	329 e 2 344 e 2	$   \begin{array}{ccccccccccccccccccccccccccccccccccc$	[+4]	i 31 31		121 4 PKP,	the second se
$164.6 \\ 164.7$	344 e 2	0 4		2012년 - 전화감종	$\{-3\}$		e 63 7
164.7			the second s		and the second sec	- 01 0 0170	
	010 0 4	0 5 1	i - 11			e 21 2 PKP. e 21 16 PKP.	11
	341 e 2	0 4 1	[-2]	_	30000	e 21 16 PKP. e 21 4 PKP.	-
165-2	349 i 2	0 13a7	[+ 7]			i 21 133 PKP.	
165.3		0 6 [	[ 0]			e 24 50 PP	
165.5				e 31 43	$\{+ 3\}$	e 42 43 1	100
	1 The HER CODE	the state of the s					
100.0	330 2	1 18 1	KP,	2 <del>2 2 2</del>		e 25 19 PP	-
166.2			0] (	e 31 59	$\{+15\}$	i 21 12 PKP,	-
			DEP.		$\equiv$	1 25 20 PP	
the second s				i 27 14	[+4]	the second se	78.
167.6		1077-00 ALC 177 CALLS - 186			$\{-13\}$	i 25 1 PP	e 75·
167.7			+ 5]				-
THE OD OTHER WATER		and the second		the second s		the second se	
Contraction of the second second second			DO LE CARLE LA LE DE LA	the second se		Strandard Strand Strandard Strandard Strandar Strandard Strandard S	79.(
171.4	- 194 12	- 10a 1			New York Control of the Control of t		
171.5	— i 2	0 10 1	01 i	i46 59	SS	i 21 34 PKP.	79.0
171.9	i 2	0 23 [	+12]	32 8	$\{-4\}$	21 17 PKP	e 83-7
				The second s	Second states and stat states and states		
	the second se	the second s			[+ 2]	the second se	82.0
15771625					i – 11		i 82-0
174.1	- 2	0 15 [	+ 4]	27 13	[ 0]	20 42 pPKP	e 81 · (
174.6	- 12		+ 31	27 16	[+3]	1 21 56 PKP	84.
175.9	i 2	0 13 [	+ 1] e	32 55	$\{+23\}$	i 21 54 PKP,	
	$   \begin{array}{r}     165.5 \\     165.6 \\     166.0 \\     166.2 \\     166.4 \\     166.8 \\     167.0 \\     167.6 \\     167.6 \\     167.2 \\     169.2 \\     169.2 \\     169.5 \\     171.4 \\     171.5 \\     171.9 \\     172.2 \\     173.5 \\     173.7 \\   \end{array} $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Berkeley iN =12m.55s., iZ =13m.3s., iE =13m.15s., iZ =13m.18s., 13m.29s., and

```
14m.38s., iE =22m.11s., iN =22m.17s., iE =23m.39s., eE =35m.55s., eN =39m.25s.
Vladivostok iPS = 24m.49s., eSS = 29m.25s.
Arcata iZ =13m.11s. and 13m.35s.
Copiapo N = 12m.46s. and 22m.43s.
Tinemaha iZ =13m.25s.
Reno iN =13m.15s., iE =13m.23s., iN =13m.27s., iE =14m.1s., eSKKSN =23m.59s.,
    eN = 43m.1s., eE = 45m.55s., eZ = 46m.55s.
Tucson iPP? =16m.41s., esPP =17m.38s., eSP =25m.14s., iPS? =25m.34s., eSS? =
    30m.32s., eSSS? = 33m.43s.
La Plata PePN = 13m.49s., PP?N = 14m.55s., PPPN = 17m.0s., PeSN = 18m.19s.,
    SSIN =25m.25s., SSIE =25m.31s., QIN =33m.48s., N =37m.31s.
Huancayo eSKS = 23m.33s., ipS = 24m.51s., ePS = 25m.56s., eSS? = 31m.3s., eSSS =
```

Logan ePPP? = 19m.18s., eS = 24m.26s., iPS? = 26m.21s., eSS? = 30m.34s., eSSS =

La Paz iN = 14m.35s., iEN = 17m.57s., iSEN = 24m.35s., iPSE = 26m.16s., iEN =

Salt Lake City esPP =18m.17s., eSKKS =24m.8s., eS =24m.51s., iSP =26m.5s.

```
Tananarive PS = 28m.54s., SS = 35m.0s.
Poona PPEN = 20m.5s., SKSEN = 25m.43s., SKKSEN = 26m.27s., PSEN = 29m.30s.,
    PPSEN = 30m.22s.
```

26m.39s., iSSEN = 30m.31s., iEN = 35m.27s.

Bozeman ePS = 26m.57s., eSS = 32m.6s., eSSS? = 35m.34s.

St. Louis ipPP = 19m.7s., iS? = 26m.22s., ePS? = 28m.24s.

Calcutta ePPPE = 20m.2s., iPPSE = 27m.53s., iSSSE = 47m.27s.

Cleveland ePPE = 19m.45s., eE = 34m.29s., 34m.51s., and 43m.49s.

Bombay eN = 20m.13s., ePSE = 29m.27s., iN = 31m.34s., eE = 31m.43s., eN = 35m.47s., eSSE = 37m.11s.

Philadelphia eSi = 27m.29s., eSS = 36m.48s.

Kodaikanal PSE  $\approx 28m.26s.$ , SSE = 34m.31s.

Irkutsk PS = 28m.16s., SSS = 38m.49s.

Chicago eSPP = 29m.58s., eSS = 34m.33s.

34m.40s.

34m.50s.

Butte esPPN = 18m.38s.

College eSP? = 26m.37s.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

### 1949

ŧ.

67

Fordham i = 19m.7s., iSS = 37m.12s.Ottawa i = 19m.6s. and 19m.17s., e = 30m.52s., and 36m.59s.Harvard i = 19m.6s.Weston eSS = 37m.33s.Seven Falls eE = 37m.55s.Bermuda e = 32m.1s. and 32m.53s.Tashkent iSKKS = 27m.55s., ePS = 31m.8s.Sverdlovsk iPS = 31m.47s., eSS = 39m.31s.Ivigtut 35m.31s.Scoresby Sund 23m.8s., 29m.41s., and 40m.52s.

- Helsinki ePKP, =20m.20s., epPKP, =20m.37s., ePPS =35m.48s., eSS =42m.7s.
- Upsala PKPN = 20m.2s., iPKP,E = 20m.20s., iPKS? = 23m.7s., eE = 32m.18s., eN = 33m.13s. and 37m.43s., eE = 38m.43s.?, eSS = 42m.43s., SSSN = 48m.33s., eQ? = 52.7m.
- Helwan eZ = 20m.45s., PKP₂Z = 21m.22s., eZ = 22m.19s., eNZ = 24m.22s., eE = 28m.58s. and 34m.10s.
- Copenhagen 20m.20s. and 20m.39s., sPKP₂ = 21m.8s., ePP = 24m.7s., pPP = 24m.18s., 34m.20s. and 39m.7s., SS = 43m.43s., SSS = 49m.43s.
- Bucharest eN = 20m.50s. and 26m.19s.
- Potsdam iPKP₂Z = 20m.38s.k, iPPPE = 28m.5s., iPPPZ = 28m.11s., iPPSZ = 37m.37s., and many other readings without phase.
- Raciborzu eE = 20m.10s., eZ = 20m.39s., eN = 20m.49s., eE = 21m.25s., eN = 21m.29s. and 25m.13s.
- Collmberg Z = 20m.13s., eE = 20m.42s. and 31m.27s., eSKSIE = 37m.50s., eSSE = 45m.27s., eSSSIE = 51m.24s.?
- Budapest eE = 30m.32s. and 31m.32s.
- Jena ePKP?N = 20m.5s., eZ = 21m.8s., ePP?NZ = 24m.15s., ePP?E = 24m.19s., eE = 25m.7s.
- De Bilt iPP = 24m.27s., eZ = 30m.8s., eSS = 44m.43s., eSSS = 50m.13s.
- Kalossa eN = 26m.13s., eE = 26m.18s.
- Belgrade i = 21m.5s., eSS = 37m.19s.
- Kew eE = 21m.36s., iPPZ = 24m.28s., ePPSZ = 38m.3s., eSSN = 45m.37s., eSSSE = 50m.49s., eN = 52m.40s. and 54m.57s., eE = 61m.1s.
- Stuttgart iPKPZ = 20m.18s. and 20m.22s.k, iPKP, ?Z = 20m.36s., iSKP? = 23m.31s.,
- iPPZ = 24m.49s., ePSKS = 35m.1s., ePPS = 38m.18s., eSS = 44m.55s., eSSS = 51m.13s., and other readings without phase.
- Strasbourg iPKP₂=21m.12s., iSKP=23m.11s., eSKP=23m.26s., ePP=24m.41s., eSKS?=27m.12s., ePKKP=28m.5s. and 28m.8s., ePPP=28m.39s., ePP,?=32m.37s., eSKKS₂=34m.5s. and 34m.14s., iPPS=38m.19s., eSS=45m.5s. and 45m.10s., eSSS=51m.28s., Q=67m.43s.?, and many other readings without phase.
- Paris iPKP, = 20m.45s., i = 25m.13s., 29m.57s., and 30m.53s., iSKKS, = 34m.37s., iPPS = 38m.33s., eSS = 45m.14s., eSS? = 45m.27s., eSSP = 46m.31s., eSSS = 51m.31s.
- Triest iPKS = 24m.32s., iPP = 24m.58s., iSKKKS = 32m.21s., iPSKS = 35m.31s., iPPS =
- 37m.27s., eSS = 46m.31s.
- Zürich ePP = 24m.44s.
- Basle ePP = 24m.39s.

Chur  $eL_{1}^{2} = 28m.18$ . Besançon e = 21m.28s.?, 21m.38s.?, 21m.56s.?, 22m.12s.?, 22m.28s.?, and 24m.24s.?, ePP=24m.59s.? and 25m.4s.?, e=25m.22s.? and 27m.52s.?, ePPP=28m.50s.? and 29m.9s.1 Salo eZ = 20m.37s., i = 21m.31s., iE = 25m.13s. and 25m.39s. Padova iN = 21m.37s.Bologna ePPZ = 24m.58s., ePPPZ = 29m.2s.Clermont-Ferrand iPP = 25m.1s., i = 25m.46s., iSKKS = 31m.44s., iSS = 45m.49s., iSSS = 52m.19s., Q = 60m.43s.?Rome iE = 21m.33s., iPPPZ = 28m.45s., iPSKS = 35m.29s.7, iSSN = 46m.28s. Lisbon iZ = 20m.25s., Z = 20m.37s., PPZ = 25m.14s.a, iPPE = 25m.26s.k, SKSINZ = 26m.57s., E = 33m.47s., SSEN = 46m.26s. Tamanrasset eZ = 22m.7s., ePPZ = 25m.10s., iPPPZ = 29m.26s.a.Toledo iPPZ = 25m.24s., ePPPZ = 29m.23s., iN = 39m.43s. Tortosa PPN =25m.22s., PPPN =29m.22s., iN =33m.16s., SKKSN =34m.11s., PPSN = 38m.53s., iN =41m.30s., SSN =46m.30s., SSPN =47m.40s., SSN =50m.16s. Tunis ePP = 25m.34s. and 26m.43s., eSKKS = 32m.28s., eSKKS = 33m.29s., ePPS = 39m.26s., eSS = 46m.21s., eSSS = 52m.34s.Malaga iPKP,Z = 21m.55s., PPPZ = 30m.1s., SSZ = 47m.35s., QZ = 71m.47s. Granada sPKP = 20m.58s., PKP, = 22m.29s., pPKP, = 22m.37s., iPP = 25m.43s., pPP = 26m.22s., sSKS = 27m.57s., PPP = 29m.55s., SKKS = 32m.16s., sSKKS = 33m.28s., SKSP=35m.37s., PPS=39m.28s., iSS=46m.45s., SSP=48m.52s., SSS=52m.1s. Alicante pPKP, =21m.47s., PKS =23m.49s., PP =25m.38s., PPP =29m.47s., SKKS = 32m.27s., SKSP = 36m.21s., PPS = 39m.53s., SS = 46m.50s., SSP = 48m.11s., SSS = 54m.5s., Q = 70m.59s. Almeria iPKS = 23m.46s., iPP = 25m.25s., PPP = 30m.0s., SKKS = 32m.30s., PPS = 39m.56s., SS = 47m.0s., SSS = 54m.0s.Algiers i = 20m.48s. and 20m.54s., ePP, = 26m.28s., ePcP,PKP? = 29m.10s., ePPP = 29m.57s., e = 36m.43s.?, eSS = 46m.43s.?

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

### 1949

### 68

Feb. 13d. 20h. 43m. 16s. Epicentre 20°.8S. 69°.0W. Depth of focus 0.010. (as on 1948, Sept. 3d.).

Intensity IV between 20° and 21° S. Lat.

F. Greve.

Boletin del año 1948, primer semestre, Instituto Sismologico, Santiago, p. 7. Depth of focus 100km.

 $A = + \cdot 3353, B = - \cdot 8735, C = - \cdot 3531; \delta = +11; h = +4;$ 

D = -.934, E = -.358; G = -.127, H = +.330, K = -.936.

		$\Delta$	Az.		0 – C.	s.	0-C.	Su	pp.	L.
		o	0	m. s.	s.	m. s.	8.	m. s.		m.
La Paz		4.4	11	il 5a	- 1	i1 41	-15		-	
Copiapo	N.	6.6	190	1 35	- 1	2 46	- 4			
Huancayo		10.6	325	e 2 30	0	e 4 37	+ 9	<u></u>		i 5.0
Santa Lucia		12.7	186	i3 8	+10			100 ( <b>100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 10) ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 100 ( 10) (10) (</b>		6.1
Bogota		25.7	348	i 5 25	+ 2	e 9 53	+11	i6 3	PPP	11.7
Fort de France		36.1	14	e 6 49	- 5			<u></u>		_
Harvard		63.0	358	i 10 16	- 3					
Ottawa	Z.	66.2	354	i 10 36a	- 4		1	e 11 5	$\mathbf{pP}$	
Tucson		66.2	322	i 10 40	õ	-	-	i 11 7	pP	127.55
Pierce Ferry		70.8	323	i 11 9	+ 1			·	·	
Boulder City		71.2	322	i 11 11	+ 1	_		i 11 40	pP	
Pasadena		71.9	319	i 11 16k	+2			i 11 33	pP	
Tinemaha		74.0	321	i 11 27k	- ē		-	1 11 42	pP	-
Mineral	Z.	78.1	321	i 11 50	ŏ				pr_	
Shasta Dam		78.8	$3\overline{2}\overline{1}$	i 11 25	-29	-		i 11 47	P	
Hungry Horse		79.7	331	i11 59	0	-	-		C	
Malaga		83.6	47	i 12 18	- ĭ		322		1211	_
Tamanrasset	Z.	84.6	63	i 12 24 a	ô			i 12 55k	nP	
Auckland	N.	96.9	226		_	e 23 26	[-22]	112 JOK	pP	
Stuttgart	z.	97.9	41	e 13 24	- 2	0 20 20	[-44]			
the same state and		A. 1		U LU AT	0.000.000	1.000		0.000		the second se

Additional readings :— La Paz iPZ =1m.14s., iS =2m.11s. Copiapo N =54s., 1m.47s., 2m.9s., and 2m.38s. Huancayo i =2m.58s. and 4m.44s. Santa Lucia iN =3m.15s., E =3m.27s. and 4m.4s., N =5m.46s. and 5m.53s. Bogota  $eP_cP = 9m.39s.$ ,  $eS_cP = 13m.18s.$ Harvard iS =10m.45s.; readings given as for local shock. Tucson isP =11m.21s.

Pasadena i = 11m.44s. and 11m.58s. Tinemaha iZ = 11m.56s. and 12m.11s. Tamanrasset eZ = 13m.21s.

Feb. 13d. Readings also at 1h. (Ashkabad), 5h. (Clermont-Ferrand, near Barcelona, and Tortosa), 7h. (Ashkabad), 8h. (College, Strasbourg, Stuttgart, Poona, Ashkabad, Sverdlovsk, Almata, Samarkand, near Andijan, Frunse, Kulyab, Murgab, Obigarm, Stalinabad, Tashkent, and Tchimkent), 12h. (Pasadena and Tinemaha), 13h. (Huancayo and near La Paz), 14h. (Besançon, Frunse, Samarkand, near Andijan, Kulyab, Stalinabad, Tashkent, and near Klyuchi), 17h. (near Tacubaya), 18h. (Stuttgart, Bermuda, Logan, Tucson, Boulder City, Pierce Ferry, Hungry Horse, and Shasta Dam), 19h. (Ashkabad), 20h. (College, near Ashkabad, and near Klyuchi), 21h. (Boulder City and Pierce Ferry).

Feb. 14d. 16h. 24m. 29s. Epicentre 16°.1S. 168°.3E. (as on 1948, May 23d.).

A = -.9413, B = +.1949, C = -.2756;  $\delta = -1$ ; h = +6; D = +.203, E = +.979; G = +.270, H = -.056, K = -.961.

		Δ	Az.	Р.	0-C.	s.	0-C.	Su	pp.	L.
(458. N/N#S		•	•	m. s.	<b>S.</b>	m. s.	s.	m. s.	2.23	m.
Brisbane	E.	18.1	229	i4 12	- 2	17 35	0	i4 24	$\mathbf{PP}$	
Apia Auckland	N.	$19.4 \\ 21.5$	86     166	$     \begin{array}{r}       4 & 34 \\       1 & 4 & 56     \end{array} $	<u>+</u> 4	+ 0 9	1.10			
Riverview	м.	23.5	217	15 8a	- 4	$     \begin{array}{r}       i & 9 & 3 \\       i & 9 & 17 \\     \end{array} $	$^{+16}_{-6}$	1 5 49	PPP	e 10·8
Wellington		25.7	170	i 5 32	- 1					10.5

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1949							69					
		Δ	Az.			P. 5.	О — С. s.	S. m. s.	0 – C. s.		pp.	I
Lick		84.6	in	4	12			ш. в.	0.	m. s.	DD	n
Fresno	z. z.		49 50	- 1. F.T.	and the second se	and the second	- 7		-	i 15 45	PP	
		85.7			12	33	- 8		3. <u></u>	i 15 55	$\mathbf{PP}$	
Mineral	z.	85.9	46		12	and the second	- 9	-				
Pasadena	-	85.9	53		12	Contraction of the second second	- 8			i13 5	$\mathbf{pP}$	
Reno	Z.	86-8	48	્ય	12	40 a	- 7		-			
Tinemaha		86.9	50	i	12	41 a	- 7	8 8 <del>771</del> 0		i13 19	$\mathbf{pP}$	
Calcutta	E.	87.1	295		-			i 23 5	[-10]		·	- 3
College		87.3	17		12	37	-13		· <u>_</u>		1000	
Boulder City		89.1	52	e	12	42	-16	3 <u>112</u>			84 CH3 B	
Pierce Ferry		89.8	52		12	54	- 8	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.			ter sed	÷
Tueson		<b>91</b> .0	57	e	12	58	- 9		-	e 16 37	$\mathbf{PP}$	
Hungry Horse		93.9	41		13	ĩĩ	-10			0 10 51		
Ottawa	Z.	A 4 64 64	46		18	42	[- 9]	1000		<u> </u>		
Ksara		133.8			21		'PP'	(e 32 15)	$\mathbf{PS}$			
Helwan	z.	100 000 000 of a	297	16		17	[-10]		$\mathbf{PP}$			
		100 0			**	11	1-101	0 22 41	гr			
Jena	E.	and the second	336		18	22	[-69]		-			-
Zagreb		142.4	328		19	26	[- 9]			e 22 50	$\mathbf{PP}$	1.5
Stuttgart	z.	143.2	337		19	23	[-13]			e 22 53	$\mathbf{PP}$	
Strasbourg		143.9	339		19	25	[-12]				-	
Chur		144.6	335	e	19	27	[-11]			e 22 56	$\mathbf{PP}$	1
Zürich		144.6	336	i	19	26k	[-12]			e 30 57	$\{+69\}$	-
Basle		144.8	337		19	27	(-12)		<u></u>		· · · · · · · · · · · · · · · · · · ·	-
Salo	z.	145.2	333		19		[-12]				3 (married)	
Padova		145.4	331		19	31	[- 9]			e 23 5	$\mathbf{PP}$	12
Paris		145.4	334	i	19	29	[-11]			e 22 46	$\mathbf{\hat{P}}\mathbf{\hat{P}}$	13
Bologna		145.6	330	i	19	31 a	1 - 91	-		e 23 21	$\mathbf{PP}$	
Besançon		145.7	338		19	327	1- 81	=	_	0 40 41		11/2
Pavia	Z.	146.1	334	1 State 1997	19	31	1-101		-		10-1-2	
Prato		146.2	330		19	31	[-10]					
Florence		146.2	329	0	the second se	and the second	[-7]					涉
Rome	z.	146.9	325	្នុ	10	34 a	[9]					1925
Clermont-Ferrand		147.9	341	the second se	19	35	[-8]					2 4 <b>6</b>
Toledo	19	155.4	346		19	53	[- 9]	194	_	1.00		Ē
	z.	162.5	296	1. The Part of the		56 .	[-2]			: 01 901	DD	5
L GALLGULL GOOG U	4.64	104 0	200		1.0	008	[- 7]		and the second	i 24 36k	$\mathbf{PP}$	2.0

Additional readings and note :--

1

Brisbane iE = 4m.48s., iZ = 5m.45s., iE = 7m.55s. and 8m.35s.Riverview iN = 9m.22s., iNZ = 10m.11s., iE = 10m.15s.

Wellington e = 6m.1s. and 6m.36s. Pasadena  $iP_cP_iZ = 12m.42s.$ , iPPZ = 15m.57s.Tinemaha  $iP_{c}P_{c}P_{c}Z = 12m.48s.$ , iPPZ = 16m.6s.Boulder City e = 12m.47s. Tucson i = 13m.32s. and 13m.45s. Ksara readings have been increased by 20 minutes. Helwan eZ = 13m.1s. Stuttgart iPKPZ =19m.26s.k. Strasbourg iPKP = 19m.29s., e? = 19m.49s., e = 20m.23s., 20m.53s., and 21m.11s. Salo 1 = 20m.10s. Besançon e = 19m.55s.?Florence e = 20m.12s. Rome iZ = 20m.3s., iE = 20m.21s. Clermont-Ferrand i =19m.59s. Toledo e = 20m.11s. Tamanrasset e = 20m.13s. Long waves were also recorded at Arapuni.

Feb. 14d. 18h. 7m. 30s. Epicentre 17°.8N. 105°.5W. A = -2546, B = -9181, C = +3038;  $\delta = +2$ ; h = +5; D = -.964, E = +.267; G = -.081, H = -.293, K = -.953. Р. Az. 0 - C.Δ O - C. Supp. S. L. m. s. 8. m. s. m. s. m. 8. 0 0 Manzanillo 1.7 42 0 20 -11-0.6 3.5 Guadalajara 35 _ 0 43 -14+ 6 -1.4 2 54 ____ 6.2 74 ---i1 35k Tacubaya 3.1 0 7.0 Puebla 77 1 46 3.6 0 Tucson 15.2 342 i 3 37 - 1 e 6·8

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1	Q,	1	9	
	*			

70

		۵	Az.	Р. m. s.	0 – C. s.	S. m. s.	0 – C. s.	m. s.	pp.	L. m.
Merida Riverside Pierce Ferry Pasadena Boulder City		$15.3 \\ 19.3 \\ 19.7 \\ 19.8 \\ 19.9 \\ 19.9 \\$	$76 \\ 329 \\ 340 \\ 329 \\ 338 \\ 338 \\ $	$     \begin{array}{r}       3 & 51 \\       e & 4 & 34 \\       i & 4 & 32 \\       i & 4 & 33 \\       i & 4 & 34 \\       i & 4 & 34 \\     \end{array} $	$^{+12}_{+52}$ $^{+22}_{-22}$	$\begin{array}{ccc} 7 & 3 \\ e & 8 & 24 \\ i & 8 & 24 \\ \end{array}$	SSS +14 +11			
Mobile Tinemaha Fresno Salt Lake City Lick	z.	$20.3 \\ 22.2 \\ 22.7 \\ 23.5 \\ 24.1 \\$	47 333 330 348 328	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$     \begin{array}{c}             \mathbf{PP} \\             - 1 \\             - 9 \\             - 9 \\           $	8 34 i 9 26	+11 +3	e 49	PP	e 9.5 e 14.9
Lincoln Santa Clara Logan St. Louis Berkeley	E.	$24.2 \\ 24.3 \\ 24.5 \\ 24.7 \\ 24.8 \\$	$16 \\ 328 \\ 349 \\ 29 \\ 328 \\ 328 \\ \end{array}$	e 5 18 i 5 21 e 5 19 i 5 24 i 5 25k	-1 + 1 + 3 = 0 = 0 = 0	e 9 43 1 9 48 e 9 36 1 9 48 1 9 56	+ 8 + 11 + 14 + 10	$i \frac{5}{5} \frac{39}{46}$ $i \frac{5}{5} \frac{46}{55}$	pP PP PP	e 12.6 e 12.6 e 12.7 e 13.3
Reno Rapid City Mineral Columbia Ferndale	E. Z. E.	$25.0 \\ 26.3 \\ 26.4 \\ 27.2 \\ 27.9 \\$	$334 \\ 4 \\ 332 \\ 48 \\ 329$	i 5 27k e 5 42 i 5 38 e 5 46	$+ \frac{3}{2}$	e 10 9 e 10 17 e 10 28 e 10 40	$^{+20}_{+6}$ $^{+3}_{+3}$	i 5 46k e 7 0		$\overrightarrow{i \ 10.5}$ e $14.8$
Arcata Bozeman Chicago Butte Cleveland	N. N.	$28.0 \\ 28.2 \\ 28.4 \\ 28.7 \\ 31.3$	$330 \\ 353 \\ 27 \\ 350 \\ 36$	e 6 47 e 5 55 e 5 59 e 6 0 i 6 23	PP - 1 + 1 - 1 - 1	e 12 32 e 10 50 e 10 45 i 10 51 i 11 31	SSS + 9 + 0 + 1 0	$e \overline{\begin{array}{c} 6 \\ 49 \\ i \\ 7 \\ 1 \\ 7 \\ 16 \\ \end{array}}$	PP PP PP	e 18.0 e 13.1 e 12.0 e 12.2
Hungry Horse New Kensington Seattle Pennsylvania Bogota	Е. Е.	$31.3 \\ 31.8 \\ 32.8 \\ 33.0 \\ 33.4$	$350 \\ 39 \\ 340 \\ 40 \\ 109$	i 6 21 e 6 16 i 8 15 i 6 41 e 6 49	$-3 \\ -12 \\ PPP \\ + 2 \\ + 7$	$\begin{array}{r} e & 11 & 41 \\ e & 11 & 42 \\ i & 12 & 2 \\ i & 12 & 14 \end{array}$	$+\frac{3}{-12}+5+11$		PP PP	$e 13.5 \\ e 12.8 \\ 14.0 \\ 17.5$
Victoria Philadelphia Saskatoon Fordham Ottawa		$33.9 \\ 34.3 \\ 34.3 \\ 35.6 \\ 37.0$	$339 \\ 44 \\ 359 \\ 43 \\ 35$	e 7 30 e 6 48 7 25 7 1 7 1 7 13k	$     \begin{array}{c}             \mathbf{PP} \\             - 2 \\             + 35 \\             0 \\             0         $	$\begin{array}{cccccccc} i & 12 & 18 \\ e & 12 & 16 \\ & 12 & 58 \\ & 12 & 41 \\ & 13 & 0 \end{array}$	+71 + 41 + 41 + 31 + 1	$e_{15}^{\overline{7}} 48_{42}^{\overline{15}} 42_{\overline{8}}^{\overline{15}} 35$	$\frac{\overline{PP}}{\overline{SSS}}$	$\begin{array}{r} 17 \cdot 0 \\ e \ 13 \cdot 5 \\ 19 \cdot 0 \\ 18 \cdot 2 \\ 20 \cdot 3 \end{array}$
San Juan Harvard Weston Bermuda Seven Falls	Е.	$37.4 \\ 37.9 \\ 38.0 \\ 39.5 \\ 40.8$	$     \begin{array}{r} 82 \\             42 \\             42 \\           $	e 8 44 i 7 20 i 7 21 e 7 30 7 45	PP 0 - 4 0	e 13 15 i 13 17 e 13 12 13 53	$+\frac{2}{+3}$ +25 -3	e 9 10 9 33	PP PP PP	e 22.0 e 20.5 e 16.8 18.9
Huancayo Halifax Honolulu La Paz College		$\begin{array}{r} 42 \cdot 0 \\ 44 \cdot 0 \\ 49 \cdot 3 \\ 50 \cdot 2 \\ 54 \cdot 9 \end{array}$	$133 \\ 44 \\ 284 \\ 130 \\ 340$	e 7 51 e 15 58 i 8 59k e 9 30	$-\frac{3}{1}$	e 14 20 e 18 18 e 18 24 i 16 13 e 17 34	$^{+6}_{-88}$ $^{+2}_{+18}$	$\begin{array}{c} \mathbf{e} \ 10 \ 10 \\ 11 \ 2 \end{array}$	PPP PP	e 17.6 24.5 e 21.7 22.8 e 30.3
Ivigtut Kew Paris Strasbourg Rome	E.	$59.0 \\ 85.4 \\ 88.1 \\ 91.3 \\ 97.6$	29 37 39 38 42	i 1242	$-\frac{12}{-12}$	e 17 50e 23 167e 24 16e 31 41	$^{-20}_{+5}_{+10}$	e 30 17		e 42.5 e 44.5 41.5
Tucson i =41 Salt Lake Ci Santa Clara Logan i =10 St. Louis iZ Berkeley iP 10m.24s Reno iN =61 Cleveland iE Pennsylvani Bogota eScP Ottawa SS = Bermuda e = Seven Falls										

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

# 1949

71

Kew eE =35m.44s., eQEN =38.5m. Strasbourg e? =26m.11s., Q =38.5m. Long waves were also recorded at Shawinigan Falls, Ukiah, Sitka, Alicante, Almeria, Granada, Malaga, De Bilt, Clermont-Ferrand, Scoresby Sund, and Tananarive.
Feb. 14d. 18h. 42m. 6s. Epicentre 13°.5N. 121°.2E. (as on 1939, May 6d.).
Felt at Manila—no damage.

Suggested epicentres: 14°N. 121°E. (U.S.C.G.S.).

#### 12°N. 122°·5E. (Strasbourg).

Seismo. Notes. Bulletin of the Seismo. Soc. of America, Vol. 39, No. 2, April, 1949, p. 153.

A = -.5039, B = +.8320, C = +.2320;  $\delta = -4$ ; h = +6; D = +.855, E = +.518; G = -.120, H = +.198, K = -.973.

		Å	Az.	P. m. s.	O - C.	s. m. s.	0 – C. s.	m. s.	pp.	L. m.
Batavia Vladivostok Calcutta Irkutsk Columbo	Е. Е.	$24 \cdot 2 \\ 30 \cdot 9 \\ 32 \cdot 5 \\ 41 \cdot 0$	$216 \\ 16 \\ 291 \\ 343 \\ 264$	i 5 0 e 6 19 e 6 39 7 52 7 43	$   \begin{array}{r}     -19 \\     -1 \\     +5 \\     +6 \\     -5 \\   \end{array} $	$i \begin{array}{c} 9 \\ 28 \\ 11 \\ 13 \\ 13 \\ 13 \\ 45 \\ 13 \\ 45 \\ 13 \\ 45 \\ 13 \\ 13 \\ 45 \\ 13 \\ 13 \\ 13 \\ 15 \\ 15 \\ 15 \\ 15 \\ 1$	$-\frac{7}{-\frac{4}{5}}$	$e \overline{\begin{array}{c} 7 & 39 \\ 7 & 45 \\ e & 9 & 17 \end{array}}$	PPP PP PP	14·4 22·8
Hyderabad Kodaikanal Poona Bombay Almata	N. E.	<ul> <li>A set attached and attached</li> </ul>	$281 \\ 272 \\ 283 \\ 284 \\ 317$	e 7 58 i 8 4 8 17 e 8 27 e 8 46	$^{+ 9}_{+ 27}_{- 57}_{- 53}$	13 48 14 34 14 58 14 58 1 15 9	-16 + 7 - 10 - 13	$16 59 \\ 9 52 \\ 10 12 \\ 10 17 \\$	SS PP PP PP	$\begin{array}{r} 19 \cdot 3 \\ \hline \\ 22 \cdot 2 \\ \hline \\ \end{array}$
Murgab Frunse Andijan Brisbane Obi-garm	z.	$48.5 \\ 49.6 \\ 50.4 \\ 51.1 \\ 51.8$	$310 \\ 315 \\ 312 \\ 143 \\ 309$	$\begin{array}{c} 8 & 42 \\ e & 8 & 54 \\ e & 9 & 0 \\ i & 9 & 8 \\ i & 8 & 29 \end{array}$	$-4 \\ -1 \\ -1 \\ +2 \\ -43$	15 40 e 16 21 i 15 47	$-\frac{8}{PS}$ $-\frac{16}{46}$	$e_{11}^{-18} e_{110}^{-45} e_{17}^{-17}$	$\mathbf{S}_{\mathbf{c}\mathbf{P}}^{\mathbf{S}}$	
Stalinabad Tashkent Tchimkent Samarkand Riverview		$52.5 \\ 52.8 \\ 52.9 \\ 54.1 \\ 55.0$	$309 \\ 312 \\ 314 \\ 309 \\ 149$	i 9 14 i 9 17? i 9 19 e 9 26 i 9 37 a	-32 - 21 - 13 + 22	i 16 34 e 16 35 i 17 25	$   \begin{array}{r}       -\frac{9}{-12} \\       -\frac{9}{-12} \\    $	i 10 28 e 17 38	PcP PS	e 23·5
Ashkabad Sverdlovsk Grozny Erevan Leninakan		$60.6 \\ 62.8 \\ 70.3 \\ 71.3 \\ 71.8$	$306 \\ 328 \\ 312 \\ 308 \\ 309$	$egin{array}{cccc} e & 10 & 5 \\ i & 10 & 34 \\ & 11 & 21 \\ e & 11 & 39 \\ & 11 & 43 \end{array}$	-10 + 4 + 4 + 16 + 17	i 18 50				
Piatigorsk Moscow College Ksara Istanbul		$72 \cdot 2$ 75 \cdot 4 78 \cdot 3 78 \cdot 8 82 \cdot 8	$313 \\ 325 \\ 26 \\ 301 \\ 311$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$   \begin{array}{r}     - & 9 \\     + & 1 \\     - & 1 \\     + & 4 \\     0   \end{array} $	e 21 16 22 16	$-\overline{11}$ + $\overline{12}$			
Helwan Upsala Potsdam Zagreb Jena		$83 \cdot 2 \\ 85 \cdot 1 \\ 90 \cdot 1 \\ 90 \cdot 7 \\ 91 \cdot 5$	$299 \\ 331 \\ 325 \\ 318 \\ 323$	i 12 33 a e 13 54 ? e 16 52 e 13 8	$\begin{array}{c} + 4 \\ + 51 \\ PP \\ - 2 \end{array}$	e 21 54 e 21 54 e 21 42 e 23 31	$-\frac{8}{7}$ $[-\frac{6}{6}]$	15_40 	PP 	e 45.9 e 51.9
Stuttgart Salo Strasbourg Zürich Aberdeen	Z. Z. E.	93·9 94·4 94·8 94·8 95·5	$322 \\ 320 \\ 322 \\ 322 \\ 333$	e 13 16 e 13 8 e 13 21 e 13 20 i 19 38	$-5 \\ -15 \\ -4 \\ -5 \\ PPP$			e 12 21		e 47.9 47.4
Paris Hungry Horse Tinemaha Mount Wilson Tamanrasset	z. z. z.	97.7 101.4 104.9 106.4 107.4	$324 \\ 35 \\ 47 \\ 49 \\ 300$	i 13 36 e 14 7 e 18 30 e 18 54 e 18 20	$\begin{bmatrix} - & 2 \\ + & 12 \\ PP \\ PP \\ [- & 8] \end{bmatrix}$			i 30 0 e 18 40	PKKP PP	e 53·9
Boulder City Pierce Ferry Tucson Huancayo La Paz		$107.8 \\ 108.3 \\ 112.6 \\ 163.8 \\ 170.5$	$46\\46\\46\\84\\110$	e 17 56 e 19 18 e 19 19 i 20 10	$[ \begin{array}{c} & & & & & & \\ & & & & \\ PP \\ [ -46] \\ [ & 0] \end{array} ]$	e 29 44 e 26 33 i 32 2	PPS 	i 18 54 e 46 41 i 25 18	PP SSP PP	e 82.7 83.4

For Notes see next page.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

### 1949

### 72

### NOTES TO FEBRUARY 14d. 18h. 42m. 6s.

Additional readings :--Calcutta PPPE =8m.11s., QE =12m.57s., SSSE =13m.14s.Irkutsk SS =16m.48s.Poona iE =8m.26s., PSEN =15m.5s.Tashkent ePPP =12m.18s.Riverview eE =18m.0s., eSSE =21m.8s.Helwan eZ =16m.24s., iN =23m.8s.Stuttgart eZ =13m.37s.

```
Salo e = 14m.56s.
Hungry Horse iP = 14m.12s.
Huancayo e = 30m.41s., ePPS = 39m.15s.
Long waves were also recorded at Auckland, Wellington, Tacubaya, and numerous
other American and European stations.
```

Feb. 14d. 22h. North Atlantic Ocean.

```
Alicante eP = 32m.2s.
Zurich eZ = 32m.51s.
Paris iP = 33m.55s.?, eL = 41m.
Clermont-Ferrand eP = 34m.11s., L = 39m.
Strasbourg eP? = 34m.38s., e = 34m.51s., ePP = 35m.4s., e = 35m.40s., eL = 39m.
Stuttgart ePZ = 34m.38s., eQ = 42 \cdot 8m.
Jena eN = 34m.47s.
Ottawa eZ = 35m.38s.
Tamanrasset ePZ = 36m.41s.
Hungry Horse iP = 38m.32s.
College iP = 38m.57s.
Pierce Ferry iP = 39m.29s.
Boulder City iP = 39m.32s.
Tucson eP = 39m.33s., e = 39m.49s.
Shasta Dam iP = 39m.37s.
Mineral iZ = 39m.38s. and 39m.43s.
Tinemaha ePZ = 39m.42s.
Pasadena ePZ = 39m.53s.
La Paz ePE = 41m.11s.
Long waves also recorded at Kew and Weston.
```

Feb. 14d. Readings also at 0h. (Hungry Horse), 1h. (Hungry Horse and near Ashkabad), 2h. (Tacubaya), 3h. (Shasta Dam, Hungry Horse, and Tacubaya), 5h. (near Tacubaya), 6h. (Ashkabad (2)), 8h. (near Fort de France), 10h. (Paris, Samarkand, Tashkent, Tchimkent, near Andijan, Frunse, Kulyab, Murgab, Obi-garm, Stalinabad, and near Ashkabad), 13h. (near Ashkabad), 15h. (Hungry Horse, Shasta Dam, and near Mizusawa), 19h. (Hungry Horse, Butte, Lincoln, Philadelphia, Rapid City, Boulder City, Pasadena, Salt Lake City, Tinemaha, Tucson, Batavia, and near Manzanillo), 20h. (Mount Wilson, Tinemaha, Tucson (2), Boulder City, Pierce Ferry, Hungry Horse, College, Lincoln, near Manzanillo, and near Messina), 22h. (Ashkabad).

Feb. 15d. 3h. 52m. 19s. Epicentre 17°.8N. 105°.5W. (as on 14d.).

		Δ	Az.	Р.	0-C.	s.	0-C.	Sup	pp.	L.
		0	0	m. s.	8.	m. s.	8.	m. s.	4746	m.
Manzanillo		1.7	42	0 40	+ 9		-			1.0
Tacubaya		6.2	74	1 34	- 1	(2 48)	0			2.8
Puebla		7.0	77	e 1 17	-29	e 2 7	-61			
Tucson		15.2	342	13 37	- 1	e 6 17	-11			e 7·2
Pierce Ferry		19.7	340	e 4 31	- 3		3 <del>1 1 1</del> 1	1000	-	
Pasadena		19.8	329	e 4 32	- 3					e 10·5
Boulder City		19.9	338	i4 34	- 2					
Tinemaha		22.2	333	e 4 59	- 1					
Fresno	z.	22.7	330	i5 3	- 1					
Salt Lake City		23.5	348	e 5 34	+22	e 9 59	+36			e 10·1
Lincoln	E.	24.2	16			e 9 47	+12	<u></u>	್ಷ	e 12.4
Logan	=2	24.5	349	e 5 24	+ 2	(e 9 52)	+12	· · · · ·		e 9.9
St. Louis		24.7	29	i 5 22	- 2	i9 48	+ 4		$\square$	-
Reno	z.	25.0	334	e 5 27	0		· · · · · · · · · · · · · · · · · · ·	-		
Chicago		28.4	27			e 10 59	+14			e 14·9

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1949					73					
		Δ	Az.	Р.	0 – C.	s.	0 – C.		pp.	L.
		•	0	m. s.	8.	m. s.	8.	m. s.		m.
Hungry Horse		31.3	350	e 6 11	-13					
Philadelphia		34.3	44			c 12 17	0			e 16·2
Ottawa		37.0	35	e 6 57	-16					19.7
La Paz	N.	50.2	130	e 9 13	+13					
College	202	54.9	340	19 31	- 4			i 10 22	PcP	
Paris		88.1	39	i 12 44	-10			ana ca		

Additional readings :---

 $\mathbb{R}$ 

Tucson i =4m.28s. Pasadena iNZ =6m.16s. Tinemaha eZ =6m.26s. Reno iZ =5m.35s., iE =5m.43s., eN =6m.6s. Hungry Horse e =6m.21s. Long waves were also recorded at Butte, Rapid City, Berkeley, Weston, and Sitka.

Feb. 15d. 14h. 9m. 13s. Epicentre 20°.5N. 71°.5W. (as on 1946, Sept. 20d.).  $A = + \cdot 2974$ ,  $B = - \cdot 8890$ ,  $C = + \cdot 3481$ ;  $\delta = -6$ ; h = +5; D = -.948, E = -.317; G = +.110, H = -.330, K = -.937.Supp. L. 0 -- C. **P**. S. 0 - C.AZ. m. s. m. 8. 8. m. s. m. s. Ó. 0 i 1 19 e 5 25i 1.6 P (i 1 19) 5.5 112 - 6 San Juan -1713.3 26 Bermuda PeP -23e 6 e 7 54 e 3 251 31 16.0 189 -15Bogota e 8 10 e 10.5 + 6 +3518.1 307 i 4 20 Mobile - 2 e 4 52 PP e 8 10 e 9.1 e 4 32 353 0 19.7 Philadelphia 1823 1852 357 e 4 41 0 - 2 20.4Fordham 3 0 21.8 14 59 + Weston 20

Harvard		22.0	2	i 4	54	- 4	e 8 58	+ 2			
St. Louis		24.3	323	e 5	23	- 4 + 3 - 3	e 10 5	+28			
Ottawa	z.	25.1	353	e 5		- 3	e 10 18	+27	- <del></del>		
Huancayo		32.6	187	e 6	14	-21		-	1		
La Paz		36.9	174	7	11	- 1	12 27	-31			20.8
Tucson		36.9	298	i 7	15	$+\frac{3}{2}$	1				-
Logan		40.0	312	e 7	36	- 2		-			
Pierce Ferry		40.2	303	e 7	41	+ 1					
Boulder City		40.8	302	i 7	47	+ 2					
Pasadena		43.3	299	i 8		$^{+2}_{+1}$			i 8 14	pP	
Tinemaha		43.7	303	i 8	11a	+ 3			i 8 18	$\mathbf{pP}$	
Hungry Horse		43.9	320	i 8	9	- 1					
Fresno	z.	44.9	303	i 8	18	0	1.11.2	ST. 25		0.000	
Almeria		61.5	59	e 10	19	- 2	18 39	- 3	12 35	$\mathbf{PP}$	31.8
Alicante		62.9	57	e 10	34	+ 4	18 58	- 2	12 50	$\mathbf{PP}$	e 31·2
College		65.8	334	e 10	44	5	(2011) (소스크) ()	3 <del></del>			
Stuttgart	z.	68.8	44	e 10	50	-18			0.240		

Almeria  $P_cP = 11m.1s.$ , PPP = 14m.5s., PPS = 19m.11s., SS = 22m.35s., SSS = 25m.11s.Alicante PPP = 14m.10s., PS = 19m.2s., PPS = 19m.12s., SS = 23m.0s., SSS = 25m.36s.Long waves were also recorded at Berkeley and Sitka.

Feb. 15d. Readings also at 1h. (Alicante, Ashkabad, Obi-garm, Stalinabad, near Almata, Andijan, Frunse, Kulyab, Murgab, Tashkent, and Tchimkent), 2h. (Boulder City, Pierce Ferry, Shasta Dam, and Hungry Horse), 3h. (Tacubaya), 5h. (Tacubaya (2), near Obi-garm and near Mizusawa), 6h. (Pasadena, Tinemaha, Tucson, Boulder City, Pierce Ferry, Logan, Ottawa, Hungry Horse, College, Bogota, near Tacubaya (2), Manzanillo, and near Puebla), 7h. (Merida, Puebla, Tacubaya, Pasadena, Tinemaha, Tucson, Boulder City, Pierce Ferry, Logan, Butte (2), Hungry Horse, Seattle (2), Sitka, College, Ottawa, and Philadelphia), 8h. (Sitka and near Obi-garm), 9h. (near Obi-garm), 10h. (Lick), 11h. (College, Hungry Horse, and Shasta Dam), 12h. (Pasadena, Tinemaha, Tucson, Boulder City, Pierce Ferry, Samarkand, Stalinabad, near Andijan, and Obi-garm), 13h. (Lick), 14h. (Nanking), 15h., 16h., 17h. (2) (Ashkabad), 18h. (Santa Lucia and near Ashkabad), 20h. (Huancayo and near Tucson), 22h. (Istanbul, Paris, Strasbourg, Stuttgart, Clermont-Ferrand, Basle, Zürich, and Tamanrasset).



These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

# 1949

.

۰.

# 74

Feb. 16d. 11h. 37m. 16s. Epicentre 15°.0S. 168°.0E.

A = -.9453, B = +.2009, C = -.2572;  $\delta = +10$ ; h = +6; D = +.208, E = +.978: G = +.252, H = -.053, K = -.966.

	$\Delta$	Az.	Р.	0-C.	s.	0 – C.	Supp.	L.
	0	0	m. s.	8.	m. s.	8.	m. s.	m.
Brisbane	18.7	226	i4 22	0	i7 58	+10	i4 56 sP	9.5
Apia	19.7	90	e 4 34	0				

Auckland N Riverview Wellington	s.	$     \begin{array}{r}       22 \cdot 6 \\       24 \cdot 2 \\       26 \cdot 7     \end{array} $	$166 \\ 216 \\ 169$	5 4 i 5 15a i 6 36	$+$ $\stackrel{1}{-}$ $\stackrel{4}{-}$ PP	9 21 i 10 36 i 10 34	$^{+14}_{+61}_{+17}$	10 11 i 5 24	pP e	11.7 11.6
Perth Batavia Vladivostok Berkeley Lick z	5.	$50.2 \\ 60.6 \\ 66.6 \\ 83.8 \\ 84.1$	$241 \\ 272 \\ 332 \\ 49 \\ 49 \\ 49$	$\begin{array}{r} e & 9 & 12 \\ i & 10 & 53 \\ i & 12 & 32a \\ i & 12 & 33 \end{array}$	$-\overline{\begin{array}{c}63\\-1\\0\\-1\end{array}}$	i 19 49 16 48 19 45 23 8	ss ? +13 0	i 12 35	ss pP	27·1 
Shasta Dam Fresno Mineral Pasadena Riverside	ē.	$\begin{array}{r} 84 \cdot 9 \\ 85 \cdot 2 \\ 85 \cdot 3 \\ 85 \cdot 4 \\ 86 \cdot 0 \end{array}$	46 50 47 53 53	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$+29 \\ -1 \\ -1 \\ 0 \\ 0$					
	s. 5.	$     \begin{array}{r}       86 \cdot 3 \\       86 \cdot 4 \\       86 \cdot 5 \\       86 $	$\substack{ 49 \\ 295 \\ 18 \\ 327 \\ 51 }$	$\begin{array}{cccccccc} i & 12 & 45 \\ e & 13 & 1 \\ i & 12 & 42 \\ e & 12 & 52 \\ i & 12 & 45 \\ a \end{array}$	$     \begin{array}{r}       0 \\       + 16 \\       - 3 \\       + 6 \\       - 1     \end{array} $	e 23 23	+ 2			
Boulder City Pierce Ferry Tucson Logan Kodaikanal E	c.	$88.6 \\ 89.3 \\ 90.6 \\ 92.7 \\ 93.1$	53 53 57 48 280	$\begin{array}{cccccccc} e & 12 & 54 \\ i & 13 & 0 \\ i & 13 & 6 \\ i & 13 & 12 \\ \hline \end{array}$	-2+1+1	e 23 46 e 22 24	$-\frac{\overline{14}}{3}$	e 16 55		41 <u>·9</u>
Hungry Horse Bombay Ksara Stuttgart Z Triest	5.	$\begin{array}{r} 93 \cdot 3 \\ 99 \cdot 5 \\ 133 \cdot 0 \\ 142 \cdot 1 \\ 142 \cdot 5 \end{array}$	$\begin{array}{r} 40 \\ 287 \\ 302 \\ 337 \\ 330 \end{array}$	i 13 16 e 16 59 e 21 15 e 19 29 e 19 41	-2 PP [-5] [+6]	c 24 25	ι <u>0</u> ] Ξ	e 17 9  i 20 17	PP PKP:	
Strasbourg Paris Padova Besançon Bologna Z		$142.8 \\ 144.2 \\ 144.3 \\ 144.5 \\ 144.6 \\ 144.6 \\$	338 343 331 338 330	e 19 31 i 19 35 19 40 e 19 46? e 19 38	$ \begin{bmatrix} - & 4 \\ [ - & 3 \end{bmatrix} \\ [ + & 2 ] \\ [ + & 8 ] \\ [ + & 8 ] \\ [ - & 0 ] \end{bmatrix} $	o 2 <u>3</u> 21	PKS 	e 22 27 e 21 33	PP ?	53·7
Pavia Prato Florence Rome Clermont-Ferrand Tamanrasset z	5.	$145.0 \\ 145.1 \\ 145.1 \\ 145.9 \\ 146.8 \\ 161.7$	$334 \\ 330 \\ 330 \\ 326 \\ 340 \\ 299$	i 19 39 i 19 40 i 19 38 a 19 40 a i 19 44 i 19 3 a	$ \begin{bmatrix} 0 \\ + 1 \\ [-1] \\ [-1] \\ [+2] \\ [-60] \end{bmatrix} $	e 28 54 21 39 e 31 32	$\{-\overline{57}\}\$ $\overline{?}\$ $\{+\overline{10}\}\$	$\begin{array}{r}$	pPKP PKP: i pPKP	 60-7
Additional readi Brisbane iE = Auckland iN = Riverview iZ 10m.7s. Wellington iZ Fresno iZ =12 Reno iN =13m Triest i =22m. Paris e =20m. Tamanrasset e Long waves w	5n =6 =	n.12s., a m.20s. a 5m.34s. 7m.0s. 7m.0s. 45s. s. s. s. s. =23m.3	and 7 and 33s. a	m.54s. 5m.42s., i and iZ = 24r	PP = 51	NA-1260-007-0 107974				EN -
								10		

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

### 1949

ŧ

# 75

Feb. 16d. 15h. Asia Minor ?

```
Istanbul P =13m.48s., S_{z}E = 14m.46s.
Bucharest eN =15m.12s., 15m.24s., and 15m.48s.
Salo eZ =15m.30s.?
Helwan iN =15m.34s.
Ksara e =15m.36s. and 17m.43s.
Stuttgart eZ =16m.33s.
Strasbourg iP =16m.42s., i =16m.45s.
Besancon eP? =16m.58s., e =17m.4s.
```

Clermont-Ferrand iP = 17m.20s. Paris eP = 17m.15s., i = 17m.20s. and 17m.43s. Belgrade e = 17m.15s., i = 17m.54s., 18m.16s., 18m.40s., and 20m.8s. Tamanrasset eP = 17m.42s., e = 18m.59s. College iP = 24m.24s. Hungry Horse iP = 25m.14s. Huancayo e = 40m.3s., eS? = 42m.49s., eL = 43m.5s. Long waves were also recorded at Sofia and Alicante.

Feb. 16d. Readings also at 0h. (Klyuchi and near Ashkabad), 1h. (Pierce Ferry), 2h. (Istanbul and La Paz), 3h. and 4h. (Pierce Ferry), 8h. (Ashkabad and near Mizu-sawa), 10h. (Stuttgart, College, Hungry Horse, Pierce Ferry, and near Klyuchi), 11h. (Pierce Ferry and Shasta Dam), 12h. (Mount Wilson, Tinemaha, Tucson, Boulder City, Pierce Ferry, Shasta Dam, Berkeley, Reno, Mineral, Hungry Horse, and near Obi-garm), 15h. (near Ashkabad (3)), 16h. (Collmberg, Boulder City, Pierce Ferry, and Shasta Dam), 17h. (Pasadena, Tinemaha, Tucson, Boulder City, Pierce Ferry, Lick, Shasta Dam, Logan, Hungry Horse, La Paz (2), and near Copiapo), 18h. (Boulder City, Pierce Ferry, Shasta Dam, Logan, Hungry Horse, La Paz (2), and near Copiapo), 18h. (Boulder City, Pierce Ferry, Shasta Dam, and Hungry Horse), 22h. (Ashkabad, La Paz, and near Bogota), 23h. (Ashkabad, Frunse, Samarkand, near Andijan, Kulyab, Murgab, and Obi-garm).

Feb. 17d. 4h. 37m. 32s. Epicentre 44°.6N. 6°.8E. (as on 1939, March 20d.). Intensity V at Barcelonnette and Fours, also at Isola, Maritime Alps.

J. P. Rothé and N. Dechevoy.

La Séismicité de la France de 1940-1950. Annales de l'Institut de Physique du Globe de Strasbourg. 3e partie Géophysique, Nouvelle Série T.VII. Le Puy, 1954, pp. 53-54, with Macroseismic Chart. Epicentre 44°20'N. 6°55'E.

$\mathbf{A} = + \cdot 709$	4, B =	+ ·08	46, $C = +$	··6998;	$\delta = +$		h=-3;	
$\mathbf{D} = + \cdot 11$				= + ·695,	$H = + \cdot 0$	83, K =	<i>■</i> - ·714.	
	Δ	Az.	Р.	0 – C.	s.	0 – C.	Sup	p.
	0	0	m. s.	8.	m. s.	8.	m. s.	
Pavia Besançon Salo Clermont-Ferrand	$   \begin{array}{r}     1 \cdot 8 \\     2 \cdot 7 \\     2 \cdot 8 \\     2 \cdot 9   \end{array} $	$71 \\ 348 \\ 69 \\ 293$	e 0 37 e 0 47? e 0 49 e 0 36	$^{+}_{+}{}^{5}_{+}_{+}{}^{2}_{-12}$	e 1 19?e 1 35i 1 14	-10	$e \overline{1} 281$ i 1 27	S.
Basle	3.0	10	0 48	- 2	e 1 31	+ 4	e 1 36	Sg.
Zürich Strasbourg Stuttgart Paris	$3.0 \\ 4.1 \\ 4.5 \\ 5.1$	$24\\10\\21\\326$	e 0 49 e 1 12 e 1 17 e 1 22	$     \begin{array}{r}       - 1 \\       \mathbf{P^*} \\       + 6 \\       + 2     \end{array} $	e 1 32 e 2 10 e 2 20 e 2 14	s* s* - 6	e 1 30	

Additional readings :----Besancon e =1m.34s.?, 1m.49s.?, and 1m.54s.? Strasbourg e =2m.31s. and 2m.48s.

Paris  $eS? = 2m.28s., eS_e? = 2m.48s., e = 3m.9s.$ 

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

# 1949

76

Feb. 17d. 21h. 0m. 49s. Epicentre 36°.5N. 5°.2E.

Damage at Kerrara and Oued-Marsa. Epicentre 36°30'N. 5°15'E. (Strasbourg). Macroseismic radius 60km.

J. P. Rothé.

Les Séismes de Kerrata et la Séismicité de l'Algérie. Annales de l'Institut de Physique du Globe de Strasbourg. 3e partie, Géophysique T. VI, 1950, pp. 3-9. 5 figures and Macroseismic Chart.

	- ·8025, ·091, E		+•0730, C 996; (	영화되었다. 이 이 이 이 이 이 이 가지 않는 것이 같이 있다.	22; ð 90, H = +	= +4 ; ·054, K	$\begin{array}{c} h=0;\\ =-\cdot 806.\end{array}$		
	$\triangle$	Az.	Р. m. s.	о –с. s.	S. m. s.	0 – C. s.	m. s.	op.	L. ш.
Algiers	1.8	280	0 32	0	i0 53	- 3	0 36	$\mathbf{P}_{\mathbf{s}}$	
Tunis Alicante	4·0 4·9	84 294	$     \begin{array}{r}             1 & 1 & 5 \\             1 & 1 & 9 \\         \end{array}     $	$^{+1}_{+2}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	-2 +7	i 1 26	Pr	2.1
Barcelona	5.5	335	1 1	-24	$e \hat{2} \hat{1} \hat{1}$	-19	1 39	$\mathbf{P}_{\mathbf{g}}$	3.1
Tortosa	5.7	321	1 27	- Î	(2 35)	ĨŎ	1 56	$\mathbf{P}_{\mathbf{g}}$	$2 \cdot 6$
Almeria	6.2	276	1 39	+ 4	2 47	- 1	26	$\mathbf{P}_{\mathbf{g}}$	4.8
Marseilles Granada	6·8 7·1	278	i 1 46 a		e 2 46 i 3 27	-17	100	De	$4 \cdot 2$
Malaga z.	7.7	275	e 1 55	- 1	13 27	S. S.	i 2 6a 7 43	$\mathbf{P}^{\bullet}_{\mathbf{P}_{\mathbf{C}}\mathbf{P}}$	4.4
Rome N.		44		-	ê 3 21	- 7	- 10	× C1	-
Toledo			i2 0	0	i346	+13	i 2 29	$\mathbf{P}^*$	4.0
Florence Pavia	8.6	31			e 3 45?	- 3			e 5·2
Clermont-Ferrand	$9.2 \\ 9.4$	$18 \\ 351$	e 2 16	- 2	e 3 43	-20	1 4 99	00	1.7
Salo E.	9.9	22	e 2 47	+22		$\equiv$	i <u>4</u> 28	ss	4 · 7 e 5 · 3
Besançon	10.8	3	e 2 391	0			i 2 49?	$\mathbf{PP}$	
Zürich	11.1	12	e 2 55	+12	e 5 25	$\mathbf{L}$			(e 5·4)
Basle Lisbon	$11.2 \\ 11.6$	8	e 2 43	- 1		-			
Strasbourg	12.2	285 8	e 2 47 e 2 59	-3 + 1	(e 5 47	+25	2 52 a	PP	6·3 e 5·7
Paris	12.5	352	e 3 0	- 2			i3 13	PP	e 6·7
Stuttgart	12.6	12	e 3 1	- 2		+	e 3 15	ΡP	e 7.0
Tamanrasset Z. Jena	13.6	179	e 3 14	- 3	i 5 48	- 2	i 3 23k	PP	i 7·1
Helwan	$15.1 \\ 22.8$	16     99	e 3 37 e 5 6	± 1	9 26	115	2 90	np	
Hungry Horse	79.7	324	i 10 9	-122	5 20	+15	5 30	PP	_

Additional readings :---Algiers i = 44s, and 51s.,  $S_g = 1m.2s$ . Tunis iS? = 2m.1s., iS_s = 2m.14s.Alicante  $P = 1m.29s., S_{g} = 2m.32s.$ Tortosa P.EN =1m.46s., P.N =1m.49s., P.S.N =2m.32s., S.EN =2m.58s. Almeria Pg = 2m.12s., Sg = 3m.32s., 3m.38s., and 3m.43s. Marseilles eS? = 2m.51s. Malaga  $S_cPZ = 11m.5s$ . Toledo iZ = 3m.4s. and 3m.29s. Clermont-Ferrand iP = 2m.22s. Besancon iPPP? = 2m.55s.?Strasbourg e = 3m.46s. and 4m.37s. Paris iP = 3m.4s., i = 3m.58s. Tamanrasset iPPPZ = 3m.28s.k, iZ = 6m.0s., eZ = 6m.14s.Helwan PPPZ = 5m.56s.Long waves were also recorded at De Bilt and Kew.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

#### 1949

٠

ю.

#### 77

Feb. 17d. 22h. 5m. 33s. Epicentre 46°·3N. 7°·4E. (as on 1945, Nov. 10d.).

Intensity V at Montana; IV at Leuterbad. Epicentre 46°20'E., 7°30'E. Macroseismic radius 20km.

#### E. Wanner.

Jähresbericht des Erdbebendienstes der Schweiz, im Jähre, 1949, Zürich, 1950, p.2. Macroseismic Chart, p. 5.

 $A = +.6875, B = +.0893, C = +.7206; \delta = -10; h = -4;$ 

 $D = + \cdot 129$ ,  $E = - \cdot 992$ ;  $G = + \cdot 715$ ,  $H = + \cdot 093$ ,  $K = - \cdot 693$ .

		Δ	Az.	Р.	0 – C.	s. (	о-с.	Sup	p.	L.
		0	0	m. s.	s.	m. s.	8.	m. s.		m.
Besancon		1.3	314	e 0 31	+ 6	i 0 47 %	+ 3	i0 51 ?	Sr	0.9
Basle		1.3	6	e 0 20	- 5	e 0 36	- 8	1. (1. (1. (1. (1. (1. (1. (1. (1. (1. (		
Zürich		1.3	37	e 0 21	- 4	e 0 39	- 5			_
Chur		1.6	69	e 0 26	- 4	e 0 49	- 2			
Ravenburg		$2 \cdot 1$	45	e 0 371	Õ	e 1 6	$+ \tilde{2}$			
Salo		2.3	108	e 0 53	Pr	e 1 10	+ 1	2		
Strasbourg		2.3	6	e 0 41	+ 1	e 1 6	- 3	e 0 45	P.	
Stuttgart		2.7	26	e 0 46	÷ ĩ	i1 26	Se	e 0 51	P*	
Clermont-Ferra	and	3.0	260	e 0 58	Pg	e 1 39	Š.		-	-
Paris	00000000	4.2	309	e1 2	- 5	e 1 44	-13			
Jena		5.4	30			e 2 47	S*	e 2 55	Se	-
Collmberg	E.	6.2	34			e 3 15?	S* S*			

Additional readings :---Salo i =1m.13s. Stuttgart e =1m.23s., i =1m.31s. Clermont-Ferrand iSg =1m.46s. Jena eE =2m.50s.

Feb. 17d. Readings also at 0h., 1h., and 2h. (2) (near Ashkabad), 3h. (Mount Wilson, Tinemaha, Boulder City, Pierce Ferry, Shasta Dam, Hungry Horse, College, and near Apia), 4h. (Ashkabad and near Obi-garm), 5h. (Pasadena, Tinemaha, Tucson, Boulder City, Pierce Ferry, Shasta Dam, Hungry Horse, near San Juan, Andijan, Ashkabad, Baku, Piatigorsk, Sotchi, near Erevan, Grozny, and Leninakan), 7h. (near College), 8h. (Pasadena, Tinemaha, Tucson, Boulder City, Pierce Ferry, Shasta Dam, Hungry Horse, and College), 9h. (Pasadena, Tinemaha, Tucson, Pierce Ferry, and Shasta Dam), 10h. (Tucson, Pierce Ferry, Hungry Horse, and near Theedosia), 11h. (Hungry Horse), 12h. (Ashkabad), 13h. and 14h. (La Paz), 15h.

(Ashkabad), 16h. (Frunse, near Andijan, Murgab, and Obi-garm), 17h. (Samarkand), 19h. (Andijan, Samarkand, near Kulyab, Murgab, Obi-garm, Stalinabad, near College, and near Ottawa), 20h. (Apia, Vladivostok, Stuttgart, Logan, Berkeley, Fresno, Pasadena, Tinemaha, Tucson, Boulder City, Pierce Ferry, Shasta Dam, Hungry Horse, and College (2) ), 21h. (Ottawa, Philadelphia, and Paris), 22h. and 23h. (2) (Ashkabad).

Feb. 18d. 5h. 11m. 38s. Epicentre 17°.8N. 105.5W. (as on 15d.).

		$\Delta$	Az.	Р.	0 – C.	s.	0 – C.	Su	pp.	L.
		0	0	m. s.	8.	m. s.	s.	m. s.		m.
Manzanillo		1.7	42	0 33	+ 2				125.22	1.0
Tacubaya		6.2	74	1 41	$+ \tilde{6}$	3 5	S*			
Vera Cruz		9.0	80	2 16	+ 3		~			4.6
Tucson		15.2	342	e 3 35	- 3	e6 1	-27	e4 5	$\mathbf{PP}$	e 7.7
Pierce Ferry		19.7	340	i 4 32	$- \bar{2}$		_	i 5 6	$\mathbf{\hat{P}}\mathbf{\hat{P}}$	
Pasadena		19.8	329	i4 35k	0					e 9·8
Boulder City		19.9	338	e 4 34	- 2		·			
Tinemaha		22.2	333	i4 59	-1					
Salt Lake City		23.5	348			e 9 39	+16		-	e 12.4
Lincoln	E.	24.2	16	e7 52	8		-	50000		e 12.5
Logan		24.5	349	e 5 24	+ 2	e 9 47	+ 7	e 5 46	PP	e 12.8
Reno	Z.	25.0	334	e 5 28	+1				- <u></u>	
Shasta Dam	19055	27.1	332	14 40	- 66	-				
Hungry Horse		31.3	350	e 4 21	2		-			
그는 눈 여기 때 같은 것이 많이 다 안 가지 않지 않는 것이 같다.					(10) The second s					

Reno also gives eE =5m.33s., eN =5m.44s. Long wayes were also recorded at Berkeley, Bozeman, Butte, Chicago, and Philadelphia.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

#### 1949

78

Feb. 18d. 9h. 1m. 38s. Epicentre 19°.4N. 70°.4W. (as on 1947, Oct. 1d.).  $A = + \cdot 3166, B = - \cdot 8892, C = + \cdot 3302;$  $\delta = -6$ : h = +5; D = -.942, E = -.335; G = +.111, H = -.311, K = -.944. L. Р. 0 – C. S. 0-C. Supp. Az. m. m. s. 8. m. s. 8. m. s. San Juan  $103 \\ 116$  $\mathbf{P}_{\mathbf{g}}$ i 1.6 e 0 i1 29 56 -11e 2 + 5 32 Fort de France 10.0 5 50 r 11 19

Bermuda		13.9	21		-		e 5 44	-13	e 5 52	s	
Bogota		15.1	194	i 3	39	+ 3	16 20	- 5	i 3 48	PP	
Fordham		21.6	353	e 4		+2	e 8 36	-13		_	
Weston		22.9	359	i 5	11	+ 5	i9 0	-13			-
Harvard		23.1	359	e 5	13	+ 5 + 5 - 2	e 9 10	- 6			
Cleveland		24.0	339	15	15	- 2	e 9 47	+15	e 10 14	sS	<u>1997</u>
St. Louis		25.8	322	ē 5		õ	e 10 9	+7	i 11 22	SS	
Ottawa	z.	26.3	352	ē 6	ĩ	+22	e 10 29	+18		_	_
La Paz	E.	35.8	175	е 7	2	- 1				) <u></u> (	
Tucson	9022 C.	38.4	298	e 7	25	0			e 8 31	$\mathbf{PP}$	e 27·6
Logan		41.5	312	e 7	42	- 8					
Boulder City		42.3	303	e 7	57	õ					
Riverside	Е.	44·0	300	e 8	ĭi	ŏ					
Pasadena		44.7	300	i 8	17	+ 1					e 31·5
Tinemaha		45.2	303	i 8	20	0				-	
Hungry Horse		45.4	320	i 8	20	- 2					
Fresno	Z.	46.3	303	i 8	$\overline{28}$	- 1	5 mm			_	
Shasta Dam	1002	49.0	308	î 7	46	-64				0.000	<del></del>
Almeria		61.2	58	e 9	55	-24	18 11	-27	12 11	PP	32.4
Alicante		62.7	56	10	៍រ	-28	18 3	-54	$12 \ 11$	PP	e 28·8
College		67.3	334	e îŏ	54	- 5		_		- 73 <u>- 14</u> -	

Additional readings :---

Bogota iSS = 6m.458.

Cleveland iPP?N =5m.28s., eSN =9m.51s.

Hungry Horse e = 9m.0s., i = 9m.5s.

Almeria PPP = 13m.39s., SSS = 24m.39s.

Long waves were also recorded at Columbia, Salt Lake City, Berkeley, and Sitka.

Feb. 18d. Readings also at 1h. (Ashkabad), 2h. (near Copiapo (2)), 3h. (Hungry Horse and near Pierce Ferry), 5h. (Ashkabad (2), Ottawa, and Hungry Horse), 6h., 7h., 8h.,

and 9h. (near Ashkabad), 12h. (Santa Lucia, Fort de France, and near San Juan), 13h. (Pasadena, Tinemaha, Tucson, Boulder City, Pierce Ferry, Shasta Dam, and Hungry Horse), 14h. (Strasbourg), 15h. (Mizusawa and near Andijan), 19h. (Piatigorsk, Sotchi, near Erevan, Grozny, and Leninakan), 20h. (Bucharest, near Belgrade and Sofia), 22h. (Copiapo, La Paz, near Boulder City and Pierce Ferry).

Feb. 19d. 0h. 55m. 36s. Epicentre 11°·1S. 165°·3E.

 $A = -.9494, B = +.2491, C = -.1913; \delta = +1; h = +6;$ D = +.254, E = +.967; G = +.185, H = -.049, K = -.982.

		Δ	Az.	<b>P</b> .	0 – C.	s.	0 – C.	Su	pp.	L.
			•	m. s.	8.	m. s.	6.	m. s.	100000	m.
Brisbane		20.0	214	i4 44	+ 7	i 8 32	+15	i5 0	$\mathbf{PP}$	i 10·1
Apia		22.5	100	4 59	- 3	e 9 24	+19	e 5 30	$\mathbf{PP}$	
Riverview		26.1	207	i5 43 .	+ 6	1 10 18	+11	i 11 32	SSS	e 12.5
Arapuni	E.	28.4	163			e 11 24?	+39		-	
Kaimata		31.8	172	6 29	+ 1					
Honolulu		48.5	49	e 8 53	+ 7	e 16 2	+14	e 10 13	PcP	e 22.4
Perth		50.0	237			i 16 39	+30	i 23 29	Q	
Batavia		57.9	270	i9 38	-18	17 22	-33	2000 - 10 an		
Vladivostok		62.0	333	i 10 30	+ 6	i 18 56	+ 8	12 48	$\mathbf{PP}$	
Berkeley		83·3	51	112 30 a	0	e 24 0	PPS	i 12 44	$\mathbf{pP}$	e 38·3
Santa Clara		83.3	51	e 12 44	+14		-	_		e 38.6
College		83.5	19	1 12 32	+ 1					
Lick	Z.	83.5	51	i 12 31	0			i 14 41	1	
Shasta Dam		84.1	47	1 12 34	0			i 15 47	PP	
Mineral	Z.	84.6	48	i 12 35	- 1			e 15 50	PP	

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

		Δ	Az.		λ.	0-C.	s.	0 – C.	Su	pp.	L
Fresno	z.	84.8	<b>5</b> 1	m. i 12	8. 36	8. - 1	m. s.	s	m. s. i 12 50	pP	m
Pasadena Reno	10,525	85·3 85·6	54 50	i 12 i 12	39 a 42 a	-1 + 1			i 12 52 i 12 55 a	$\mathbf{pP}$	e 35
Riverside Tinemaha	E.	85·8 86·0	54 52	e 12 i 12	42 43 a	Ó			e 12 56 112 59	pP pP	्र स
Boulder City		88.4	53	1 12	55	0	S	-	e 16 33	$\mathbf{PP}$	-
Pierce Ferry Tucson		89·1 90·7	53 58	i 12 i 13	58 6	00	e 23 30	(-71)	e 16 35 e 16 28	PP PP	e 40
Hungry Horse Logan		$92.1 \\ 92.1$	41 48	i 13 e 13	$12 \\ 10$	$-\frac{0}{2}$		Ξ	e 16 50 e 16 26	$\hat{\mathbf{PP}}$ $\mathbf{PP}$	-
Bombay	N.	95·8	288	e 19	24	PPP	e 24 59	+14	0.0000 - 1924 S <del>anta</del>		-
La Paz Helwan	N. Z.	$120.5 \\ 133.4$	$117 \\ 300$	e 18 e 19	$\frac{46}{22}$	$\begin{bmatrix} - 8 \\ + 4 \end{bmatrix}$			i 21 57	$\overline{PP}$	2
Stuttgart Kew	z.	$137.5 \\ 138.1$	$336 \\ 346$	e 19	29	(+ <u>3</u> ]	e 23 10 e 47 24?	SKP	e 22 14 e 71 24 ?	$\hat{\mathbf{PP}}$	e 77-
Strasbourg Salo		$138.2 \\ 139.4$	337 332	e 19 e 20	34	[+, 7]		-	the second se	PKP	e 65.
Paris		139.8	342		14 34	$PKP_{1}$ [+ 4]		_	e 23 14 e 23 9	SKP	e 75.
Rome Tortosa	N	$141 \cdot 2 \\ 147 \cdot 9$	$\frac{327}{337}$	e 19 20	47	[+14] + 17]	$e 41 46 \\ 48 47$	SSP	e 35 16	PPS	e 69·
				257-2763 			40 41	000			75 1
Toledo Almeria	z.	$149.8 \\ 152.1$	$343 \\ 339$	i 19 19	57 57	[+10] [+6]	43 57	ss	$e \begin{array}{ccc} 23 & 28 \\ 24 & 1 \end{array}$	PP PP	89· 60·
Granada		$152 \cdot 2$	341	i 20	2k	[+11]	44 21	SSP	the second s	pPKP	75.
Tamanrasset	Z.	157.5	305	i 20	2a	[+ 4]			e 20 39	PKP.	

Pasadena ePPZ = 16m.8s. Reno ePPZ = 16m.14s., eE = 16m.22s., iN = 16m.29s. and 17m.0s.

Tucson i = 13m.18s.

Logan i = 13m.25s.

2

Stuttgart eZ = 20m.0s. Toledo iZ = 20m.17s., ePPZ = 24m.2s. Almeria PKP, = 20m.29s., PPP = 27m.37s., SKSP = 34m.17s., PPS = 36m.3s. Granada pPKP, = 20m.54s., iPP = 23m.57s., pPP = 24m.21s., PPP = 27m.33s., SKSP = 33m.51s. Tamanrasset iZ = 20m.15s. and 20m.50s., eZ = 21m.17s. Long waves were also recorded at Auckland, Wellington, Kodaikanal, and other American and European stations.

1.0

18

28. at 22.

#### Feb. 19d. 20h. Caribbean.

Balboa Heights eP = 24m.14s., iS = 25m.18s.Bogota iP = 24m.33s., iS = 25m.27s., i = 25m.45s.,  $iS^* = 26m.0s.$ ,  $iS_g = 26m.25s.$ La Paz PE = 28m.43s., iEN = 36m.0s.Tucson iP = 30m.18s., e = 30m.32s.Pierce Ferry iP = 30m.49s., i = 31m.3s.Boulder City eP = 30m.54s., i = 31m.6s.Tinemaha iPZ = 31m.16s., iZ = 31m.33s.Hungry Horse iP = 31m.36s., i = 32m.45s.Shasta Dam iP = 31m.45s.Stuttgart eZ = 34m.20s. and 34m.30s.Long waves were recorded at Bermuda.

524 NO 10

1

10.00

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

# 1949

80

Feb. 19d. Readings also at 0h. (Auckland, Wellington, Clermont-Ferrand, and near Mizusawa), 1h. (Boulder City, Pierce Ferry, Shasta Dam, Hungry Horse, near College, near Andijan, Frunse, Kulyab, Murgab, Obi-garm, Samarkand, and Stalinabad), 2h. (Pasadena, Tinemaha, Tucson, Boulder City, Pierce Ferry, Shasta Dam, Berkeley, Mineral, Hungry Horse, College, Logan, Paris, Strasbourg, Stutt-gart, Tamanrasset, and near Apia), 3h. and 4h. (Hungry Horse), 6h. (Tucson, Boulder City, Pierce Ferry, Hungry Horse, Logan, and near Ashkabad (3)), 7h. (near Zürich), 12h. (near Hungry Horse), 14h. (Strasbourg, Stuttgart, College, Murgab, near Kulyab, and Stalinabad), 16h. (near Ashkabad), 17h. (near Zürich), 12h. (near Hungry Horse), 14h. (Strasbourg, Stuttgart, College, Murgab, near Kulyab, and Stalinabad), 16h. (near Ashkabad), 17h. (near Zürich), 18h. (Boulder City, Pierce Ferry, Shasta Dam, and near Tucson (2)), 19h. (Ashkabad and near Malaga), 20h. (near Murgab, Obi-garm, and near Ashkabad), 21h. (near Ashkabad), 22h. (Boulder City, Pierce Ferry (2), Shasta Dam (2), Hungry Horse (2), Stuttgart (2), Ashkabad, Almata, near Andijan (3), Frunse, Kulyab, Murgab, Obi-garm (2), Samarkand, Stalinabad, Tashkent, Tchimkent, and near Tacubaya).

Feb. 20d. 11h. Explosion near Nordhausen, Germany.

Location 51°33'N. 10°47'E. The time at origin is approximately 11h. 59m. 10s., the direction cosines (geocentric) of the position are +.6134, +.1168, +.7811.

Seven stations record near earthquake phases generated by this explosion :

Jena ( $\triangle = 0^{\circ} \cdot 8$ ) iP_gEN = 59m.26s., iN = 59m.32s., iS_gN ? = 59m.37s. Collmberg ( $\triangle = 1^{\circ} \cdot 4$ ) eP_gZ = 59m.36s., iE = 59m.40s., iS_g = 59m.54s., iZ = 59m.58s. Stuttgart ( $\triangle = 2^{\circ} \cdot 9$ ) eP = 60m.6s., eP_g = 60m.10s., eS = 60m.44s., i = 60m.46s., iS_g = 60m.51s., e = 60m.56s. Strasbourg ( $\triangle = 3^{\circ} \cdot 5$ ) eP_g = 60m.19s., eS_g = 61m.10s., e = 61m.19s. Ravensburg ( $\triangle = 3^{\circ} \cdot 8$ ) eZ = 60m.24s.? Zürich ( $\triangle = 4^{\circ} \cdot 4$ ) eP ? = 60m.29s., eS = 61m.30s. Basle ( $\triangle = 4^{\circ} \cdot 5$ ) e = 60m.35s.

Feb. 20d. Readings also at 1h. (Copiapo, Hungry Horse, and Shasta Dam), 4h. (Strasbourg, Hungry Horse, and near Tacubaya), 5h. (Pierce Ferry, Shasta Dam, and near Mizusawa), 6h. (Boulder City, Pierce Ferry, Hungry Horse, Andijan, Tchimkent, near Kulyab, Murgab, Obi-garm, Stalinabad, and near Balboa Heights), 7h. (near Ashkabad), 10h. (Tinemaha, Pasadena, Tucson, Boulder City, Pierce Ferry, Shasta Dam, Logan, Hungry Horse, College, Ottawa, Collmberg, Stuttgart, and near Alicante (2)), 11h. (near Klyuchi), 12h. (near Istanbul), 15h. (Tucson and near Batavia), 16h. (Pierce Ferry and Shasta Dam), 17h. (near Ashkabad), 18h. (Pierce Ferry, Shasta Dam, and Hungry Horse), 21h. (near College), 23h. (Ashkabad).

Feb. 21d. 11h. 39m. 35s. Epicentre 8°.9N. 39°.8W.

		Δ	Az.	F	<b>)</b> .	0 – C.	s.	<b>0</b> −С.	Su	op.	L.
		0	•	m.	s.	s.	m. s.	8.	m. s.	579A)	m.
San Juan		27.2	294	-	-		(e 10 41)	+16			e 10.7
Bermuda		32.8	319	e 7	33	$\mathbf{PP}$	·····				e 14·2
Bogota		34.3	266	e 6	48	- 2	e 12 19	+ 2	e 14 55	SSS	18.4
La Paz		37.7	228	i7	19a	0	i 13 15	+ 5	i 8 53	PP	19.1
Huancayo		<b>41</b> ·0	240	e 7	45	- 1	e 13 47	-12			e 20·1
Philadelphia		44.1	321	e 9	4	+52	e 14 53	+ 8			e 20.6
La Plata	N.	46.8	200	17	13		22 25	+ 8 Q			25.3
Ottawa	z.	47.7	327	e 8	44	+ 4	2	-			
Cleveland	628	49.0	319	i 8	52	+ 4 + 2 + 2	e 15 57	+ 2	i9 1	$\mathbf{pP}$	
Clermont-Ferran	d	51.9	38	i 9	14	+ 2					25-4
Paris		53.2	34	i 9	23	+ 1	e 16 27	-25			e 25·4
Kew		53.3	30	- m <u>-20</u>	100500	-		_	e 22 251	SSS	
St. Louis		54.0	312	e 9	26	- 2	e 17 7	+ 4	0.000		1
Strasbourg		56.1	37		43	0					
Stuttgart	z.	57·0	37	e 9	50	0					
Tueson		69.3	302	e 11	11	<u> 0</u> .	_			_	e 39·0
Logan		70.7	312	e 11	18	- 2		-			
Pierce Ferry		72.1	305	e 11	28	0					
Boulder City		72.7	305	e 11	33	+ 1					
Hungry Horse		72.9	318	e 11	31	- 2	-				

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1949					81					
		Δ	Az.	Р.	0-C.	s.	0-C.	Su	pp.	L.
		0		m. s.	8.	m. s.	8.	m. s.		m,
Pasadena		75.5	303	0 11 48	0					
Tinemaha	Z.	75.5	306	e 11 41	- 7					
Reno	z.	76.7	309	e 12 3	+ 8					
Mineral	Z.	78.1	310	e 12 4	+ 2					=
Shasta Dam	1.000	78.7	310	e 11 17	-49					
College		89.5	337	i13 1	+ 1		1			

E.

Additional readings :---La Paz iZ = 8m.35s. Cleveland eSN = 16m.1s. Shasta Dam i = 12m.5s.

 $\delta = 0$ ; A = +.0723, B = +.7512, C = +.6561;h = -2: G = +.063, H = +.653, K = -.755.D = + .995, E = - .096;0 - C. Ρ. 0 – C. s. Az. Δ 8. 8. m. s. m. s. ۰**۵**-• i 2 40 3 16 e 1 32 293 3 Almata 6.0 0 -_ 286 7 7.6 e 1 52 3 Frunse +++ + 50 4 3 2 8.6 254 2 13 Murgab 13 e 2 271 9.2 17 Andijan i4 50 e 2 2 281 -Tchimkent 11.2 41 276 e 2 46? Tashkent 11.4 1 i 2 48 263 11.6 Obi-garm 2 5 20 +1411.8 259 Kulyab + 2 2 e 2 59 5 23 12.4 263 Stalinabad --------13.4 e 3 13 1 269 Samarkand e 4 12 8 40 5 e 7 109 -11 43  $\pm$ Irkutsk 17.5 313 47.7 0 Copenhagen 306 45 2 e 8 Collmberg 48.6-...... 2 51.8 305 e 9 10 Stuttgart -++ ---z. 12 66.7 22 i 10 56 College i 13 12 Hungry Horse 89.3 1

Feb. 21d. 16h. 38m. 32s. Epicentre 41°.2N. 84°.5E. Given by U.S.S.R.

Additional readings :---Copenhagen 8m.45s. Collmberg eEN = 8m.56s.Long waves were recorded at Bombay and Calcutta.

- Feb. 21d. Readings also at 0h. (Logan), 2h. (Tamanrasset, Helwan, and Shasta Dam), 6h. (Kulyab and near Obi-garm), 7h. (Santa Lucia and near Bogota), 8h. (Kulyab, Stalinabad, near Obi-garm, and near Ashkabad), 9h. (near Copiapo), 10h. (Boulder City and Hungry Horse), 11h. (Ashkabad and near Pierce Ferry), 12h. (Ashkabad), 14h. (near Triest), 17h. (Copiapo, Hungry Horse, near College, near Ottawa, near Obi-garm and near Tchimkent), 18h. (Andijan and near Obi-garm), 19h. (Kaimata, near Wellington, New Plymouth, Auckland and Tuai), 20h. (near Tucson (2)), 21h. (near College), 22h. (Hungry Horse and Kew), 23h. (Pierce Ferry and near College).
- Feb. 22d. Readings at 0h. (Helwan and near College), 4h. (near Ashkabad), 7h. (near Klyuchi), 8h. (near Istanbul), 9h. (Hungry Horse and near College), 10h. (Apia, Brisbane, Mount Wilson, Pasadena, Tinemaha, Tucson, Boulder City, Pierce Ferry, Hungry Horse, College, Shasta Dam, Kulyab, near Obi-garm and Stalinabad), 11h. (near Boulder City, Pierce Ferry, and near Ashkabad) 12h. (Hungry Horse), 13h. (near Ashkabad and near Klyuchi), 14h. (near Ottawa and near Ashkabad), 16h. (Boulder City, Pierce Ferry, Shasta Dam, and Hungry Horse (2)), 17h. (Rome, Zagreb, near Messina and Taranto), 18h. (near Mizusawa), 19h. (near Tucson), 20h. (Hungry Horse and near Tucson (2)), 21h. (near Tucson), 23h. (Stuttgart, Kaimata, near New Plymouth, Wellington, and Tuai).

6

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

#### 1949

82

Feb. 23d. 15h. 28m. 27s. Epicentre 34°.5N. 26°.5E. Given by Strasbourg.

 $A = +.7391, B = +.3685, C = +.5638; \delta = -7;$ h = 0;D = +.446, E = -.895; G = +.505, H = +.252, K = -.826.0 – C. S. 0-C. **P**. Az. Supp. Δ s. m.s. - 2 2 44 ? e 4 9 m. s. 8. m. s. 0 - 2 - 1 e 1 33  $6.2 \\ 9.6$  $137 \\ 296$ Helwan e 2 9 Pr e4 3a Messina - 3

Chur		17.8	320	e 4	13	+ 2				-
Zürich		18.6	320	e 4	20 a	- 1	e8 7	+21		-
Stuttgart	z.	19.2	325	e 4	29	+ 1			1 <del></del>	
Basle		19.3	320	e 4	29	0				
Neuchatel		19.3	318	e 4	27	- 2	******			-
Jena		19.7	333	e 4	36	+ 2	111700		1.00	1.00
Strasbourg		19.8	323	i 4	37	+ 2	-	1.00	e 4 56	PP
Besançon		20.0	317	e 5	0?	+23			17 - 29 (1773) - 1777	
Clermont-Ferra	and	21.1	310	e 4	48	0	i6 52	?		
Tamanrasset	Z.	21.8	244	i4	54 a	- 2	100	_	e 5 15	$\mathbf{PP}$
Paris	2000	22.8	317	i 5	6	+ 1	1. 19 March 1.	<u> </u>	i540	PP
Granada		24.5	286	i 6	48a	8				
Ottawa	Z.	73.9	314	e 11	41	+ 2				
College		80.9	357	i 12	19	+ 2		1.000		: <del></del> .
Hungry Horse		90.3	335	i 13	6	+ 2				

Additional readings :— Helwan eZ =1m.42s. and 1m. 54s.,  $S_gN = 3m.21s$ . Stuttgart eZ =4m.46s. and 5m.2s. Strasbourg e =4m.53s., ePP =4m.59s. Besançon e =5m.12s.?, 5m. 39s.,? and 6m.3s.?

Feb. 23d. 16h. 8m. 7s. Epicentre 42°.2N. 84°.1E.

 $A = +.0764, B = +.7391, C = +.6692; \delta = -7; h = -2;$ D = +.995, E = -.103; G = +.069, H = +.666, K = -.743.

		Δ	Az.	Р.	0-C.	<b>s.</b>	0 – C.		pp.	L.
Almata Frunse Murgab Andijan Tchimkent		5.3 7.1 8.6 8.9 10.7	$284 \\ 279 \\ 247 \\ 264 \\ 275$	m. s. i 1 24 e 1 47 2 8 i 2 12 i 2 36	s. + 2 + 1 + 1 - 1 + 0 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2	$     \begin{array}{r}       m. \ s. \\       i \ 2 \ 36 \\       3 \ 17 \\       \hline       i \ 4 \ 48 \\       \hline       i \ 4 \ 48 \\     \end{array} $	s. s• + 7 + 9	m. s.		m. 
Tashkent Kulyab Stalinabad Dehra Dun Samarkand	N.	$11 \cdot 1$ $11 \cdot 8$ $12 \cdot 2$ $12 \cdot 8$ $13 \cdot 2$	$270 \\ 253 \\ 258 \\ 204 \\ 265$	$i 2 39 \\ i 2 48 \\ i 2 55 \\ i 2 38 \\ i 3 8$	$- \frac{4}{5}$ $- \frac{3}{-28}$ - 3	i 4 48 e 4 14	$-\frac{1}{\overline{76}}$			e 6.0
Irkutsk Calcutta Ashkabad Sverdlovsk Bombay	E.	$\begin{array}{c} 17 \cdot 0 \\ 19 \cdot 9 \\ 20 \cdot 2 \\ 21 \cdot 0 \\ 25 \cdot 1 \end{array}$	$\begin{array}{r} 47 \\ 168 \\ 266 \\ 323 \\ 206 \end{array}$	i 4 5 i 4 32 a i 4 37 ? i 4 49 5 28	+ 4 - 4 - 2 - 2 + 2 - 2 - 2 - 0	$i \overline{8} 14$ $i \overline{8} 39$ i 9 52	-1 + 2 + 1 + 1	i 4 54 	PP PP	12.0
Poona Hyderabad Baku Grozny Nanking	N.	$25 \cdot 2 \\ 25 \cdot 2 \\ 25 \cdot 7 \\ 28 \cdot 0 \\ 29 \cdot 3$	$203 \\ 192 \\ 278 \\ 286 \\ 99$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	-2 -4 +28 +28 +28 -95	i 9 27 9 47 	$-\frac{25}{5}$ $-\frac{94}{94}$		PP PeP	11.8
Erevan Piatigorsk Leninakan Sotchi Kodaikanal	E.	29.7 29.8 30.0 32.3 32.4	280 288 282 288 192	e 6 13 e 6 10 i 6 11 i 6 34 e 6 52	+ 3 - 1 - 1 + 1 + 18	$   \begin{array}{c}     11 \\     - \\     11 \\     48   \end{array} $	+ 6 	1111		
Moscow Vladivostok Theodosia Colombo Yalta	E.	$32.7 \\ 34.8 \\ 35.0 \\ 35.4 \\ 35.9 \\$	$311 \\ 73 \\ 292 \\ 187 \\ 291$	$     \begin{array}{r}       6 & 41 \\       i & 6 & 56? \\       e & 6 & 54 \\       7 & 12 \\       i & 7 & 4 \\     \end{array} $	+ 5 + 2 + 2 + 12 + 12 + 12 = 0	$ \begin{array}{r} 11 & 55 \\ i & 12 & 238 \\ \hline 12 & 35 \\ i & 12 & 46 \end{array} $	$+ \frac{3}{2}$ + $\frac{1}{4}$			19·2

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1

E.

1949				83			202331
	≙	Az.	P. m. s.	о <u>–</u> с.	S. 0-C m. s. s.	m. s.	L. m.
Simferopol Ksara Helsinki Osaka Istanbul	35.9 38.5 39.6 40.5 40.5	$292 \\ 273 \\ 319 \\ 83 \\ 288$	e 7 5 e 7 30 i 7 36 a e 7 42 7 38	+ 1 + 4 + 1 + 1 - 4	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	e 9 8 PP	e 18-9
Cernauti Owase Yuzno-Sakhlinsk Sapporo Bucharest	$40.6 \\ 41.1 \\ 41.2 \\ 41.4 \\ 41.5$	$300 \\ 83 \\ 63 \\ 68 \\ 294$	e 7 52 e 7 50 7 53 7 48 e 7 57	+ 93 + 35 + 7	$\begin{array}{r} & 14 & 3 & + & 2 \\ e & 14 & 3 & + & 1 \\ 14 & 3 & + & 1 \\ 14 & 17 & + & 12 \\ i & 14 & 18 & + & 11 \end{array}$	9 20 PP 	19.9
Campulung Mizusawa Tokyo Kakioka Upsala	$42.0 \\ 42.7 \\ 43.1 \\ 43.2 \\ 43.3$	$295 \\ 74 \\ 80 \\ 79 \\ 318$	e 8 1 8 4 8 10 8 5 i 8 6a	+ 7 + 4 + 6 + 1 + 1	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	e 9 39 PP 	15·8 e 20·9
Helwan Skalnate Pleso Sofia Raciborzu Belgrade	$43.8 \\ 44.0 \\ 44.0 \\ 45.0 \\ 45.2$	$271 \\ 303 \\ 292 \\ 304 \\ 296$	i 8 8 8 a e 8 25 i 8 15 e 8 21 i 8 19 k	-1 +14 +4 +2 -1	i 14 37 - 3 14 55 + 12 e 15 17 + 3 i 18 35 SS	$\begin{array}{ccccccc} 9 & 51 & PP \\ e & 10 & 14 & PP \\ i & 9 & 58 & PP \\ e & 10 & 11 & PP \\ e & 10 & 11 & PP \end{array}$	24·3 e 19·9
Budapest Kalossa Ogyalla Lund Copenhagen	$45 \cdot 2 \\ 45 \cdot 6 \\ 45 \cdot 7 \\ 46 \cdot 4 \\ 46 \cdot 8$	$300 \\ 300 \\ 301 \\ 313 \\ 313$	8 24 8 28 e 8 30 8 32 i 8 34	+ 4 + 4 + 6 + 2 + 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10 13 PP 10 19 PP 	e 24 · 4 24 · 4 23 · 9
Prague Potsdam Zagreb Collmberg Cheb	$47.3 \\ 47.4 \\ 47.8 \\ 47.8 \\ 47.8 \\ 48.5$	$305 \\ 308 \\ 299 \\ 307 \\ 305$	i 8 33 e 8 31 e 8 39 e 8 40 8 51	-47 -72 -17 -17 +5	$\begin{array}{cccccccc} e & 15 & 29 & - & 2 \\ i & 15 & 30 & - & 2 \\ e & 19 & 21 & & SS \\ e & 15 & 36 & - & 2 \\ e & 15 & 54 & + & 6 \end{array}$	i 10 35k PP i 10 34 PP e 10 34 PP	21·2 e 21·4
Jena Taranto Bergen N. Triest Padova	$48.7 \\ 49.0 \\ 49.3 \\ 49.3 \\ 51.0$	$306 \\ 292 \\ 321 \\ 299 \\ 298 \\ 298 \\$	$\begin{array}{r} e & 8 & 48 \\ 8 & 52 \\ i & 8 & 52 \\ 9 & 6 \\ \end{array}$	$+ \frac{0}{2} - \frac{1}{0}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	e 10 43 PP 	e 21.6 e 25.2 19.7 27.9
Stuttgart Messina Bologna Salo Chur	$51.0 \\ 51.2 \\ 51.3 \\ 51.4 \\ 51.5$	$305 \\ 291 \\ 299 \\ 301 \\ 302$	e 9 5 e 9 12 e 9 9 a 9 13 a e 9 9	-151 + 140	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	i 11 9 PP e 11 7 PP i 11 13 PP i 11 11 PP	e 23·9 e 23·3
Florence Rome Prato Catania Strasbourg	$51.7 \\ 51.7 \\ 51.7 \\ 51.9 \\ 51.9 \\ 51.9$	$298 \\ 295 \\ 296 \\ 290 \\ 305$	i 9 11a i 9 10a i 9 11 e 9 12 i 9 13a	- 1 0 1 0 0 0 0 + 1	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	i 11 12 PP i 11 11 PP i 11 11 PP	e 23.9 25.8 e 23.9 25.9
Zürich De Bilt Basle Batavia Pavia Z.	$51.9 \\ 52.1 \\ 52.4 \\ 52.4 \\ 52.4 \\ 52.4$	$303 \\ 311 \\ 303 \\ 151 \\ 301$	e 9 11 a i 9 15 a e 9 17 a e 8 53 i 9 16	-1 + 1 + 1 + 1 + -23 = 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	e 20 13 SS e 11 12 PP 	e 23·9 28·9
Neuchatel Besançon Aberdeen E. Durham N. Edinburgh E.	$53 \cdot 1 \\ 53 \cdot 5 \\ 54 \cdot 0 \\ 54 \cdot 7 \\ 55 \cdot 0$	$303 \\ 304 \\ 318 \\ 315 \\ 317 \\ 317 \\ $	i 9 27 i 9 49? i 8 44 i 9 35 9 27	$^{+6}_{+25}_{-44}_{+2}_{+8}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{c ccccccc} i & 11 & 24 & PP \\ i & 11 & 10 & PP \\ i & 11 & 43 & PP \\ i & 11 & 31 & PP \\ 11 & 31 & PP \end{array}$	$e 21 \cdot 1 \\ 24 \cdot 0 \\ 28 \cdot 7 \\ 25 \cdot 4$
Paris Kew Marseilles Tunis Scoresby Sund	55.0 55.4 55.7 55.7 55.9	307 311 300 291 338	i 9 35 i 9 40 e 9 40 e 9 43 9 44 a	$+ \begin{array}{c} 0 \\ 2 \\ 0 \\ + \\ 3 \\ + \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	i 11 41 PP i 11 44 PP e 11 54 PP e 11 47 PP 11 52 PP	e 25.9 e 29.9 25.4 24.9
Clermont-Ferrand Jersey E. Barcelona Reykjavik Bagneres	$56.0 \\ 57.5 \\ 58.7 \\ 59.2 \\ 59.2 \\ 59.2 $	$303 \\ 310 \\ 300 \\ 331 \\ 302$	$i \begin{array}{cccc} i & 9 & 43 \\ i & 9 & 56 \\ 10 & 5 \\ e & 9 & 53 \\ e & 10 & 7 \end{array}$	$^{+}_{-12}^{3}_{+2}^{3}_{+2}$	$\begin{array}{cccccccccccccc} i & 17 & 42 & +12 \\ i & 17 & 59 & + & 9 \\ & 18 & 9 & + & 3 \\ e & 24 & 17 & SSS \\ e & 18 & 17 & + & 5 \end{array}$	i 11 50 PP 21 52 SS 13 35 PPP e 21 43 SS	25.4 25.9 e 29.9 27.9

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1949					84			
		^	Az.	Р. m. s.	0 - C. s.	S. 0-C. m. s. s.	Supp. m. s.	L. m.
Tortosa Algiers Alicante Toledo Almeria	z.	$60.1 \\ 60.5 \\ 62.1$	$299 \\ 294 \\ 298 \\ 300 \\ 297$	$\begin{array}{c} \mathbf{i} \ 10 \ 11 \\ \mathbf{i} \ 10 \ 14 \\ 10 \ 22 \\ \mathbf{i} \ 10 \ 35 \\ \mathbf{i} \ 10 \ 35 \end{array}$	$-3 \\ + 1 \\ -4$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12 28 PP 12 27 PP 10 42 pP 11 11 PcP 13 14 PP	27.8 25.5 e 30.2 30.7 36.2
Granada Malaga College Tamanrasset Lisbon	N Z.	65.8	$298 \\ 298 \\ 22 \\ 282 \\ 302$	$\begin{array}{cccccccc} i & 10 & 41  k \\ i & 10 & 53 \\ e & 10 & 49 \\ e & 10 & 54 \\ i & 11 & 0  a \end{array}$	-1 + 6 + 0 + 1 + 1	$\begin{array}{cccccccccc} i & 19 & 44 & PS \\ i & 19 & 43 & +11 \\ i & 19 & 47 & +12 \\ e & 19 & 51 & + & 3 \\ 19 & 50 & - & 5 \end{array}$	13       27k       PP         e       13       33       PP         e       13       14       PP         e       13       28       PP         13       31       PP	33.0 35.7 e 27.8 32.0
Tananarive Ivigtut Sitka Saskatoon Victoria	z.	$69.5 \\ 69.9 \\ 75.3 \\ 85.6 \\ 86.5$	$218\\338\\21\\7\\18$	e 11 15 i 11 14 i 11 52 12 43 12 55	$+ 3 \\ - 1 \\ + 5 \\ + 9$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	1350PP1355PP1355PP2410PPP2419PS2953SSP	e 33.3 33.9 e 36.1 44.9 53.9
Seattle Seven Falls Hungry Horse Shawinigan Falls Ottawa	E.	88.4	$18 \\ 344 \\ 12 \\ 344 \\ 345$	$\begin{array}{ccccccc} e & 12 & 59 \\ & 12 & 56 \\ i & 12 & 55 \\ e & 13 & 0 \\ & 13 & 8a \end{array}$	$+ 8 \\ + 1 \\ 0 \\ + 1 \\ + 1$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	e 29 13 SS 24 51 PS i 13 17 PcP 23 49 SKS	e 36·1 40·9 42·9
Butte Bozeman Harvard Weston Rapid City	N. E.	$91.5 \\ 92.9 \\ 92.9$	$11 \\ 10 \\ 341 \\ 341 \\ 5$	i 13 9 e 13 9 i 13 16 i 13 15 i 13 24	$+ 2 \\ - 1 \\ 0 \\ - 1 \\ + 3$	$\begin{array}{cccccccccccccc} e & 23 & 51 & \{+ & 2\} \\ e & 24 & 12 & + & 4 \\ e & 25 & 29 & PS \\ i & 24 & 3 & \{- & 1\} \\ e & 25 & 38 & PS \end{array}$	e 16 32 PP e 17 18 PP e 33 533 SSS e 17 7 PP i 18 32 PPP	e 38.0 e 38.1 e 44.3 e 38.2
Brisbane Shasta Dam Mineral Fordham Logan	z.	$\begin{array}{r} 94 \cdot 0 \\ 94 \cdot 1 \\ 94 \cdot 6 \\ 94 \cdot 9 \\ 95 \cdot 2 \end{array}$	$^{124}_{\ 20}_{\ 19}_{\ 342}_{\ 12}$	i 13 22 i 13 23 i 13 26 i 13 28 i 13 26 i 13 26	$^{+1}_{+2}_{+3}_{-1}$	i 23 58 [+2] e 24 16 $\{-2\}$ e 24 14 $\{-2\}$	$\begin{array}{cccccccccc} i & 17 & 8 & PP \\ i & 17 & 11 & PP \\ i & 17 & 17 & PP \\ i & 17 & 20 & PP \\ e & 17 & 20 & PP \\ e & 17 & 20 & PP \end{array}$	e 63 · 9 44 · 9 e 39 · 2
Cleveland Pennsylvania Reno Philadelphia Chicago	E.	$95.7 \\ 95.8 \\ 95.8 \\ 96.1 \\ 96.1 \\ 96.1$	$349 \\ 346 \\ 18 \\ 343 \\ 354$	i 13 30 e 13 33 a e 13 33 e 13 33	+1 +4 +2 +2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	i 17 22 PP e 31 35 SSP e 24 21 SKKS e 26 21 SP e 17 27 PP	e 56.0 e 43.8 e 38.6
Salt Lake City Berkeley Lincoln Santa Clara Lick	Z. E. Z.	96.2 96.8 97.3 97.3 97.4	$12 \\ 20 \\ 0 \\ 20 \\ 20 \\ 20 \\ 20 \\ 10 \\ 1$	e 13 31 i 13 37 a e 13 45 i 27 11 i 13 39	0 + 3 + 9 PPS + 2	e 31 33 SS e 24 13 [ 0]	e 17 29 PP e 35 1 SSS e 49 30 Q i 17 40 PP	e 41.6 e 43.4 e 56.6
Riverview Fresno Tinemaha Florissant St. Louis	z. z.	97.5 98.5 98.5 99.2 99.4	$130 \\ 19 \\ 17 \\ 355 \\ 355$	e 13 36 e 13 37 i 13 45 e 13 47 i 13 42	-15 -53 ++24	e 24 15 $[+1]$ e 24 20 $[-3]$ i 24 21 $[-3]$	e 17 46 PP i 17 48 PP e 17 47 PP i 17 42 PP	e 48·2
Boulder City Pierce Ferry Bermuda Pasadena Riverside	z.	$100.3 \\ 100.3 \\ 100.4 \\ 101.3 \\ 101.7$	$15 \\ 14 \\ 333 \\ 18 \\ 18 \\ 18 \\ 18 \\ 18 \\ 18 \\ 1$	i 13 52 i 13 52 e 14 3 i 13 57 e 13 57	$^{+2}_{+2}_{+13}_{+3}_{+1}$	$e_{24} \underbrace{\begin{array}{c} 43 \\ 43 \\ 24 \\ 43 \end{array}} \begin{bmatrix} +14 \\ +10 \end{bmatrix}$	i 20 40 PPP i 17 58 PP e 18 6 PP i 18 8 PP e 30 6 PKKP	e 41 ·9 e 36 ·9
Palomar Columbia Tucson Mobile San Juan	z.	$102 \cdot 4$ $103 \cdot 0$ $104 \cdot 7$ $107 \cdot 1$ $113 \cdot 7$	$17 \\ 347 \\ 12 \\ 353 \\ 328$	e 13 58 e 18 16 e 14 12 13 45 e 19 50	-1 PP +3 PP PP	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	i 18 34 PP e 18 52 PP e 22 12 PPP	e 45.2 e 49.6 e 42.9 e 45.0
Auckland Fort de France Tacubaya Bogota Huancayo	N.	$114.0 \\ 114.9 \\ 118.6 \\ 129.3 \\ 145.0$	$     \begin{array}{r}       118 \\       321 \\       330 \\       322 \\       322     \end{array} $	$\begin{array}{r} 23 & 38 \\ e & 20 & 2 \\ 1 & 19 & 15 \\ 1 & 19 & 43 \end{array}$	1 PP [+ 5] [+ 4]	42 29 7 e 28 40 PS e 26 18 [+33] e 22 23 PKS e 30 7 {+17}	$ \begin{array}{c}             = & - \\                                  $	57.9 e 70.0 e 81.9 e 58.9
La Paz La Plata Santa Lucia	E. N. N.	$145.0 \\ 149.4 \\ 149.4 \\ 158.3$	$307 \\ 271 \\ 271 \\ 285$	i 19 42 a 19 47 19 51 20 25	$[ + 3] \\ [ + 1] \\ [ + 5] \\ [ + 26] \\ [ + 26] \\ [$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	i 19 47 pPKP 23 17 PP 23 35 PP 24 18 PP	67 · 1 88 · 4 81 · 3 74 · 9

For Notes see next page,

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

#### 1949 85 NOTES TO FEBRUARY 23d. 16h. 8m. 7s. Additional readings :---Bombay iSSEN =10m.52s.Poona QN = 10m.37s., SSSN = 11m.8s., ScSN = 16m.7s.Hyderabad PPN =5m.51s., SSN =10m.38s.Helsinki eSS = 15m.46s., eSSS = 16m.46s.Bucharest iEN =8m.0s., iPcP?EN =10m.11s., iSN =14m.21s., iN =15m.33s., iSS?E = 17m.24s., iSS?N = 17m.29s., iS_cSE = 17m.59s.Campulung eE = 8m.23s.

Upsala iE = 8m.58s., eN = 16m.53s., eE = 17m.24s., iN = 17m.32s., SSE = 17m.52s.? Helwan eN =8m.51s. and 9m.13s., PPN =9m.51s., PePN =9m.56s., PPPN =10m.25s., iN =12m.51s., eN =13m.41s. and 14m.20s., iN =17m.59s. Sofia SS = 18m.10s., ScS = 19m.26s., SSS = 23m.13s.Raciborzu eN =8m.28s., eZ =9m.29s.,  $eP_cP_iZ = 10m.1s.i$ , eZ = 10m.55s.,  $ePPP_iEN =$ 10m.58s., eZ = 11m.39s., e = 18m.18s., eN = 19m.41s., eE = 19m.57s., iN = 20m.14s.,iSS?N = 20m.39s.Budapest eN =10m.25s., PPPE =10m.41s., PSE =15m.19s., eN =15m.35s. and 17m.12s., SSE = 17m.15s., SSN = 18m.34s., SSSE = 19m.37s., eSSSN = 19m.43s.Kalossa eN = 10m.23s., eE = 11m.10s., eN = 11m.23s., iN = 11m.40s.Copenhagen 18m.58s., SSS = 19m.56s., 23m.19s. Potsdam iPZ = 8m.38s.a, iPPPN = 11m.37s., iPSZ = 15m.58s., iSSE = 19m.18s., iSSZ = 19m.22s.; many other readings given without phase. Zagreb i =8m.46s., iZ =8m.49s., iEZ =9m.33s., i =10m.47s., i =12m.21s., e =14m.9s., i = 19m.33s., eE = 19m.44s., eZ = 20m.44s., i = 21m.40s., e = 22m.33s., i = 23m.22s.,eE = 26m.49s., i = 26m.55s., eZ = 27m.42s., iE = 27m.53s. Collmberg iEZ = 8m.43s., iPZ = 8m.54s., iZ = 10m.38s., iE = 15m.56s., eScSiN = 18m.36s., eSSE = 19m.7s., eN = 19m.36s.Jena eE = 14m.42s., eSZ = 16m.3s., eSSN = 19m.27s., eSSE = 19m.37s.Triest  $iP_cP = 10m.9s.$ ,  $iS_cS = 18m.42s.$ , iSS = 19m.44s.Padova i = 16m.51s. Stuttgart iP = 9m.10s., iZ = 9m.13s. and 9m.17s.a, i = 11m.43s. and 12m.58s., iSS = 19m.53s., i = 20m.59s.Bologna eZ = 9m.43s., e = 20m.53s.Salo iE =10m.14s. and 10m.38s. Florence iZ = 10m.10s., eSSE = 20m.23s.Rome iPPP = 12m.5s., PS? = 16m.48s.Strasbourg  $iP_cP = 10m.28s.$ ,  $eP_cP = 10m.33s.$ , iPPP = 12m.17s.,  $iP_cS = 14m.27s.$ , iS = 14m.27s.16m.43s., iPS = 16m.51s.,  $iS_cS = 19m.3s.$ , iSS = 20m.15s., iSSS = 21m.57s. and 22m.11s.; many other readings given without phase. De Bilt  $iP_cP = 10m.34s.$ , eSS = 20m.30s.Besançon i = 10m.11s.?, 10m.17s.?, and 10m.26s.,  $iP_cP = 10m.53s.$ ?, i = 11m.41s., iPP =11m.48s.?, i=11m.57s.? and 12m.39s.?, iPPP?=12m.57s.?, e=13m.27s.? Aberdeen iSSE = 21m.24s., iSSSE = 23m.58s., iE = 25m.23s. and 27m.17s. Durham  $iP_cPN = 10m.52s.$ , iPPPN = 12m.55s.,  $iP_cSN = 14m.42s.$ , iPSN = 17m.33s.,  $iPPSN = 17m.39s., iS_{c}SN = 19m.38s.$ 

- Edinburgh PcPE = 10m.16s., PPP?E = 12m.59s., PPSE = 17m.43s., ScSE = 19m.0s.
- Paris iPcP=10m.35s. and 10m.42s., iPPP=12m.50s., iPcS=14m.46s., iS=17m.14s., iPS = 17m.31s.,  $eS_eS = 19m.20s.$ , iPKP, PKP? = 39m.43s.; many other readings given without phase.
- Kew iPcPZ=11m.57s., eS=17m.35s., ePSNZ=18m.17s., eSSN=19m.37s., eNZ= 21m.19s., e = 21m.51s., eE = 23m.51s., eQEN = 24.9m.
- Marseilles i = 10m.4s.,  $eP_cP = 10m.55s.$ , e = 11m.24s., ePP = 12m.7s., ePPP = 12m.57s., e =13m.55s., eS =17m.29s., e =18m.33s. and 19m.1s., eScS =19m.19s., e =20m.22s., eSS = 20m.59s., eSSS = 22m.55s., e = 23m.51s. and 24m.13s.
- Tunis  $iP_cP = 10m.41s.$ , ePPP = 12m.56s.,  $iP_cS = 14m.40s.$ , ePS = 17m.36s., ePPS = 12m.56s.17m.40s. and 17m.45s., eSS = 20m.45s. and 21m.0s., eSSS = 22m.55s. and 23m.9s.; many other readings given without phase.
- Scoresby Sund 12m.56s., 17m.16s., 18m.5s., and 21m.5s.
- Clermont-Ferrand iPPP = 13m.17s., iPS? = 17m.56s., iSS = 21m.26s., iSSS = 23m.47s. Jersey eE = 22m.43s.
- Barcelona SS = 22m.17s.

3

r

- Reykjavik eE = 25m.41s., eN = 26m.47s.
- Bagneres  $eP_cS = 14m.43s.$ ,  $eS_cS_{1}^{2} = 19m.37s.$
- Tortosa PcPIN =11m.10s., PPPEN =13m.48s., PcSIE =15m.7s., PPSEN =18m.38s., SSN = 22m.14s., SSSEN = 24m.53s.
- Algiers i = 10m.18s., 10m.41s., and 12m.35s., iPPP = 13m.42s.
- Alicante  $P_cP = 10m.50s.$ , PP = 12m.46s., PPP = 14m.16s.,  $S_cS = 19m.56s.$ , SS = 23m.0s., SSS = 25m.46s., Q = 26m.18s.
- Toledo z. ePP? =13m.11s., ePPP =14m.42s., eSKS =20m.23s., eSS =23m.31s., eSSS = 26m.23s.
- Almeria  $P_cP = 11m.2s$ ., PPP = 14m.50s.,  $P_cS = 15m.12s$ ., PS = 20m.12s.,  $S_cS = 20m.34s$ ., SS = 23m.50s., SSS = 26m.50s.
- Granada  $P_cP = 11m.47s.$ , PPP = 14m.44s.,  $S_cS = 20m.41s.$ , SS = 23m.56s.
- Malaga iPePN = 11m.15s., iPPPN = 15m.19s.
- College  $iP_cP = 11m.29s.$ , i = 12m.12s., eS = 19m.22s.,  $iS_cS = 20m.35s.$ , eSS = 24m.4s., ePKP, PKP? = 39m.18s.
- Tamanrasset iZ = 11m.11s.a, iPcPZ = 11m.17s.a, iZ = 11m.48s.k, ePPPZ = 15m.7s.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

.

# 1949

## 86

100

```
Lisbon iPZ =11m.3s.a, iPcPZ =11m.31s., N =14m.38s., PSEN =20m.11s., eN =21m.17s.,
        E = 22m.43s., SSN = 24m.14s., SSEN = 24m.28s., SSSEN = 27m.17s.
Tananarive PS = 20m.37s., SS = 24m.52s., SSS = 28m.11s.
Ivigtut iZ = 11m.19s., Z = 15m.20s.
Saskatoon SS = 29m.17s., Q = 36.9m.
Victoria SS = 42m.53s.?
Seattle eSKS? = 24m.1s.
Seven Falls SSE = 30m.29s.
Ottawa e = 14m.27s., PPS = 25m.23s., SSS = 30m.23s.
Butte ePSN = 25m.16s., eSS?N = 30m.14s., iSSSN = 33m.48s.
Bozeman ePPP? =19m.16s., iSKS? =23m.57s., ePS? =25m.33s., ePSPS =31m.2s.
Weston iPS = 25m.48s.
Brisbane iZ = 13m.50s., eS?N = 23m.55s., eSS?E = 29m.3s.
Fordham iPS = 26m.10s., eSS = 31m.30s.
Logan ePPP? = 19m.19s., ePS = 26m.26s., eSS? = 31m.33s., eSSS? = 35m.44s.
Cleveland eN = 16m.42s., iPPN = 17m.28s., iSKSN = 24m.12s., iPSN = 26m.4s., eSSN = 26m.4s.,
        31m.28s., eSSSN = 35m.11s.
Pennsylvania eE = 26m.32s. and 34m.5s.
Reno iE =13m.39s., iN =14m.3s. and 16m.33s., ePKPZ =17m.25s.
Philadelphia ePP = 17m.24s., eSP = 26m.5s., eSS = 31m.9s.
Chicago e = 17m.56s., ePS = 26m.17s., ePSPS = 31m.59s.
Salt Lake City e = 23m.14s., eSS? = 30m.55s.
Santa Clara iSE = 37m.48s., eZ = 39m.57s.
Lick eN = 13m.50s.
                                                                                                                             11
Riverview eSE = 25m.5s., ePS = 26m.26s., eZ = 39m.39s.
Fresno eN = 13m.45s.
Florissant e = 19m.59s., iPS = 26m.45s., i = 27m.36s., iSS = 32m.39s.
St. Louis i = 14m.48s., iPS = 26m.42s., iSS = 32m.36s.
Pierce Ferry i = 15m.11s.
Bermuda e = 17m.2s. and 23m.8s., ePS = 27m.12s., i = 28m.53s.
Pasadena iZ = 14m.51s., eZ = 17m.29s., iPSEN = 27m.13s., ePKKPZ = 30m.1s., eSS =
       32m.17s.
Tucson ePPP = 20m.51s., eS? = 25m.36s., ePS = 27m.47s., ePPS = 28m.48s., ePSPS = 28m.48s.
        33m.53s., eSSSi = 37m.53s.
Mobile ePS = 28m.11s.
San Juan eSS = 34m.46s., eSSS = 40m.11s.
Tacubaya i = 20m.57s., e = 24m.47s.
Huancayo e = 33m.20s., eSS = 42m.3s., e = 43m.0s., eSSS? = 48m.3s.
La Paz iE = 20m.13s., iPPZ = 23m.5s., iPKSZ = 23m.18s., iEN = 23m.37s., iSKKSN ==
        30m.7s., iPSZ = 33m.23s., iPPSE = 35m.17s., iSS = 41m.53s.
La Plata N=20m.47s., E=20m.53s., PPN=21m.43s., SKKS?E=27m.35s., SSSN=
        42m.42s., N = 55m.41s., Q?N = 64m.41s., QN = 69m.17s.
Long waves were also recorded at Wellington, Chihuahua, and Honolulu.
```

Feb. 23d. Readings also at 0h. (Tacubaya), 1h. (Boulder City, Pierce Ferry, Mineral,

Shasta Dam, Berkeley, near Fresno, Lick, and Reno), 2h. (near Hungry Horse), 3h. (near Ashkabad), 4h. (Palomar, near Pasadena, Riverside, Tucson, Boulder City, Pierce Ferry, near Kulyab, Obi-garm, and Stalinabad), 5h. (Mount Wilson, Palomar, Tinemaha, Boulder City, Pierce Ferry, Shasta Dam, Hungry Horse, and near Zürich), 6h (Upsala, Santa Lucia, Hungry Horse, and near College (2)), 8h. (Boulder City and Pierce Ferry and near Tucson), 9h. (Upsala, Granada, Alicante, Bombay, Obi-garm, Philadelphia, Cleveland, Seven Falls, Riverside, Tinemaha, Boulder City, Pierce Ferry, Shasta Dam, Hungry Horse, Sitka, and near College (2)), 10h. (near Apia), 11h. (Hungry Horse and near Mizusawa), 12h. (near Ashkabad), 14h. (Pierce Ferry and near College), 15h. (Collmberg, and Stuttgart), 16h. (Collmberg, Stuttgart, Granada, Tamanrasset, Almata, Samarkand, Tashkent, and near Huancayo), 17h. (Ottawa, Pierce Ferry, Hungry Horse, Shasta Dam, College (2), Stuttgart, Almata (3), Andijan, Murgab, Tashkent (2), Tchimkent, and near Klyuchi (2) ). 18h. (Almata), 19h. (Almata (2), Andijan, Murgab, Obi-garm, Samarkand, Stalinabad, Tashkent, Stuttgart, and College), 20h. (Apia, Almata, Andijan, Stalinabad, Tashkent, Ottawa, Pasadena, Palomar, Riverside, Tinemaha, Berkeley, Boulder City, Pierce Ferry (2), Shasta Dam, Hungry Horse, near Tucson (2), and near College), 21h. (Auckland, Wellington, Pasadena, Palomar, Riverside, Tinemaha, Tucson, Boulder City (2), Pierce Ferry (2), Shasta Dam, Hungry Horse, College (2), Stuttgart, and near Ashkabad), 23h. (Almata and Andijan).

Feb. 24d. 5h. 27m. 53s. Epicentre 41°·2N. 84°·5E. (as on 1949, Feb. 21d.).

	Δ	Az.	Р.	0-C.	s.	0 - C.	Supp.		L.
	0	0	m. s.	s.	m. s.	s.	m. s.		m.
Almata	6.0	293	i1 29	- 3	i 2 42	- 1			
Frunse	7.6	286	e 1 53	- 2					
Murgab	8.6	254	2 13	+ 4	3 58	+10			
Andijan	9.2	271	e 2 17	+ 1					
Tchimkent	11.2	281	i 2 38	- 6			277	-	

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

		Δ	Az.	Р.	0 – C.	s.	0 – C.	Sup	p.	L
Tashkent Obi-garm Stalinabad Samarkand Irkutsk		$     \begin{array}{c}             0 \\             11 \cdot 4 \\             11 \cdot 6 \\             12 \cdot 4 \\             13 \cdot 4 \\             13 \cdot 4 \\             17 \cdot 5         $	$276 \\ 263 \\ 263 \\ 269 \\ 43$	m. s. e 2 45 i 2 427 i 2 58 i 3 10 e 4 13	8. - 2 - 8 - 3 - 4 + 6	m. s. i 4 55 	+14	m. s.		n
Ashkabad Sverdlovsk Hyderabad Bombay Grozny	N.	$20.4 \\ 22.0 \\ 24.2 \\ 24.4 \\ 28.6$	268 323 194 207 287	$e 4 41 \\ 1 4 523 \\ e 5 33 \\ e 6 8 \\ e 6 8 \\ e 6 8 \\ e 6 \\ e 6 \\ 8 \\ e 6 $	$-\frac{0}{6}$ +12 + 8	e 8 28 i 8 50 9 9 55 e 9 58	+ 3- 6+ 20+ 19	e 9 25 ?	ss	12
Piatigorsk Leninakan Moscow Vladivostok Raciborzu	N.	$30 \cdot 4$ $30 \cdot 5$ $33 \cdot 6$ $34 \cdot 8$ $45 \cdot 8$	$290 \\ 283 \\ 312 \\ 71 \\ 305$	e 6 15 e 6 27 6 42	-1 + 10 + 10 - 2	e 12 43	+18	e 12 59 e 15 13 e 20 48	ss sss Q	e 24
Collmberg Jena Stuttgart Besançon Paris	E.	$48.6 \\ 49.6 \\ 51.8 \\ 54.4 \\ 55.8 $	$306 \\ 307 \\ 305 \\ 304 \\ 307$	e 8 45 8 53 e 9 10 a e 9 56 ? i 9 40	-22 -22 -22 +25 -1			e 11 36	PP	e 28 e 34
Kew Clermont-Ferran College Tamanrasset Hungry Horse	d z.	$56.3 \\ 56.8 \\ 66.7 \\ 67.3 \\ 89.3$	$311 \\ 304 \\ 22 \\ 281 \\ 12$	$\begin{array}{r} & \bullet & 9 & 47 \\ i & 10 & 56 \\ i & 11 & 0a \\ i & 13 & 2 \end{array}$	-1 + 1 + 1 + 3	e 22 7 %	ss	 i 1 <u>1</u> 32	P _c P	e 29
Ottawa Shasta Dam Boulder City Pierce Ferry La Paz Huancayo	<b>z.</b> N.	92.0 94.9 101.2 101.2 145.9 146.0	$346 \\ 20 \\ 16 \\ 15 \\ 308 \\ 323$	e 13 19 i 13 28 e 14 4 i 14 3 19 55 e 19 47	+7 +3 +10 +9 [+14] [+6]					1004000 - 04400 - 04005

Þ

Ŀ.

Feb. 24d. 10h. Undetermined shock. Coast of Ecuador. Bogota iP = 28m.44s., eN = 30m.41s., iS = 31m.6s., iSS = 31m.33s. Huancayo eP = 28m.47s., eS = 30m.30s., eL = 30m.48s. La Paz ePZ = 30m.24s., iPP = 30m.38s., iS = 33m.46s., L = 35m.18s. Tucson iP = 34m.38s., ipP = 34m.54s.Ottawa eZ = 34m.53s.Palomar ePZ = 35m.12s., ipPZ = 35m.29s. Pierce Ferry iP = 35m.13s., i = 35m.30s.Boulder City eP = 35m.16s., i = 35m.24s. Riverside iPZ = 35m.18s., ipPZ = 35m.35s.Mount Wilson iPZ = 35m.21s., ipPZ = 35m.38s. Tinemaha iP = 35m.38s., ipPZ = 35m.55s.Hungry Horse iP = 36m.15s. College iP = 38m.42s.

Feb. 24d. 11h. 35m. 2s. Epicentre 11°.4S. 75°.4W. (as on 1948, May 21d.).  $A = + \cdot 2472, B = - \cdot 9489, C = - \cdot 1964; \delta = +9;$ h = +7; D = -.968, E = -.252; G = -.050, H = +.190, K = -.981.Supp. L. 0 - C. s. Р. 0 - C.Az. Δ m. m. s. 8. 8. m. s. m. s. 0 0 e 0.6 + 2- 2 i0 26 174 i0 19 0.7 Huancayo 15.5 i 4 26 i 8 16 S* 2 32  $\mathbf{P}^{\bullet}$ 8.7 126 La Paz e7 35 SSS 12.0 i 3 44 1 16.0 5 4 -Bogota 0 55.1 323 e 9 36 Tucson 0 i 10 324 59.6 8 -Pierce Ferry  $\frac{1}{3}$ e 10 13 60.2 320++ Riverside z. 320 60.8 e 10 19 -Mount Wilson z. 0 2 322 e 10 30 62.8 -Tinemaha z. 333 e 11 5 Hungry Horse 68.6 -2 i 13 -336 14 92.9 College

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

#### 1949

#### 88

Feb. 24d. 11h. 49m. 33s. Epicentre 40°.4N. 126°.0W. (as on 1941, May 16d.).

 $A = -.4489, B = -.6178, C = +.6456; \delta = -1; h = -2;$ D = -.809, E = +.588; G = -.379, H = -.522, K = -.764.

		Δ	Az.	Р.	0 – C.	s.	0-C.	St	ipp.	L.
rear and a contract of a			0	m. s.	8.	m. s.	8.	m. s.		m.
Ferndale		1.3	83	i0 25	0	i0 43	- 1			e 1·0
Arcata		1.5	72	-0 331	-61					
Shasta Dam		2.8	84	i045	- 2	i 1 22	0			
Mineral		3.4	90	i0 54	- 1					
Berkeley		3.8	130	i1 0a	- 1	i1 48	+ 1	i1 17	Ps	
San Francisco		3.8	132	i1 0	- 1	i1 42	- 5		1000	
Branner		4.2	133	i1 5	- 2	i 1 55	- 2		(all share)	
Santa Clara		4.4	133	e 0 55	-15	i 2 27	Ss			
Lick	z.	4.6	130	11 10	- 2	+				
Reno		4.8	98	e 1 15	0	i 2 12	0	i1 37	$\mathbf{P}_{\boldsymbol{s}}$	
Fresno		6.1	123	i1 34	0	i 2 45	0			
Tinemaha		6.9	114	i1 49	+ 4	i 3 19	$+14^{-1}$			1 = 1
Pasadena		8.8	132	i 2 11	Ō	i3 48	- 5			
Riverside	Z.	9.4	130	e 2 18	Ō					
Boulder City	0.370	9.8	113	e 2 18 i 2 28	+ 4					-
Pierce Ferry		10.4	111	i 2 35	+ 1					-
Logan		10.8	78	e 2 36	÷ 3			11	_	e 6·0
Hungry Horse		11.7	43	i 2 48	- š	i4 13	-51			• • •
Tucson		14.7	119	i 3 33	$+$ $\tilde{2}$	-		e 3 57	PPP	e 9.6

Additional readings :---

Berkeley iZ = 1m.8s. and 2m.8s., eE = 2m.14s., and 2m.49s., iE = 4m.21s., eE = 4m.50s. Reno iPZ = 1m.20s. a, iN = 1m.29s. and 1m.51s., iSEN = 2m.0s. Long waves were also recorded at Bozeman, Butte, and Salt Lake City.

Feb. 24d. 23h. 2m. 19s. Epicentre 30°.1N. 68°.8E.

A = +  $\cdot 3134$ , B = +  $\cdot 8080$ , C = +  $\cdot 4990$ ;  $\delta = +8$ ; h = +2; D = +  $\cdot 932$ , E = -  $\cdot 362$ ; G = +  $\cdot 180$ , H = +  $\cdot 465$ , K = -  $\cdot 867$ .

> M 이상 전신 방법을 가지 않는 것이 있는 것이 있 것이 있는 것이 있 것이 있는 것이 있

	L. m.
- 10 D H H - 10 D H - 10 D - 1	
Dehra Dun N. $8.0$ 86 (e 2 45?) Pr (3 29) - 4 - (1	(0·1
Stalinabad $8\cdot 2  0  i  2  5  +  2  i  3  59  S^{\bullet}  -  -$	
Obl-garm $8.3$ 5 12 107 + 6 e 4 1 S*	_
Murgab $9.3$ 26 2 197 + 2 4 07 - 5	-
Samarkand $9.7 352 12237 + 1 1427 + 12 $	
Andijan 11.0 14 e 2 41 - 1 i 4 577 +10	
Tashkent $11.2$ 2 i 2 43 - 1 i 5 2 + 10 -	-
Bombay N. 11.7 161 $e_{2}$ 49 $-2$ i 4 49 $-15$	3.4
Tchimkent $12 \cdot 2$ 3 $e 2 55 - 3 e 5 16 0 $	_
Poona N. 12·4 157 2 56 - 5 5 21 0	
Frunse 13.6 18 i 3 15 - 2	
Almata 14.7 24 13 28 - 3	
Hyderabad N. $15.4$ 143 $337$ $-3$ $636$ $+4$	
Baku 18.5 309 e 7 271 S (e 7 273) $-17$ — (e 1)	.0)
Baku $18.5$ $309$ $e 7$ $277$ $S$ $(e 7 277)$ $-17$ $-17$ $-17$ $-17$ $-17$ $-17$ $-17$ $-17$ $-17$ $-17$ $-17$ $-17$ $-17$ $-17$ $-17$ $-17$ $-17$ $-17$ $-17$ $-17$ $-17$ $-17$ $-17$ $-17$ $-17$ $-17$ $-17$ $-17$ $-17$ $-17$ $-17$ $-17$ $-17$ $-17$ $-17$ $-17$ $-17$ $-17$ $-17$ $-17$ $-17$ $-17$ $-17$ $-17$ $-17$ $-17$ $-17$ $-17$ $-17$ $-17$ $-17$ $-17$ $-17$ $-17$ $-17$ $-17$ $-17$ $-17$ $-17$ $-17$ $-17$ $-17$ $-17$ $-17$ $-17$ $-17$ $-17$ $-17$ $-17$ $-17$ $-17$ $-17$ $-17$ $-17$ $-17$ $-17$ $-17$ $-17$ $-17$ $-17$ $-17$ $-17$ $-17$ $-17$ $-17$ $-17$ $-17$ $-17$ $-17$	-
Kodaikanal E. 21.4 156 i 4 54 + 3 i 8 51 + 6	
Erevan 22.2 303 e 4 59 - 1	
Grozny 22.6 311 e 5 12 + 9 i 9 18 + 11	
Leninakan $22.9 \ 304 \ e 5 \ 0 \ -6 \ 9 \ 4 \ -9 \ e 5 \ 41 \ PPP$	-
Leninakan $22 \cdot 9$ $304$ $e 5$ $0$ $-6$ $9$ $4$ $-9$ $e 5$ $41$ PPP         Piatigorsk $24 \cdot 7$ $311$ $5$ $30$ $+6$ $9$ $4$ $-9$ $e$ $5$ $41$ PPP         Piatigorsk $24 \cdot 7$ $311$ $5$ $30$ $+6$ $9$ $49$ $+5$ $-1$ $-1$ $-1$	-
Colombo E. 25.3 154 e 5 32 + 2 e 13	9.1
Sotchi $26.7 \ 308 \ e \ 5 \ 47 \ + \ 4 \ - \ - \ - \ - \ - \ - \ - \ - \ -$	_
Sverdlovsk $27.3 350 i 5 49 + 1 i 10 27 0 $	
Ksara 28.1 285 e 6 7 +12 e 12 3 SS	
Yalta $30.8 \ 307 \ e \ 6 \ 20 \ 0 \ 11 \ 24 \ + \ 1 \ - \ -$	

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1949					89					
		Δ	Az.	Р.	0 – C.	8.	0 – C.	Su	pp.	L.
		•	0	m. s.	8.	m. s.	8.	m. s.		m.
Helwan		32.4	279	e 6 34	0	e 12 29	+41	e 13 56	SSS	
Istanbul		33.8	300	6 44k				e 8 31		-
Moscow		33.8	328	e 6 50	$+ \bar{4}$	e 12 18	+ 8	e 14 33	SSS	
Irkutsk		34.2	39	e 6 51?	$+$ $\tilde{2}$		·			-
Belgrade		40.5	304	e 7 53	+11	e 16 55	SS	e 9 56	$\mathbf{P_{c}P}$	e 33·1
Triest		45.3	306	e 8 23	+ 2	e 15 7	+ 5	1 <u></u>		
Upsala		46.0	326	a de la construcción de la constru La construcción de la construcción d		e 18 411	SS			e 25·7
Potsdam	Z.	46.1	316	e 8 30	+ 2					31.4
Rome	100400	46.3	301	i 8 29k	0	i 15 13	- 3	e 18 46	SS	22.1
Padova		46.6	306	e 9 52	+80	e 16 27	+66	—		
Jena	N.	46.9	313	e 8 32	- 2			e 8 36	$\mathbf{P}$	
Bologna		47.0	304	e 8 40	+ 5	e 17 6	3		-	
Florence	z.	47.1	304	e 8 37	+ 2			( <del>strig</del> )		
Prato		47.2	304	e 8 41	+ 5	and the second			-	
Salo		47.5	306	e 8 39	+ 1	e 15 34	0		-	-
Stuttgart		48.4	310	e 8 44	- 2	-		e 10 13	$P_cP$	28.7
Zürich		48.8	308	e 8 41k	- 8					
Strasbourg		49.3	310	e 8 49	- 4	e 18 56	ScS	e 10 20	$P_{c}P$	
Basle		49.5	309	e 8 33	-21			-		
Vladivostok		$51 \cdot 2$	57	i97	0	e 16 26	+ 1	e 19 6	SeS	
Clermont-Ferra	nd	52.7	306	e 9 16	- 2			e 10 29	PcP	32.7
Paris	0.5.20204	52.8	310	i 9 17	- 2			e 12 0	$\mathbf{PP}$	e 33·7
Kew		54.4	314	*****		e 18 43	8	e 25 41 %	Q	e 34·7
Tamanrasset	z.	56.5	279	e 9 35	-11	an a	-		-	
Toledo	z.	<b>59</b> .0	300	e 9 59	- 5					
Hungry Horse		101.9	2	e 17 4	$\mathbf{PP}$			i18 2	PKP	<del></del>
Shasta Dam		108.8	9	e 17 46	1					말말 것
Pierce Ferry		114.1	2	e 18 42	[+ 1]			·	-	<del></del>
Boulder City		114.2	3	i 18 45	[+ 4]		-			
La Paz	N.	138.4	279	i 20 4	PKP,		+ + +			

Additional readings and note :--

.

i .

Dehra Dun readings have been decreased by 2m. Baku readings are recorded as P and S respectively. Helwan eZ =7m.41s., PPZ =8m.11s., eZ =9m.35s. Upsala eN =22m.21s., eE =23m.41s.? Rome iZ =9m.11s., e =11m.12s., eN =15m.17s., iN =15m.41s. Stuttgart eZ =9m.3s. Strasbourg e =9m.10s., ePPP =11m.52s., e =20m.2s. and 20m.36s.

Vladivostok iSS = 19m.48s. Clermont-Ferrand e = 9m.32s. Paris i = 9m.21s., 9m.45s., and 10m.0s. Tamanrasset eZ = 8m.45s., i = 8m.49s., eZ = 9m.17s. Long waves were recorded at College and other European stations.

Feb. 24d. Readings also at 0h. (Branner, near Berkeley, Lick, and San Francisco), 2h. (Mount Wilson, Palomar, Riverside, Tinemaha, Tucson, Boulder City, Pierce Ferry, Shasta Dam, Hungry Horse (2), College, Bombay, Andijan (2), Almata (2), Obigarm, Samarkand, Stalinabad, Tashkent, and Sverdlovsk), 3h. (Strasbourg, Stuttgart, Ottawa, and near College), 4h. (Bombay, Almata, Frunse, Murgab, Obi-garm, Stalinabad, Tchimkent, Leninakan, Sverdlovsk, Collmberg, Stuttgart, Shasta Dam, Hungry Horse, and near College (2) ), 5h. (Bombay, Tucson, Boulder City, Pierce Ferry, and Huancayo), 7h. (Bombay, Almata, Andijan, Frunse, Murgab, Obi-garm, Stalinabad, Tashkent, Sverdlovsk, Stuttgart, College, near Boulder City and Pierce Ferry), 8h. (near Ashkabad), 9h. (Tinemaha, Tucson, Pierce Ferry, Shasta Dam, and Hungry Horse), 10h. (Copiapo, Almata, Murgab, Obi-garm, Tashkent, and Sverdlovsk), 11h. (near Almata (2) and near Messina), 12h. (Andijan and near Almata), 13h. (Bombay), 14h. (Almata, Frunse, and Murgab), 15h. (Stalinabad, Tashkent, and Sverdlovsk), 16h. (near Bogota), 17h. (near Alicante and near Ashkabad), 18h. (near College), 19h. (Almata and Andijan), 22h. (near Tucson).

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

#### 1949 90 Feb. 25d. 2h. 28m. 0s. Epicentre 36°.9N. 120°.7W. $A = -.4093, B = -.6893, C = +.5978; \delta = +3;$ h = -1: D = -.860, E = +.511; G = -.305, H = -.514, K = -.802.L. 0 – C. O - C. s. Supp. **P**. Az. Δ m. m. s. m. s. m. s. 8. S. $\frac{2}{2}$ 0.8 i0 26 103 i 0 16 - 5 Fresno i 0 18 i0 33 0.9300 Lick anta Clara 0 5 D 10 004

Santa Clara		1.1	294	e 0 38	s	10 46	ž			
Branner		1.3	294	i0 26	+ 1	i044	0			
Berkeley		1.6	308	i0 30k	0	i0 57	Sg	e 0 35	$\mathbf{P}_{\mathbf{g}}$	
San Francisco		1.6	302	i034	+ 4	i0 50	- 1	i0 57	Sr	-
Tinemaha		2.0	86	i0 37 a	+ 2	i1 3	+ 1	the second s		
Haiwee	Z.	2.3	109	i0 40	0			-		
Santa Barbara		2.6	162	i 0 41	- 3	i1 17	0		-	
Reno		$\tilde{2}\cdot\tilde{7}$	15	i 0 49	$+$ $\tilde{4}$	î î 19	õ	i 1 25	S*	
Pasadena		3.4	142	i0 52	- 3	i 1 31	- 6	i1 1	P*	-
Mineral		3.5	349	i0 58	+ 1	i1 55	Sg	1 8	$\mathbf{P}_{\mathbf{g}}$	
Riverside		4.0	136	e 0 59	- 5			i1 9	P*	
Shasta Dam		4.0	342	e1 6	+ 2		-			
Boulder City		$\hat{4} \cdot \hat{8}$	99	i 1 29	P*			i1 34	$\mathbf{P}_{\mathbf{g}}$	
Pierce Ferry		5.5	96	e 1 23	- 2	_			-	i 3.0
Logan		8.4	52	e 2 11	+ 5					
Tucson		9.4	117	e 2 16	- 2				$\rightarrow$	e 4·9

Additional readings :---

Fresno iN = 1m.58s., iE = 2m.5s.

Berkeley iZ = 1m.0s.

Reno iPZ = 53s., iEN = 56s., iE = 1m.1s.

Mineral iZ = 1m.5s.

Long waves were also recorded at Philadelphia.

Feb. 25d. Readings also at 1h. (Rome, Frunse, Tashkent, Tchimkent, near Almata, Andijan (2), Kulyab, Murgab, Obi-garm, Samarkand, Stalinabad, and near College), 4h. (Paris, Strasbourg, Stuttgart, Kew, Hungry Horse, Shasta Dam, and College), 5h. (De Bilt, Rome, Boulder City, Pierce Ferry, Shasta Dam, and Hungry Horse), 6h. (Punta Arenas, Santa Lucia, Boulder City (2), Pierce Ferry (2), Shasta Dam, Hungry Horse (2), College (2), near Kulyab, Obi-garm, and Stalinabad), 10h. (Santa Lucia, Pierce Ferry, Hungry Horse, and near College). 11h. (Santa

Lucia), 14h. (College, Almata, Andijan, Frunse, Murgab, and Tashkent), 15h. (La Paz and Stalinabad), 16h. (College), 20h. (Clermont-Ferrand, Paris, and near Messina), 21h. (Istanbul and near College), 22h. (Almata, Andijan, Frunse, Murgab, Obi-garm, Stalinabad, Tashkent, and Sverdlovsk), 23h. (Pierce Ferry (2)).

Feb. 26d. 4h. 1m. 42s. Epicentre 35°.8N. 142°.0E. (as on 1948, Aug. 17d.).

		The second s		+ · 5005, C		23; $\delta$ : 59, $H = +$	= −6 ; ·358, K	$\begin{array}{c}h=0;\\ =813\end{array}$		
		Δ	Az.	P. m. s.	0 – C. s.	S. m. s.	0 —С. s.	m. s.	pp.	L. m.
Mizusawa Vladivostok Irkutsk Calcutta College	E.	$3 \cdot 4$ $10 \cdot 7$ $31 \cdot 3$ $48 \cdot 1$ $49 \cdot 9$	$348 \\ 316 \\ 314 \\ 270 \\ 32$	e 1 0 i 2 36 e 6 22 e 8 42 i 8 58	P• - 2 - 2 - 1 + 1	1 38 e 5 14 11 37 e 15 42	+ 1 + 6 + 6 -	i 2 50 e 7 32		
Frunse Andijan Tashkent Obi-garm Sverdlovsk		$51.4 \\ 53.6 \\ 55.6 \\ 56.2 \\ 56.4$	300 298 299 299 297 320	e 9 308 e 9 25 e 9 37 i 9 358 9 44	$^{+21}_{-3}$ $^{-3}_{-9}$ $^{-1}_{-1}$	e 17 3 i 17 28 17 37	$+\frac{5}{-5}$ + 1	 19_28	= $\mathbf{s_cs}$	
Stalinabad Samarkand Moscow Baku Shasta Dam		$56.9 \\ 57.8 \\ 68.5 \\ 69.3 \\ 71.5$	298 298 324 305 53	e 9 46 e 10 8 e 11 10 e 11 22	$-\frac{3}{+13}$ + 4 - 2	i 17 42 e 20 13 e 20 18	$+\frac{1}{5}$			

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1949					91					
		Δ	Az.	Р. m. s.	0 – C. s.	S. m. s.	0 – C. s.	m. s.	pp.	L. m.
Hungry Horse		72.4	43	e 11 27	- 3		_		-	0 22
Leninakan		73.1	309	12 81	PcP					
Tinemaha		76.1	55	e 12 1	+10					
Yalta		76.8	316	e 16 41	PPP					
Logan		77.5	48	e 11 57	- 2					-
Mount Wilson	z.	77.9	58	e 12 11	+10		-			
Boulder City	2774	79.0	54	e 12 6	- 1			-		-
Palomar	Z.	79.2	57	e 12 14	$+ \frac{6}{2}$				5	
Pierce Ferry		79.5	53	e 12 8	1. Sector 2 and 1. Sector 3.			17.04	DD	
Istanbul		81.9	316	12 18	- 5		—	e 15 34	PP	
Belgrade		83.9	322	e 12 41k	+ 8	e 22 56	0	e 15 36	$\mathbf{PP}$	e 52·1
Tucson		83.9	54	e 12 32	- 1					e 55·3
Stuttgart		85.9	331	e 12 44	+ 1	e 23 18	+ 2			e 46·3
Triest		86.4	327	e 12 45	0	e 23 29	+ 8			e 47.0
Strasbourg		86.6	332	e 17 25	2	e 26 11	ş	e 39 56	Q	44.3
Kew		87.0	338		-	e 32 38	SSS	e 46 18?	Q	e 54·3
Helwan		87.7	306	e 16 18	$\mathbf{PP}$	e 23 32	- 1			
Paris		88.4	335	e 17 18?	PP					e 50·3
Rome		89.9	325	e 12 42	-20	e 23 31	[-1]	e 16 33	PP	
La Paz	z.	147.0	62	i 19 50	[+7]			i 19 56	PKP ₁	

Additional readings :---Vladivostok iSSS = 5m.28s. Irkutsk eSS = 13m.24s. Sverdlovsk SS = 21m.36s. Tucson i = 12m.41s. Rome eSS i = 33m.33s. Long waves were also recorded at Weston and other European stations.

Feb. 26d. 8h. 30m. 4s. Epicentre 37°.2N. 118°.7W. (as on 1948, June 7d.). A = -.3834, B = -.7004, C = +.6020; $\delta = -4; \quad h = -1;$ D = -.877, E = +.480; G = -.289, H = -.528, K = -.799. Supp. 0 – C. Ρ. 0 – C. S. AZ. 8. s. m. s. m. s. m. s. - 1**G** -i 0 21 i 0 39 i 0 42a 244  $1 \cdot 0$ Fresno  $i 1 26 \\ i 0 51$ Sg Pg 2.3  $-\frac{0}{2}$ -1-1270 Lick 2.5 340 Reno

Branner Berkeley	z.	$2.8 \\ 2.9$	$\begin{array}{c} 276 \\ 285 \end{array}$	i044 i047a	$-3 \\ -1$	i 1 19 e 1 21	$-3 \\ -3$	i 0 52 e 0 50	P*
Boulder City Pierce Ferry Mineral Shasta Dam		$3.3 \\ 3.9 \\ 3.9 \\ 4.5$	$110 \\ 104 \\ 325 \\ 322$	$e 1 0 \\ i 1 4 \\ i 1 3 \\ e 1 12$	P* + 2 + 1 + 1	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$S_{e_0}^{0} + {}^{4}_{5}$		Pg Pg S

Additional readings :---Reno iSZ =1m.15s., iZ =1m.36s. Boulder City i =1m.14s. Pierce Ferry i =1m.12s. Mineral iZ =2m.4s. Shasta Dam i =1m.16s.

Feb. 26d. 16h. 56m. 27s. Epicentre 5°.5N. 126°.0E. (as on 1946, Nov. 2d.).

Rough.

١.

Ŀ

A = -.5851, B = +.8054, C = +.0952;  $\delta = +7$ ; h = +7; D = +.809, E = +.588; G = -.056, H = +.077, K = -.996.

		Δ	Az.	Р.	0 – C.	s.	0 – C.	Sup	р.	L.
		0	•	m. s.	<b>S.</b>	m. s.	s.	m. s.		m.
Batavia		22.4	240	i5 3k	+ 1	i 8 56	- 8			
Vladivostok		37.8	7	e 7 12	- 8	i13 1	-10			
Calcutta	E.	40.1	299			e 13 53	+ 7			
Riverview	1992200	45.8	150	i 12 47 a	1	i 18 2	SS			e 23·4
Irkutsk		49.9	342	e 9 9	+12				-	

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1949				92					
	Δ	Az.	Р.	о – с.	s.	0 – C.		pp.	L.
A Transmission		000	m. s.	8.	m. s.	8.	m. s.		m.
Almata	57.2	320	e 9 54	+ 3	S		1.000	V. 2000	
Andijan	59.3	315	e 10 5	- 1				13 <u></u>	
Obi-garm	60.6	312	i 10 11	- 4				( Special	
Stalinabad	61.2	312	e 10 18	- 1				02200	
Tashkent	61-7	315	e 10 16?	- 6	0.000	3 <del></del>		-	
Samarkand	62.9	312	e 10 27	- 3				-	
Ashkabad	69.1	308	e 11 8	- 2					
Sverdlovsk	72.1	329	i 11 25	- 3	i 20 45	- 5	-		
Baku	75.9	311		-	e 21 31	- 1			
Grozny	79-2	313	e 12 8	0	22 8	ô	_	200	22.8
College	83.4	25	e 12 16	-14	121.62	-			<u>65</u> 5
Moscow	84.6	325	e 12 42	$+\hat{6}$					
Shasta Dam	102.5	47	i 12 15						
Hungry Horse	105.1	37	e 13 52	-19				_	

Long waves were also recorded at Santa Lucia.

#### Feb. 26d. 21h. 37m. 20s. Epicentre 42°·3N. 142°·4E. Depth of focus 0.005. (as on 1937, Nov. 26d.).

Intensity V at Urakawa; IV at Muroran, Hatinohe; II-III at Kusiro, Sapporo, Mori, and Aomori. Macroseismic radius =200-300km. Depth: 30km.
"Seismological Bulletin Cent. Met. Obs., Japan, for the year 1949, Tokyo, 1950, p.7, with macroseismic chart.

	A =5878, H D = +.610, H					+15; -·409, K	h = -3; =742.	
		Az.	Р.	0-C.	s.	0 – C.	Supp.	L.
9257 - 53	0	0	m. s.	8.	m. s.	8.	m. s.	m.
Urakawa	0.3	118	0 10	- 2	0 18	- 2		
Sapporo	1.1	315	0 20a	õ	0 37	+ 1		1000
Mori	1.4	262	0 26	+ 2	0 45	$+ \hat{2}$		
Kusiro	1.6	65	-0 6	- 33	0 13	-34		문모님
Aomori	1.9	219	0 34a	+ 3	1 0	+ 6		

Hatinohe Nemuro Miyako Morioka Mizusawa	E.	$   \begin{array}{r}     1 \cdot 9 \\     2 \cdot 6 \\     2 \cdot 7 \\     2 \cdot 8 \\     3 \cdot 3   \end{array} $	$200 \\ 66 \\ 187 \\ 200 \\ 197$		45	$+ 20 \\ - 1 \\ + 16$	$\begin{array}{ccc} 0 & 44 \\ 1 & 4 \\ 1 & 11 \\ 1 & 16 \\ 1 & 31 \end{array}$	$-10 \\ - 8 \\ - 3 \\ - 1 \\ + 2$			
Sendai Yuzno-Sakhlinsk Hukusima Aikawa Onahama		$4 \cdot 2 \\ 4 \cdot 6 \\ 4 \cdot 8 \\ 5 \cdot 3 \\ 5 \cdot 5$	$198 \\ 3 \\ 200 \\ 218 \\ 193$	1 1 1 1 1	$3 \\ 8 \\ 13 \\ 12 \\ 38$	-100 + 110 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170 + 170	$   \begin{array}{c}     1 & 53 \\     2 & 1 \\     2 & 12 \\                                   $	$+ \frac{1}{1}$			
Mito Kakioka Maebasi Nagano Wazima		$     \begin{array}{r}       6 \cdot 1 \\       6 \cdot 3 \\       6 \cdot 4 \\       6 \cdot 5 \\     $	$196 \\ 198 \\ 205 \\ 212 \\ 223$	1 1 1 1 1	$34 \\ 31 \\ 45 \\ 40 \\ 39$	$^{+}_{-1}^{1}_{+11}_{+5}_{+4}$	$\frac{1}{2}$ $\frac{35}{52}$ $\frac{1}{52}$	$-\frac{9}{6}$			
Kumagaya Tokyo Hunatu Vladivostok Hungry Horse		6.6 6.9 7.3 7.8 67.5	202 198 204 280 45	1 1 1 1 1 1 1 1	57 40 45 54 48	+20 -1 -1 +1 -3	2 56 i 3 28	$-\frac{-3}{-7}$			
Upsala Boulder City Pierce Ferry	N.	68.6 75.0 75.4	334 55 55	е 6 е 11 і 11	40 34 37	$-\frac{?}{2}{-1}$	e 13 20	ss	e 17_407	-	e 21·7
	z.	80.4	331	e 12	4	- 2		-		-	<del>100-1</del> 02

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

#### 1949

.

£.,

98

Feb. 26d. Readings also at 0h. (Bombay, Helwan, Ksara, Tamanrasset, Andijan, Frunse, Obi-garm, Samarkand, Tashkent, near Almata (2), and Murgab (2) ), 1h. (Almata, Andijan, Murgab, Samarkand, Stalinabad, Tashkent, Stuttgart, Pierce Ferry, Shasta Dam, and Hungry Horse), 6h. (near Obi-garm and near Alicante), 8h. (Klyuchi and near Ashkabad), 9h. (Brisbane and Riverview), 10h. (Almata, Stalina-bad, near Obi-garm and Murgab), 12h. (Almata, Andijan, and Santa Lucia), 13h. (near Andijan, Kulyab, Murgab, Obi-garm, Samarkand, Stalinabad, Tashkent, and Tchimkent), 14h. (near Mizusawa), 15h. (Nanking, Vladivostok, Irkutsk, Sverdlovsk, Boulder City, Shasta Dam, Hungry Horse, College, Granada, and near Obi-garm), 16h. (Columbia, Calcutta, De Bilt, Strasbourg, near Obi-garm (2) and

Stalinabad), 17h. (Andijan, near Almata, Pierce Ferry, and near Tucson), 18h. (Mizusawa, Palomar, Tinemaha, Pasadena, Riverside, Tucson, Boulder City, Pierce Ferry, Shasta Dam, Mineral, Hungry Horse, College, Bozeman, Butte, Salt Lake City, Seattle, Lincoln, Cleveland, Ottawa, and Philadelphia), 19h. (Jena, near Collmberg and near Tucson), 20h. (Hungry Horse and near Ottawa), 21h. (Almata), 22h. (near Tucson), 23h. (near Honolulu).

Feb. 27d. 9h.-10h. Atlantic.

Fort de France eP = 59m.47s. San Juan iP = 60m.26s., i = 60m.44s., eS? = 64m.27s., eL = 67m.2s.Bermuda eP = 60m.45s., eL = 65m.20s.Bogota ePEN = 62m.47s., eEN = 70m.3s.La Paz iPZ = 63m.59s., iSN = 70m.32s., iSSE = 73m.55s.Tamanrasset iPZ = 64m.37s.a, eZ = 64m.44s.Tucson eP = 66m.0s. Hungry Horse e = 66m.8s.,  $eP_cP_i^2 = 67m.7s.$ Pierce Ferry eP = 66m.12s., iP = 66m.15s.Huancayo e = 66m.27s., eS = 70m.45s., eSS = 73m.46s., eL = 80m.15s.Boulder City eP = 66m.29s. College iP = 67 m.52 s.Long waves were recorded at Granada.

Feb. 27d. 10h. Probably same origin as above.

```
San Juan iP = 39m.54s., eS? = 43m.45s., eL = 44m.42s.
Bermuda e = 41m.20s., eL = 45m.20s.
La Paz iPZ = 43m.27s., iSN = 50m.0s., iE = 53m.13s.
Tamanrasset ePZ = 44m.6s., iZ = 44m.14s. a and 46m.12s.k.
Paris eP = 44m.8s., i = 44m.14s.
Tucson e = 45m.28s., eL? = 58m.0s.
Hungry Horse eP = 45m.41s.
```

Pierce Ferry iP = 45m.45s. Boulder City eP = 45m.48s.College eP = 47m.19s.Huancayo eS = 50m.13s., eL = 53m.18s. Long waves were recorded at Bogota and Granada.

Feb. 27d. 13h. 35m. 46s. Epicentre 41°.2N. 125°.2W.

 $A = -.4350, B = -.6166, C = +.6561; \delta = -.11; h = -2;$ D = -.817, E = +.576; G = -.378, H = -.536, K = -.755.

		$\Delta$	Az.	Р.	0-C.	s.	0 – C.	Suj	pp.	L.
		0	0	m. s.	8.	m. s.	8.	m, s.		m.
Ferndale		1.0	132	i 0 21	0	i0 35	- 1			
Shasta Dam		2.2	103	i0 38	0		-		-	
Mineral		2.9	107	i047	- 1	i1 23	- 1			
Berkeley		4.0	145	il 3a	- 1	e 1 47	- 5	i1 9	P*	
San Francisco		4.0	147	i1 4	0	i1 49	- 3		-	
Branner		4.4	147	i1 8	- 2	i1 59	- 3			
Reno		4.4	110	i1 10a	Ō	i1 59	- 3	i1 28	P.	21
Lick	Z.	4.7	143	11 13	- 1	i 2 4	- 6	i1 19	P	<u> 19 - 19 -</u>
Fresno	2.	6.1	135	i1 34	0					
Tinemaha		6-8	125	i1 55	P•	e 3 16	+13			
Santa Barbara	z.	8.0	145	e 2 4	+ 4		_			
Pasadena	- 1992	9.0	139	i 2 13k	Õ	13 53	- 5			_
Riverside		9.5	137	i 2 20k	0					
Boulder City		9.7	119	e 2 23	+ 1					
Logan		10.1	82	e 2 26	- 2					e 5·2

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1949				94					
	Δ	Az.	P.	0 – C.	s.	0 – C.	Su	pp.	L.
	0	0	m. s.	8.	m. s.	8.	m. s.	Trible)	m.
Pierce Ferry	10.1	116	i 2 28	0					
Palomar	10.3	137	i 2 30	- 2					
Hungry Horse	10.7	44	i 2 25	-13					
Tucson	14.6	123	i 3 30	0	distants.	-			e 9·4
College	27.0	339	e 5 44	- 1					

Berkeley 12 = 111.05. k. Reno iZ = 1m.14s., iE = 1m.24s. and 1m.34s., iN = 1m.45s., iEZ = 1m.52s., iE = 2m.14s.Lick iN = 2m.8s.Tinemaha eEN = 1m.58s.Pasadena i = 2m.20s.Riverside i = 2m.27s.Pierce Ferry i = 2m.32s.Palomar iN = 2m.34s.Tucson i = 3m.38s.Long waves were also recorded at Bozeman, Butte, and Ukiah.

Feb. 27d. Readings also at 0h. (Boulder City, Pierce Ferry, Hungry Horse, Stuttgart, Andijan, and near Almata), 1h. (Strasbourg and near Almata), 2h. (Boulder City, Pierce Ferry, Hungry Horse, Ashkabad, near Almata, near Algiers, near Copiapo and Santa Lucia), 4h. (Boulder City, Pierce Ferry, Shasta Dam, Hungry Horse, Almata, Andijan, Frunse, Kulyab, Murgab, Obi-garm, Stalinabad, Tashkent, and Tchimkent), 5h. (near Bogota and near Ashkabad), 6h. (Pierce Ferry, Tucson, near San Juan, near Basle, Neuchatel, and Zürich), 7h. (Boulder City, Pierce Ferry, Shasta Dam, Hungry Horse, and near La Paz), 9h. (Santa Lucia and near Murgab), 10h. (near Kulyab, Obi-garm, Stalinabad, and near Alicante), 12h. (Almata, Andijan, Murgab, College, and near Alicante (2) ), 13h. (Arcata, College, Almata, Kulyab, Murgab, near Obi-garm, and Stalinabad), 15h. (Strasbourg), 17h. (Santa Lucia and Tacubaya), 18h. (near Granada and near Hungry Horse), 20h. (near Tucson, near Tacubaya, and near Mizusawa), 21h. (Palomar, Pasadena, Riverside, Tucson, Boulder City, Pierce Ferry, Shasta Dam, Hungry Horse, College, Almata, and near Mizusawa), 22h. (Palomar, Riverside, Boulder City, Pierce Ferry, Shasta Dam (2), Hungry Horse, Almata, Andijan (2), near Kulyab, Obi-garm, Samarkand, and Stalinabad), 23h. (Kulyab, near Obi-garm and Stalinabad).

Feb. 28d. 0h. 13m. 7s. Epicentre 55°.5S. 29°.0W. (as on 1947, July 24d.).

 $A = + \cdot 4977, B = - \cdot 2759, C = - \cdot 8223; \delta = 0; h = -7;$  $D = - \cdot 485, E = - \cdot 875; G = - \cdot 719, H = + \cdot 399, K = - \cdot 569.$ 

	All and a second se
그 아들에 그 것에 가지 않는 것을 수 있는 것을 수 있는 것을 가장에 가지 않는 것을 하는 것을 가장에 가지 않는 것을 것을 하는 것을 수 있다.	n.
Le Plete 28.6 304 5.53 - 7 10.43 - 5 6.17 PP 1	1.5
Santa Lucia E. $36.3$ 290 7 2 - 5 e 12 47 - 1 i 8 17 PP 1	8·2 8·5
N. $36 \cdot 3$ $290$ $e 7$ $e 12$ $41$ $-7$ $18$ $17$ $PP$ $1$ Copiapo       N. $40 \cdot 9$ $296$ $i 7$ $13$ $51$ $-7$ $18$ $17$ $PP$ $1$ Copiapo       N. $40 \cdot 9$ $296$ $i 7$ $13$ $51$ $-7$ $18$ $22$ $Q$	-
이 가지 않는 것 같아요. 이 것 같아요. 것 같아요. 것 같아요. 집 것 같아요. 집 것 같아요. 같아요. 집 것 같아요. 집 같아요. 집 것 같아요. 집 집 집 집 집 집 집 집 집 집 집 집 집 집 집 집 집 집 집	3.7
	3.6
Tananarive 67.0 90 11 13 +16 e 19 52 + 2 13 31 PP e 2	and the second
Bogota 70.4 312 e 11 21 + 3 e 20 31 + 1 e 13 52 PP e 3	4.9
Fort de France 75.0 328 e 11 13 -32 e 21 33 +10 -	-
San Juan 80.0 325 e 12 22 + 9 i 22 39 + 22 e 15 41 PP e 3	
	5.9
Tamanrasset z. $83 \cdot 3$ 32 i 12 33k + 3	
	9.9
Riverview E. 91.0 180 — e 26 14 PPS — e 3	7.8
- 가지 이 가지 않는 것 같은 것 같	7.1
Malaga z. 94·1 20 i 13 27k + 5 e 24 52 + 21 e 17 30 PP 4	4.2
	5.8
Granada $94.8$ 20 i 13 27k + 2 i 24 47 + 11 13 49a pP i 4	4.9
Tacubaya 95.1 296 e 17 46 PP e 24 0 [-2]	
	3.9
Algiers 95.9 25 e 17 53 PP e 25 107 +24 - e 3	7.1
Alicante 96.6 22 13 38 + 5 25 9 + 17 17 31 PP e 4	
	6.2
Helwan $99.4$ 50 13 50 + 4 25 37 + 22 17 47 PP	-

Continued on next page,

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

٥.

t i

					95					
Columbia Barcelona Philadelphia Rome Fordham		∆ 99.6 100.1 102.9 103.2 103.3	Az. 318 23 325 30 327	P. m. s. e 18 5 e 18 41 e 16 11 e 18 8 e 17 52	0 – C. s. PP PP PP PP	S. m. s. e 24 16 e 25 32 e 25 41 e 24 38 e 24 49	$\begin{array}{c} 0 - C.\\ s.\\ [-9]\\ +11\\ -4\\ [-4]\\ [+6] \end{array}$	m. s. e 27 8 e 18 55 i 27 31	PS	L e 40 e 50 e 41 42 54
Weston Clermont-Ferra Cleveland Triest Paris	nd	$103.9 \\ 104.5 \\ 106.4 \\ 107.0 \\ 107.2$	$329 \\ 22 \\ 321 \\ 29 \\ 21$	$e 18 48 \\ e 19 17 \\ e 17 42$		e 25 45 e 28 11 i 29 15 e 27 56 e 24 59	$     \begin{array}{c}       - 8 \\       PS \\       PPS \\       PS \\       [-1]     \end{array} $	e 33 8 e 33 26 i 33 40 e 33 16 e 19 14	SS SS SS PP	41 48 46 e 45 e 49
St. Louis Kodaikanal Zagreb Ottawa Seven Falls	Е. Е.	$107.3 \\ 107.7 \\ 107.8 \\ 108.0 \\ 108.1$	$314 \\ 97 \\ 31 \\ 328 \\ 332$	e 18 4 e 18 35 e 18 51	$\frac{PKP}{[+7]} \\ [+22] \\ -$	$\begin{array}{cccccccc} i & 25 & 7 \\ e & 28 & 33 \\ e & 25 & 23 \\ e & 33 & 53 \end{array}$	[+ 6] PS [+19] SS	i 33 41 e 34 5	ss ss	e 54 41 44
Istanbul Strasbourg Belgrade Stuttgart Kew		$108.1 \\ 108.2 \\ 108.3 \\ 108.7 \\ 109.3$	$42 \\ 24 \\ 35 \\ 25 \\ 18$	$ \begin{array}{r} 18 & 52 \\ e & 19 & 4 \\ e & 18 & 53 \end{array} $	[+23] PP [+23]	e 26 19 e 26 46 e 29 33 e 25 47 e 28 41	$\{+27\}$ $\{+54\}$ PPS $\{-9\}$ PS	e 28 28 e 34 14 e 28 27 e 34 48	PS SS PS SS	49 e 58 e 51 e 52
De Bilt Tucson Lincoln Bombay Poona	Е. Е.	112.0	21 295 311 88 89	e 14 39 e 19 26 e 19 35	P PP PP	e 28 53 e 29 0 e 27 20 i 25 2	$\begin{array}{c} PS \\ PS \\ +62 \\ [-18] \\ - \end{array}$	$e \begin{array}{c} 35 \\ e \\ 18 \\ 38 \\ e \\ 29 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 38 \\ 2 \\ 2 \\ 38 \\ 2 \\ 2 \\ 38 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ $	SSP PKP PS	e 49 e 52 e 49 42
Potsdam Yalta Leninakan Hyderabad Palomar	Z. N. Z.	$113.0 \\ 113.0 \\ 114.1 \\ 114.1 \\ 115.6$	$26 \\ 43 \\ 52 \\ 93 \\ 291$	e 19 36 e 19 143 e 18 41	PP PP [-3]	$e \begin{array}{c} 29 \\ 17 \\ \hline 29 \\ 29 \\ 21 \\ \hline \end{array}$	PS PS	 e 19 46	_ PP	e 54
Copenhagen Pierce Ferry Riverside Pasadena Grozny	z.	$115.9 \\ 116.3 \\ 116.4 \\ 116.9 \\ 116.9 \\ 116.9$	$24 \\ 296 \\ 291 \\ 291 \\ 52$	e 18 45 i 18 47 i 18 47 e 20 5	$\begin{bmatrix} - & 1 \\ + & 1 \\ + & 1 \\ 0 \end{bmatrix}$ PP	26 44 i 36 23	{-2}  SSP	29 41 e 19 45 e 19 58 i 19 54	PS PP PP	54 e 49
Boulder City Bergen Tinemaha Logan Upsala	n. Z.	$117.1 \\ 118.7 \\ 119.2 \\ 119.5 \\ 120.8$	$295 \\ 18 \\ 293 \\ 301 \\ 25$	i 18 47 i 18 54 e 18 53	$\begin{bmatrix} 0 \\ -3 \\ +3 \\ +1 \end{bmatrix}$	 e 30_20		$e^{(30\ 13)}_{20\ 22}$ e 39 531	PS PP 1	30 e 60 e 58
Lick Reno Berkeley Bozeman Calcutta	Z. Z. E.	$121.2 \\ 121.8 \\ 121.9 \\ 122.1 \\ 123.7$	291 294 291 305 99	i 18 57 e 18 59 i 18 57k e 20 32 e 21 17	[+ 2] [+ 3] [+ 1] PP ?	= e 31 15	PPS	e 20 29	PP	e 65 e 54
Mineral Shasta Dam Stalinabad Obi-garm Hungry Horse	z.	$123.7 \\ 124.0 \\ 124.8 \\ 125.4 \\ 125.4 \\ 125.4$	293 294 71 71 305	i 19 0 i 19 1 e 19 6 i 19 10 e 19 0	$\begin{bmatrix} 0 \\ 0 \\ [+4] \\ [+7] \\ [-3] \end{bmatrix}$	 i 25 56	 [-11]	 i 28 44	skks	
Scoresby Sund Tashkent Tchimkent Andijan Frunse		$125 \cdot 8$ $127 \cdot 1$ $127 \cdot 9$ $128 \cdot 3$ $131 \cdot 0$	$2 \\ 68 \\ 68 \\ 72 \\ 71$	i 19 11 19 10 e 19 13 e 22 46	[+5] [+2] [+4] [+4] PKS	e 28 56 22 58 	${}^{+63}_{PKS} =$	i 2 <u>1</u> 12	PP	58-
		$133 \cdot 2 \\ 149 \cdot 4 \\ 162 \cdot 5$	48 313	i 19 20 i 19 45 e 19 50	[ + 2] [ - 1] [ - 1] ]	$\begin{smallmatrix}i&22&52\\&30&24\end{smallmatrix}$	PKS {+ 9}	i 21 46 e 23 57	$_{\mathrm{PP}}^{\mathrm{PP}}$	0 67

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

## 1949

96

La Paz i =9m.9s., iPPZ =10m.53s., iSSN =19m.17s. Huancayo i =12m.35s., ePPP =13m.3s., eSS =21m.36s. Tananarive PS = 20m.13s.,  $S_cS = 21m.15s.$ , SS = 24m.16s.Bogota  $eS_cS = 21m.56s$ . San Juan e = 22m.11s., eSSi = 27m.15s., eSSS = 31m.51s.Wellington i = 26m.35s., SS = 27m.53s.Tamanrasset iZ = 12m.42s.k, eZ = 13m.27s.Bermuda ePS? = 26m.3s., e = 26m.43s.Malaga sSZ = 25m.46s., PSZ = 26m.32s.Almeria PPP =19m.31s., SKS =23m.57s., PS =26m.7s., SS =31m.23s., SSS =35m.11s.

```
Granada PP =17m.10s., PPP =19m.58s., PS =25m.58s., iSS =31m.25s., SSS =35m.58s.
Lisbon EN = 26m.41s.
Algiers e = 20m.16s.
Alicante PS = 26m.38s., SSP = 31m.44s.
Helwan PSN = 26m.20s., eE = 27m.1s.
Columbia eSS = 32m.5s.
Philadelphia ePS = 27m.32s., eSP = 28m.2s., eSS = 32m.51s.
Rome iSS?EN = 32m.44s., eEN = 33m.17s.
Fordham eZ = 18m.9s., eN = 26m.34s.
Cleveland eN =10m.22s. and 24m.11s., iN =33m.48s.
Triest ePPP = 21m.46s., ePPS = 29m.2s., eSSS = 38m.0s.
Paris ePPS = 29m.19s., eSS = 34m.4s. and 34m.10s.
St. Louis eZ = 18m.30s.
Strasbourg ePPS = 29m.23s., e = 31m.11s., 34m.33s., 41m.16s., 41m.36s., and 42m.26s.
Belgrade e = 20m.26s.
Stuttgart ePPS = 29m.25s., eSS = 34m.29s.
Kew eZ = 29m.33s., e = 29m.46s., and 38m.31s., eQEN = 49.9m.
Tucson iPP = 19m.16s., e = 19m.47s., ePSPS = 35m.14s.
Potsdam iZ = 29m.25s.a.
Copenhagen SS = 35m.53s.?
Reno eEN =19m.17s., iZ =19m.23s., eE =20m.10s., ePPN =20m.38s., iE =21m.43s.
Hungry Horse iPKP == 19m.15s.
Tashkent ess = 37m.53s.
Sverdlovsk iSS = 39m.28s., iSSS = 44m.41s.
College e = 19m.55s. and 24m.25s., ePPS = 36m.44s.
Long waves were also recorded at Arapuni, Chicago, Butte, Salt Lake City, Sitka,
    Ivigtut, Aberdeen, Basle, and Tortosa.
```

Feb. 28d. 4h. Near Samoa. Surface reflexions suggest focal depth 0.040.

Apia iP =1m.6s., iSEN =1m.48s., eN =15m.12s. and 20m.6s.

```
Pasadena iPZ =11m.13s., iZ =12m.14s.
Palomar iPZ =11m.16s.
Riverside ePZ =11m.16s.
Shasta Dam iP = 11m.19s., ipP = 12m.28s.
Tinemaha iPZ =11m.23s.
Boulder City iP = 11m.32s.
Pierce Ferry iP = 11m.36s.
Tucson iP =11m.39s., epP =12m.39s.
College iP = 12m.4s., ipP = 13m.4s.
Hungry Horse iP = 12m.8s., esP = 13m.44s.
Stuttgart eZ = 19m.20s., iZ = 19m.23s.a, eZ = 20m.28s.
Zürich eZ = 19m.22s.
Strasbourg iPKP = 19m.24s., e = 19m.53s., epPKP = 20m.23s.
Paris iPKP = 19m.24s., ipPKP = 20m.28s., e? = 46m.56s., e = 59m.
Salo eZ = 19m.25s.
Basle eZ = 19m.26s.
Clermont-Ferrand iPKP = 19m.31s., epPKP = 20m.41s.
```

Feb. 28d. Readings also at 0h. (near Ashkabad (2)), 2h. (near Tacubaya), 3h. (near Santa Lucia and near Andijan), 4h. (Boulder City, Pierce Ferry, Shasta Dam, Hungry Horse, and College), 5h. (Apia and Santa Lucia), 8h. (Huancayo and near La Paz), 9h. (Tucson, Boulder City, Pierce Ferry, and Hungry Horse), 11h. (Punta Arenas, Tamanrasset, La Paz, Tucson, Boulder City, Pierce Ferry, Shasta Dam, Hungry Horse, and College), 13h. (near Tacubaya), 14h. (Andijan, Frunse, near Almata, and near Hungry Horse), 15h. (Raciborzu, Stuttgart, and near Andijan), 16h. (near Andijan), 17h. (near Tacubaya (2)).

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

#### 1949

٥.

1

## 97

March 1d. Readings at 0h. (Pierce Ferry), 2h. (Apia, College, Andijan, near Kulyab, Obigarm, and Stalinabad), 3h. (Andijan, Tucson, Boulder City, Pierce Ferry, Shasta Dam, and Hungry Horse), 4h. (near Andijan), 6h. (near College), 7h. (near Obigarm), 8h. (Paris), 9h. (Andijan, Hungry Horse, and near Ashkabad), 10h. (College), 11h. (Pierce Ferry, Hungry Horse, Kulyab, and near Obi-garm), 12h. (Stuttgart and near Alicante (2)), 14h. (Boulder City, Pierce Ferry, Hungry Horse, La Paz, and near Copiapo), 15h. (Kulyab, near Andijan, Murgab, and Obi-garm), 16h. (Hungry Horse), 19h. (near Ashkabad, Pierce Ferry, Hungry Horse, and near Tucson), 20h. (Calcutta, Poona, Hungry Horse (2), College, Vladivostok, Sverdlovsk, Andijan (2), Frunse, Kulyab, Murgab, Obi-garm (2), Stalinabad (2), Tashkent, near Almata, and near Ashkabad), 21h. and 23h. (near Ashkabad).

March 2d. 0h. Near Apia. Strasbourg suggests an epicentre in the region of 15°S., 171°W.

```
Apia eP = 3m.49s., S = 4m.12s., eE = 12m.54s.
Tinemaha eZ = 14m.49s.
Boulder City eP = 15m.0s., i = 15m.11s.
Hungry Horse eP = 15m.28s., i = 15m.48s.
College e = 15m.38s. and 15m.50s.
Shasta Dam eP = 16m.44s.
Paris e = 22m.58s., i = 23m.9s.
Strasbourg e = 23m.10s., 23m.16s., 23m.25s., and 23m.32s.
Stuttgart eZ = 23m.10s.
Clermont-Ferrand e = 23m.11s.
Alicante e = 25m.26s.
Long waves were recorded at Wellington.
```

March 2d. 6h. 54m. 30s. Epicentre 72°.0N. 2°.2W.

 $A = + \cdot 3107, B = - \cdot 0119, C = + \cdot 9504; \delta = -6; h = -12;$ D = -.038, E = -.999; G = +.950, H = -.036, K = -.311.

	Δ	Az. P. m. s	0 – C. s.	그는 그는 그는 것을 가지 않는 것을 가지 않는 것을 많이	-C. Supp. s. m. s.	L. m.
Scoresby Sund Reykjavik N. Bergen Upsala Aberdeen E.	$12.0 \\ 14.5$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$+ 3 \\ - 3 \\ + 4 \\ + 2$	$     \frac{2}{5} \frac{53}{12} + \frac{5}{14} - \frac{14}{14} $	$\frac{2}{1}$ $\frac{2}{-1}$ $\frac{-1}{-1}$	e 5.5 5.9 e 6.5
Copenhagen De Bilt Kew Potsdam Jena	$17.5 \\ 20.2 \\ 20.6 \\ 20.8 \\ 22.0 $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	a - 1 + 1 + 1 = 1	e 7 30 + e 8 18 - e 8 28 - i 8 34 + e 9 2 +	$-3$ $\overline{-1}$ $\overline{e5}$ 8 PP	9.5 e 9.5 e 9.5 e 10.0 e 11.5
Jersey E. Cheb Moscow Prague Paris	$22 \cdot 9$ $23 \cdot 0$ $23 \cdot 2$ $23 \cdot 2$ $23 \cdot 4$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- 2 0 - 5	0923 +	-13	e 11.5 e 10.8 e 11.5
Raciborzu Strasbourg Stuttgart Basle Skalnate Pleso	$23 \cdot 9 \\ 23 \cdot 9 \\ 23 \cdot 9 \\ 23 \cdot 9 \\ 25 \cdot 0 \\ 25 \cdot 1$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	a = 0 = 2 = 2	e 9 36 + e 9 25 - e 9 45 - e 10 2 + e 10 2 + e 10 - 2	2	e 11.0 e 12.5
Zürich Clermont-Ferrand Triest Belgrade Sverdlovsk	$25 \cdot 2$ $26 \cdot 4$ $27 \cdot 5$ $29 \cdot 3$ $29 \cdot 3$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} a & - & 1 \\ + & 1 \\ + & 1 \\ - & 6 \\ + & 1 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13       e 5       49       PP         3       i 6       29       PP         3       i 6       29       PP         3S       -       6       49       PP         -       6       6       49       PP         -       6       6       7       27       PPP	e 13·2 13·0 e 16·6 e 13·4
Rome Toledo Yalta Lisbon Alicante	31.0 32.2 32.6 33.5 33.7	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		e 13 7 8 11 52 +	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	18.0 15.0 e 16.0
Istanbul Sotchi Almeria Malaga Z. Grozny	34 ·6 34 ·8 35 ·2 35 ·4 36 ·7	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	a The second	i 12 46 + i 12 32 + i 12 - i 12	- 6735 1 15 832 PPP 2 830 PP	18·8 17·8

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

#### 1949

98

		Δ	Az.	. P.	0 – C.	S.	0 – C.		pp.	L.
Tiflis Leninakan College Ottawa Ksara		37.9 38.5 41.4 42.6 43.1	$     \begin{array}{r}                                     $	m. 8. i 7 21 e 7 4 ? e 7 52 e 7 59 1 30 ?		m. s. i 13 21 e 14 2	8. + 8 - 3 	$   \begin{array}{c}     m. & s. \\     i & 8 & 44 \\     e & 9 & 31 \\                                   $	PP PP	m. e 26.0 22.5
Saskatoon Tashkent Frunse Helwan Irkutsk		$45.5 \\ 45.6 \\ 45.8 \\ 45.9 \\ 45.9 \\ 45.9$	$304 \\ 92 \\ 86 \\ 138 \\ 56$	i 8 23 e 8 27 8 36 e 8 26?	-1 + 10 + 10 = 0	e ^{(16 30?} e ^{15 7} 15 8	$+\frac{1}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-\frac{3}{-1}{1}}{1}}}}}}}}}}}}}}}}}}}}}}}}}}}$	$e 10 8 \\ 10 15$	PP PP	16·5
Samarkand Andijan Cleveland Obi-garm Stalinabad		$46 \cdot 4 \\ 47 \cdot 1 \\ 47 \cdot 9 \\ 48 \cdot 1 \\ 48 \cdot 1 \\ 48 \cdot 1$	96 90 276 93 94	e 8 30 e 8 37 e 8 43 i 8 38 8 43	$   \begin{array}{r}     - 1 \\     + 2 \\     + 1 \\     - 5 \\     0   \end{array} $	e 15 48 i 15 42? 15 46	$+ \frac{9}{0} + \frac{9}{4}$	e 19 37		22 <u>·4</u>
Kulyab Murgab Tamanrasset Hungry Horse St. Louis	z.	$48.9 \\ 49.8 \\ 50.0 \\ 50.9 \\ 53.2$	$94 \\ 89 \\ 170 \\ 307 \\ 283$	e 8 52 e 8 59 e 8 52 i 9 4 e 8 55	$^{+2}_{+3}_{-6}_{-1}_{-27}$	e 16 0 16 12 e 15 28 i 16 56	+ 7+ 6- 41+ 41	e 10 47	PP 	e 28·0
Logan Shasta Dam Pierce Ferry Tinemaha Boulder City	z.	$56.5 \\ 60.1 \\ 62.3 \\ 62.6 \\ 62.7 \\ 62.7 \\ $	$303 \\ 311 \\ 302 \\ 306 \\ 303$	e 9 44 i 10 10 e 10 27 i 10 30 i 10 29	$- \frac{2}{-} \frac{1}{+} \frac{1}{2}$	e 17 43	+ 6			e 32.5
Tucson Riverside Pasadena Bombay Bogota La Paz	Z. Z. E. N.	$65 \cdot 1 \\ 65 \cdot 2 \\ 65 \cdot 3 \\ 67 \cdot 5 \\ 80 \cdot 1 \\ 98 \cdot 4$	$298 \\ 305 \\ 305 \\ 98 \\ 254 \\ 242$	i 10 46 e 10 47 i 10 46 e 12 22 e 13 50	+ 12+ 20+ 9+ 9+ 9	e 19 34 e 19 57 e 22 19	$+\frac{7}{-1}$	e 13 19 e 10 59 i 10 55 e 23 12	PP ? PS	e 34.8

Additional readings :---

Copenhagen 4m.44s. and 9m.10s.

Kew ePPPZ = 5m.23s., eSSNZ = 8m.40s.

Potsdam iZ =4m.47s.k, iE =4m.55s., iPPPZ =5m.14s.a, iNZ =5m.33s.?, iZ =6m.47s., iSZ =8m.41s., iN =8m.51s.

Jena ePZ = 4m.58s., eN = 5m.35s.

Paris i = 5m.17s. and 5m.30s., iPP = 5m.39s., e = 6m.29s. and 8m.7s., eS = 9m.24s., e = 9m.54s., eSS = 10m.5s.

```
Sin.348., 653 = 1011.38.

Strasbourg e = 5m.38s., eP_cP? = 8m.48s., eS? = 9m.24s., e = 9m.53s., eSS = 10m.20s.

Stuttgart iZ = 5m.22s.k, i = 9m.40s., eSS = 10m.54s.

Clermont-Ferrand iSS? = 11m.45s., iSSS? = 12m.4s.

Belgrade e = 9m.11s.

Toledo e = 8m.17s. and 17m.3s.

Alicente PP = 8m.11s., PPP = 8m.30s., P_cP = 9m.34s., P_cS = 13m.26s., SS = 14m.8s.

Almeria PPP = 8m.58s., P_cP = 9m.34s., P_cS = 13m.18s., SSS = 15m.38s.

Malaga P_cPZ = 9m.32s., S_cPZ = 13m.12s.

Tiffis eSS = 15m.54s.?

Tashkent eS_cS = 18m.13s., eSSS = 20m.0s.

Helwan iZ = 9m.20s.

Cleveland iPZ = 8m.46s.

Tamanrasset iZ = 9m.0s.k and 9m.10s.k.

Tucson e = 15m.0s.

Bogota e = 13m.47s.
```

Long waves were also recorded at Ivigtut and at other North American stations.

#### March 2d. 19h. Mexico.

```
Puebla P = 10m.44s., L = 11m.44s.
Tacubaya P = 10m.52s., L = 12m.1s.
Tucson iP = 14m.12s., ePP = 15m.0s., e = 17m.42s., eL = 21m.3s.
St. Leuis eP = 14m.27s., iS = 18m.49s.
Pasadena iP?Z = 14m.31s.
Tinemaha iPZ = 14m.45s.
Pierce Ferry iP = 14m.56s.
Boulder City iP = 14m.59s.
Hungry Horse iP = 16m.21s.
College e = 19m.24s., eL = 39m.10s.
Long waves were also recorded at Victoria, Seattle, Sitka, Salt Lake City, and Bozeman,
```

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

### 1949

¥

٤

99

March 2d. Readings also at 0h. (Klyuchi), 2h. (La Paz, Copiapo, Santa Lucia, Boulder City, Hungry Horse, Pierce Ferry, Shasta Dam, Tucson, Mount Wilson, Riverside, and Tinemaha), 3h. (Boulder City, Hungry Horse, Pierce Ferry, San Juan, and near Klyuchi), 4h. (Pierce Ferry and Stuttgart), 7h. (Tamanrasset and Ksara), 8h. (Frunse, Tchimkent, near Murgab, Andijan, Kulyab, Stalinabad, Obi-garm, Almata, and Tashkent), 9h. (La Paz), 11h. (Boulder City and Pierce Ferry), 15h. (near Poona), 18h. (near Stalinabad and Samarkand), 20h. (La Paz, Santa Lucia, Boulder City, Hungry Horse, and Pierce Ferry), 21h. (Hungry Horse), 22h. (near Alicante, Granada, Malaga, Lisbon, Almeria, and Toledo), 23h. (near Murgab).

March 3d. 4h. Undetermined shock.

Nanking P = 40m.28s., S = 42m.6s.Batavia eP = 46m.46s., iSEN = 51m.9s.Poona eE = 47m.24s. and 49m.33s., iE = 51m.45s. and 56m.15s. Bombay eEN = 47m.30s. and 55m.2s. College  $iP_{i}^{2} = 48m.22s.$ Stuttgart eZ = 50m.32s. and 51m.16s. Shasta Dam iP = 50m.34s., i = 51m.21s.Hungry Horse iP = 50m.36s., i = 51m.24s., eS = 60m.47s., e = 61m.10s. Reno iPZ = 50m.47s.a.Tinemaha iPZ = 50m.59s. Pasadena iPZ = 51m.6s. Riverside iPZ = 51m.8s. Boulder City iP = 51m.11s., e = 52m.53s. and 53m.36s.Pierce Ferry iP = 51m.12s. Palomar ePNZ = 51m.12s. Tucson eP = 51m.34s. Tamanrasset Z = 56m.35s., eZ = 57m.0s.Long waves were recorded at De Bilt.

March 3d. 12h. 6m. 57s. Epicentre 46°.5N. 13°.0E. (as on February 3d.).

	Δ	Az.	Р.	0-C.	s. 0-C.
	0	0	m. s.	s.	m. s. s.
Triest	1.0	149	e 0 21	0	i0 40 + 4
Padova	1.4	216	0 32	+ 5	0 37 - 9
Salo	2.0	242	e 0 35	0	$1 \ 3 \ + 1$
Zagreb	2.2	108	e 0 47	P	e120 S.
Chur	2.4	279	e 0 52	$\mathbf{P}_{\mathbf{g}}$	e 1 41 f
Florence	3.0	204	e 0 37	-13	i047 P
Zürich	3.1	286	1 7		2 15 1
Stuttgart	3.5	312	e 1 43?	Š-	(i 1 43?) + 3
Basle	3.8	285	e 1 17	Pr S Pr	e 2 35 7

Additional readings :---

Florence i = 42s.

Zürich  $eP_{g}$ ? = 1m.17s.

Stuttgart e = 2m.4s. and 2m.38s., eSg?Z = 2m.43s. and 2m.47s., e = 2m.57s.

March 3d. Readings also at 0h. (Pierce Ferry, Hungry Horse, and near Andijan), 2h. (Lincoln and near Tacubaya), 3h. (Alicante and De Bilt), 4h. (near Andijan, Kulyab, Murgab, Obi-garm, Stalinabad, and Tashkent), 5h. (Hungry Horse, Tucson, and La Paz), 6h. (Ottawa, Pasadena, Palomar, Riverside, Tucson (2), Boulder City, Pierce Ferry (2), Shasta Dam (2), Hungry Horse (2), College, La Paz, near Huancayo, Stuttgart, Bombay, Almata, Andijan, Ashkabad, Kulyab, Murgab, Obi-garm. Stalinabad, Tashkent, and Sverdlovsk), 7h. (Grozny, Obi-garm, Stalinabad, Andijan, near Ashkabad, Bogota, and near Fort de France), 8h. (Tashkent, Tchimkent, near Obi-garm, Samarkand, Stalinabad, and near Ashkabad), 9h. (Ashkabad, Almata, Andijan, Murgab, Obi-garm, Samarkand, Stalinabad, and Tashkent), 10h. (Ashkabad and Dehra Dun), 11h. (Ashkabad), 12h. (Auckland, Wellington, Boulder City, Pierce Ferry, near Prato, and Florence), 13h. (Almata, Andijan, Murgab, Tchimkent, and near Fort de France), 14h. (Ashkabad, Pierce Ferry, Auckland, and Wellington), 15h. (Auckland, Wellington, near La Paz, and near Ashkabad), 18h. (Ashkabad), 19h. (Almata, Murgab, Sverdlovsk, near Andijan (2), Obi-garm (2), and near Stalinabad), 20h. (Wellington and near Tucson), 22h. (Pierce Ferry).

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

#### 1949

## 100

March 4d. 1h. 16m. 55s. Epicentre 3°.8S. 102°.2E.

Suggested depth 100-150km.

$$A = -2109, B = +9753, C = -0658; \delta = +2; h = +7;$$
  

$$D = +977, E = +211; G = +014, H = -064, K = -998.$$
  

$$\triangle Az. P. O-C. S. O-C. Supp. L.$$
  

$$abcolored black black$$

Batavia Colombo Kodaikanal Calcutta Perth	E. E. E.	$5 \cdot 2$ 24 $\cdot 7$ 28 $\cdot 3$ 29 $\cdot 5$ 30 $\cdot 8$	$117 \\ 295 \\ 300 \\ 333 \\ 157 \\$	$     \begin{array}{r}       i \ 1 & 24 \ a \\       5 & 25 \\       i \ 6 & 4 \\       e \ 6 & 9 \\       i \ 8 & 25 \\     \end{array} $	+ 3 + 1 + 7 + 1 ?	i 2 19 9 45 i 10 57 i 10 45 i 12 57	$^{-3}_{+11}_{+14}_{-17}_{\rm SS}$	i 6 34 11 55	PP SS	$12.9 \\ 13.9 \\ 14.4$
Poona Bombay Murgab Obi-garm Almata		$35.7 \\ 36.7 \\ 49.4 \\ 51.9 \\ 52.1$	$310 \\ 309 \\ 331 \\ 328 \\ 337$	$i \begin{array}{cccc} i & 7 & 1 \\ e & 7 & 13 \\ & 8 & 54 \\ i \begin{array}{c} 9 & 4 \\ i \begin{array}{c} 9 & 4 \\ i \begin{array}{c} 9 & 16 \end{array}$	-1 + 3 + 1 + 1 + 2 + 2	i 12 37 i 12 59 16 0 i 16 23 e 16 39	$^{-2}_{+5}_{0}_{-12}_{+1}$	i 8 28 e 9 38	PP ? 	20.9
Andijan Stalinabad Frunse Brisbane Vladivostok		$52.3 \\ 52.3 \\ 52.8 \\ 53.8 \\ 53.9 $	$331 \\ 327 \\ 334 \\ 122 \\ 27$	i 9 15 i 9 14 e 9 21 i 9 25 9 29	$+ 1 \\ + 1 \\ + 2 \\ - 1 \\ + 2$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	+ 45 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 + - 38 +	$i \begin{array}{ccc} i \begin{array}{c} 9 & 29 \\ i \begin{array}{c} 9 & 30 \end{array}$ $i \begin{array}{c} 9 & 37 \end{array}$ $i \begin{array}{c} 12 & 41 \end{array}$	pP pP pP PPP	
Samarkand Tashkent Riverview Tananarive Mizusawa	Е.	$54.0 \\ 54.0 \\ 54.4 \\ 55.4 \\ 55.8$	$326 \\ 330 \\ 130 \\ 249 \\ 37$	$   \begin{array}{r}     i & 9 & 27 \\     i & 9 & 28 \\     e & 9 & 25 \\     \hline     9 & 25 \\     \hline     9 & 43 \\   \end{array} $	$- 1 \\ 0 \\ - 6 \\ + 2$	i 16 56? i 17 3 i 17 6 (16 17) 17 34	$-70 \\ -3 \\ -65 \\ +6$	$e_{11}^{19?}$ $i_{9}^{54}$ =	PP pP	e 25.6 16.3
Irkutsk Erevan Tiflis Grozny Leninakan		$55.9 \\ 68.5 \\ 69.0 \\ 69.1 \\ 69.2$	$1 \\ 316 \\ 317 \\ 319 \\ 316$	i 9 45 e 11 9 i 11 8 11 9 i 11 11?	+ 3 + 3 + 3 + 1 + 1 + 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$^+$ $^6_{7}$ $^ ^6_{4}$ $^+$ $^2_{2}$	10 41 $i 11 41$	P _c P P _c P	
Sverdlovsk Piatigorsk Ksara Sotchi Auckland	N.	$69.2 \\ 71.1 \\ 72.7 \\ 73.2 \\ 73.8 \\ 73.8 \\ $	$337 \\ 319 \\ 306 \\ 318 \\ 127$	i 11 10 11 22 e 11 34 e 11 30	$+ \begin{array}{c} 0\\ 0\\ 2\\ - 5\\ - 5\\ - 5\\ - \\ - \\ - \\ - \\ - \\ - \\$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-22 - 40 - 70 = 70	1127 e $1214$	$\frac{\mathbf{P_cP}}{\mathbf{P_cP}}$	
Wellington Arapuni Helwan Tuai Yalta	E. N.	74.4 74.6 75.4 75.9 77.2	$132 \\ 129 \\ 302 \\ 130 \\ 317$	$ \begin{array}{r} 11 & 37 \\ i & 11 & 44 \\ 12 & 4 \\ i & 11 & 57 \\ \end{array} $	$-\frac{5}{-\frac{3}{+14}}$	21 3 21 53 i 21 25 e 21 23	-13 PS $-2$ $-9$	11 52 $14 35$ $14 49$	pP PP PP	38·1 36·1
Simferopol Moscow Istanbul Bucharest Belgrade		$77.4 \\ 79.2 \\ 79.9 \\ 82.8 \\ 86.8 \\ 86.8 \\ $	$318 \\ 328 \\ 313 \\ 316 \\ 315$	e 12 3 i 12 5 i 12 10 e 12 32 i 12 48k	+ 5- 3- 2+ 5+ 1	i 22 2 e 22 43 e 23 23	$-\frac{6}{2}$	$\begin{array}{r} 12 & 18 \\ e & 16 & 1 \\ e & 16 & 7 \\ e & 29 & 12 \end{array}$	$\mathbf{pP}_{\mathbf{PP}}_{\mathbf{PP}}_{\mathbf{SS}}$	e 66·1
Skalnate Pleso Budapest Kalossa Ogyalla Raciborzu	N. N.	87.6 88.1 88.1 88.8 89.0	$320 \\ 317 \\ 317 \\ 318 \\ 321$	e 16 41 12 53 e 12 51 e 13 0 e 13 0	$PP \\ - 1 \\ - 3 \\ + 3 \\ + 2$	e 23 25 23 37 e 23 37 e 23 46 e 23 46	-700 + 21 + 1	 e 16 32	PP	e 52.6
Zagreb Upsala Prague Triest Rome		$90.1 \\ 90.5 \\ 91.4 \\ 91.6 \\ 92.3$	$315 \\ 329 \\ 320 \\ 315 \\ 312$	e 13 4 e 13 287 e 12 51 e 13 10 i 13 16	$^{+1}_{+23}_{-18}_{0}_{+3}$	e 23 52 i 23 55 e 23 36 ( e 23 55 e 24 19	$ \begin{array}{r} - & 3 \\ - & 4 \\ - & 5 \\ - & 5 \\ - & 14 \\ + & 4 \end{array} $	i 23 32 e 24 2 e 17 0 e 23 51 9	SKS SKS	e 45·1 e 39·5
Collmberg Potsdam Cheb Padova Copenhagen		$92.4 \\ 92.4 \\ 92.8 \\ 92.9 \\ 93.0 \\$	$320 \\ 322 \\ 320 \\ 314 \\ 325$	e 13 14 e 13 14 e 17 0 13 22 e 13 15	0 0 PP + 6 - 2	e 23 42 [ e 24 3 e 23 44 [ e 23 44 [ e 23 45 [	$\begin{bmatrix} 5 \\ -13 \\ -5 \\ -6 \\ -5 \end{bmatrix}$	e 24 3 e 16 35 e 24 1 5 e 25 0 25 45	SeS PP SKKS PS PS	e 54.1 e 48.1 e 39.6

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

8

t

	1949			101	
8		Δ	Az. P.	0-C. S. 0-	C. Supp. L.
		0	° m. s.	8. m. s. s.	
	Bologna	93·3 93·4	314 e 13 19 320 e 13 17	+1 e 23 52 [ -1 e 23 47 [-	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	Jena Salo	93.9	315 e 13 20a	-1 e 23 47 l - -1 1 24 25 -	5] e 25 50 PS 4 e 23 50 SKS
	Stuttgart	94.8	318 e 13 24a	-1 $e$ $24$ $5$ [+	5] e 17 15 PP 55.1
	Strasbourg	95.8	318 e 13 29	$\tilde{0}$ $\tilde{1}$ $\tilde{2}$ $\tilde{4}$ $\tilde{4}$ $\tilde{7}$ $+$	2 e 17 13 PP 47.1
	Bergen	96.7	330	- e 24 49 -	4 e 26 24 PS 45.3
	De Bilt	97.3	322 e 13 25	-11 e 24 5 [-	8] e 26 35 PS e 45.1
	Tamanrasset z.	97.6	293 i 13 38k		10 i 17 29k PP
	Clermont-Ferrand Paris	$99.1 \\ 99.2$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$+ 3 i 24 48 \{ -1 e 26 59 P \}$	0} e 18 0 PP 47.6 S e 17 48 PP e 55.1
	Kew	100.8	321 e 13 12	-40 e 24 46 [+]	[5] e 18 4 PP e 55·1
	Aberdeen E.	100.9	327	- 1 24 27 [-	4] 1 26 54 PS 0 57.2
	Jersey E.	102.2	319 e 13 34	-24 e 25 5? (-	5)
	Alicante	102.3	308 14 34	+35 24 26 [-1	
	Rathfarnham Castle	104.0	324 e 14 0	-6 26 6 $+1$	.2
	Almeria	104.0	307 e 14 23	+17 26 11 $+1$	17 18 47 PP 58.0
	Scoresby Sund	104.5	343	24 48 [	0] 27 56 PS
	Granada	104.9	307 e 14 9k	-1 i 25 50 $-1$	
	Toledo	104.9	310 e 19 28	PP	- e 20 48 PPP e 68.5
	Shasta Dam	125.7	41 i 19 3	[-1]	
	Hungry Horse	125.9	28 i 19 3	[-1] i 22 0 PK	
	Tinemaha Z.	130.3	43 i 19 6	[- 7] i 22 35 SK	1 The second s
	Logan	131.5	34 e 19 14	[-1] e 25 55 [-2]	
	Pasadena Folt Lobo City	131.9	45 i 19 17	[+1] 22 39 SK [+6] e 22 28 SK	
	Salt Lake City	132.1	34 e 19 22	[+ 6] e 22 28 SK	P e 21 37 PP e 66.8
	Riverside Z.	132.5	45 i 19 18	[+ 1] i 22 42 SK	
	Boulder City	$133 \cdot 2$	42 e 19 19	[+ 1] e 22 45 SK	P e 21 45 PP —
	Palomar	$133 \cdot 2$	46 e 19 31	[+13]	
	Pierce Ferry	133.7	40 i 19 20	[+1] i 22 46 PK [-6] i 23 1 PK	
	Tucson	138.1	43 e 19 21	[- 6] i 23 1 PK	S 120 6 PLAT 0 510
	Weston	141.2	352 i 19 33	[ 0] e 41 51 SS	
	Cleveland	142.3	4 e 19 33	[-2] e 33 21 P	
	St. Louis	143.5	16 i 19 35	[-2] e 29 41 {	0} i 22 44 PP
	Bermuda	149.0	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	Tacubaya La Paz	$154.0 \\ 157.7$	51 e 20 17 206 i 19 59a	[+24] <b>i</b> 49 45 SS [+1] 26 29 $[-3]$	
	Bogota	176.2	- e 20 12	$\begin{bmatrix} - & 1 \\ 0 \end{bmatrix} = 26 11 \begin{bmatrix} - & 0 \\ - & 0 \end{bmatrix}$	
	TO BOOM		V NV AN	F AT A WA TY F A	

```
Additional readings :--
  Kodaikanal SSE = 12m.1s.
  Calcutta iE =11m.33s.
  Poona isPEN =8m.45s., iPPEN =9m.4s., iP<sub>c</sub>PEN =9m.45s., QEN =17m.30s.
  Vladivostok iPS = 17m.27s., iS<sub>c</sub>S = 19m.37s.
  Tashkent ePS = 17m.21s., eS_cS = 19m.11s., eSS = 21m.5s.
  Riverview iZ = 9m.41s., iE = 17m.26s., eE = 17m.47s., eZ = 20m.29s., and 21m.41s.
  Irkutsk ePP =11m.47s., PS =17m.51s.
  Sverdlovsk iPP = 13m.45s., iPP = 15m.30s., iS<sub>c</sub>S = 21m.4s., SSS = 28m.11s.
  Wellington PP?Z = 13m.49s., PS?Z = 22m.27s., SSS = 29m.11s., Q = 31.1m.
  Helwan eZ = 12m.34s. and 13m.15s., PSN = 22m.5s.
  Moscow sS = 22m.27s.
  Bucharest eE = 13m.19s., eS?E = 22m.26s., eE = 22m.35s., eS?N = 22m.40s., eE = 22m.40s.
      22m.548.
  Budapest SE = 23m.45s.
  Kalossa eE = 12m.55s. and 23m.20s.
  Raciborzu eEN = 13m.16s., eSKS?EN = 23m.28s., eN = 24m.21s., and 27m.20s.
  Zagreb eZ = 26m.46s.
  Upsala epSE = 24m.21s., pPSN = 25m.33s., eSSE = 30m.5s.?, eSSSE = 34m.5s.?,
      eSSSN = 34m.25s.
  Prague e =14m.7s. and 14m.24s., ePP =16m.25s., eS =24m.23s., ePS =25m.5s., eSS =
      30m.23s., eSSS = 35m.5s.
 Triest iSKKS = 24m.30s., ePS = 25m.18s.?, eSS = 30m.18s.?
  Rome iSKKSN = 24m.11s., ePSE = 25m.21s., eSSN = 30m.11s., eN = 36m.50s.
 Collmberg eZ = 13m.28s., eN = 24m.8s.
 Potsdam ePE = 13m.17s., iPPZ = 16m.58s.a, eSN = 24m.18s., iE = 24m.37s., iPSZ =
      25m.38s.
 Cheb e = 23m.54s., eSS = 30m.35s., eSSS = 35m.17s.
 Copenhagen 24m.8s., i = 24m.45s., 31m.6s.
 Bologna e = 24m.14s.
 Jena ePN = 13m.20s.
```

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

# 1949

### 102

Stuttgart e = 13m.29s.k, eZ = 13m.37s., eS? = 24m.59s., eSP = 25m.59s., e = 27m.53s., eSS = 30m.59s.,  $eQ = 52 \cdot 1m.$ Strasbourg i = 13m.43s., e = 14m.48s. and 15m.40s., ePP = 17m.17s., epPP? = 18m.11s., ePPP = 19m.21s., e = 22m.25s., eSKS? = 24m.5s., ePS = 26m.10s. and 26m.14s., e = 26m.25s., ePPS = 26m.53s., e = 28m.37s., 30m.32s., and 30m.36s., eSS? = 31m.12s. and 31m.27s., eSSS? = 35m.42s.,  $eQ = 40 \cdot 6m.$ Bergen eN = 25m.43s.Tamanrasset iZ = 13m.49s.k, eSSZ = 30m.58s.Clermont-Ferrand e = 18m.52s., iSKS? = 23m.32s., ePPS = 27m.5s., eSS? = 32m.5s.

Paris e? = 13m.18s.?, ipPP? = 18m.19s., e = 23m.59s., eSS = 32m.5s.? Kew ePPSEZ = 27m.10s., eE = 40m.34s., eQEN = 48 ·1m. Alicante S = 25m.42s. Almeria PPP = 21m.3s., SKS = 24m.59s., PPS = 28m.55s., SS = 33m.47s. Scoresby Sund 33m.41s. Tinemaha iZ = 19m.36s. and 23m.0s. Logan i = 22m.56s., ePS = 31m.59s. Tucson iPKP = 19m.29s., e = 24m.44s. Cleveland iZ = 22m.38s. and 23m.37s., epPSE = 36m.33s., eN = 41m.23s. and 43m.5s. St. Louis iPKP₁ = 19m.46s., i = 21m.8s., 23m.11s., and 30m.0s. La Paz PKP₁ = 20m.37s., iPPZ = 24m.17s., iE = 39m.29s., SSE = 43m.37s., SSN = 44m.23s. Long waves were also recorded at Punta Arenas, Santa Lucia, San Juan, Ivigtut, and

other North American Stations.

March 4d. 8h. 19m. 5s. Epicentre 18°.5S. 169°.1E. (as on 1946, Oct. 15d.).

 $A = -.9319, B = +.1795, C = -.3154; \delta = +14; h = +5;$ D = +.189, E = +.982; G = +.310, H = -.060, K = -.949.

		Δ	Az.	Р.	0-C.	s.	0 – C.	S	upp.	L.
		0	•	m. s.	s.	m. s.	s.	m. s.		m.
Brisbane		17.3	236	e4 7	+ 3	i7 28	+12		17 <u>11</u> 14	
Auckland	N.	100 Mar 100	164	e 3 551	the second se	172.00075.00				
Tuai	N.		163	4 52	+ 1	8 41	- 4		-	
Riverview	740	22.1	222			i 8 58	0			e 10.5
Wellington		23.2	170	54	- 5	9 10	- 8	-		
Shasta Dam		86.6	45	i 12 47	+ 1					
Pasadena	z.	86.7	53	i 12 47k		·	-			
Riverside	z.	87.2	54	i 12 50k	+ 1					
Palomar		87.4	54	i 12 52	+ 2				_	
Tinemaha	z.	87.9	51	i 12 54	+ 1	·•				-
Boulder City		89.3	52	i13 2	+ 3					
Pierce Ferry		90.6	52	i 13 5	0					
Tueson		91.6	57	i 13 11	+ 1					
Hungry Horse		95.2	41	e 13 25	- 2					
La Paz	E.	113.8	118	e 18 47	[+ 6]		-			
Zagreb		144.8	327	e 19 39a	[ 0]					
Stuttgart	z.	145.7	336	e 19 40	i oj					
Strasbourg		146.4	338	e 19 41	(-1)		-			
Paris		147.9	343	i 19 48	$(+ \bar{4})$					· · · · · · · · · · · · · · · · · · ·
Clermont-Ferrand	E .	150.4	341	e 19 49	(+1)					
Tamanrasset	z.	164.1	292	e 20 5	[ 0]	-	-	e 21 0	PKP ₁	

Additional readings :---Brisbane iZ =5m.6s. Wellington i =6m.10s. and 9m.57s. Tucson e =14m.1s. Zagreb e =19m.59s. Strasbourg e =20m.8s. and 21m.37s. Paris e =20m.0s., i =20m.18s. Clermont-Ferrand e =20m.44s. and 21m.22s.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

# 1949

.

t.

103

March 4d. 10h. 19m. 30s. Epicentre 36°.7N. 70°.5E. Depth of focus 0.030. (as on 1948, July 25d.).

Felt strongly on the N.W. frontier of India, the Eastern parts of Cashmir, and through-out Afghanistan; also felt at various intensities from the Punjab to Jaipur (Rajpou-tan). Damage at Rawalpindi and Peshawar, slight damage at Srinigar.

Depth 230km. Suggested epicentres 36°·0N. 70°·5E. (Pasadena). 36°40'N. 70°55'E. (U.S.S.R.).

 $A = + \cdot 2683, B = + \cdot 7576, C = + \cdot 5951; \delta = +9; h = 0;$  $D = + \cdot 943$ , E = -334;  $G = + \cdot 199$ ,  $H = + \cdot 561$ ,  $K = - \cdot 804$ .

		Δ	Az.	P. m. s.	O - C.	s. m. s.	0 – C. s.	m. s.	pp.	L. m.
Obi-garm Stalinabad Murgab Samarkand Andíjan		$     \begin{array}{c}                                     $	$342 \\ 323 \\ 59 \\ 319 \\ 20$	$\begin{array}{c} i & 0 & 36 \\ i & 0 & 43 \\ i & 0 & 50 \\ i & 1 & 3 \\ i & 1 & 5 \end{array}$	$-6 \\ -1 \\ -4 \\ -1 \\ -2$	i 1 44 i 1 58	$-\frac{10}{1}$			
Tashkent Tchimkent Frunse Almata Bombay		$4 \cdot 7 \\ 5 \cdot 6 \\ 6 \cdot 9 \\ 8 \cdot 2 \\ 17 \cdot 8$	$349 \\ 354 \\ 26 \\ 35 \\ 172$	$\begin{array}{c} {\bf i} \ {\bf 1} \ \ {\bf 12} \\ {\bf i} \ {\bf 1} \ \ {\bf 23} \\ {\bf i} \ {\bf 1} \ \ {\bf 37} \\ {\bf i} \ {\bf 1} \ \ {\bf 54} \\ {\bf i} \ {\bf 3} \ \ {\bf 52} \end{array}$	$ \begin{array}{c} 0 \\ 0 \\ - \\ 3 \\ - \\ 2 \end{array} $	$     \begin{array}{ccccccccccccccccccccccccccccccccc$	+ 1 + 1 + 1 + 1 + 18	i <u>1</u> 25	P•	
Poona Grozny Tiffis Erevan Calcutta	E.	$18.3 \\ 20.0 \\ 20.5 \\ 20.6 \\ 20.9$	$170 \\ 297 \\ 293 \\ 288 \\ 128$	i 3 53 i 4 21 i 4 23 e 4 27? i 4 24 a	-7 + 4 + 1 + 4 - 2	$i \frac{7}{8} \frac{8}{1}$ $i \frac{7}{7} 58$	$-\frac{4}{8}$ $-\frac{2}{2}$	i <u>4</u> 33	р <u>Р</u> 	
Leninakan Sverdlovsk Piatigorsk Sotchi Kodaikanal	E.	$21.1 \\ 21.2 \\ 22.1 \\ 24.4 \\ 27.1$	$290 \\ 345 \\ 299 \\ 297 \\ 166$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$+ \frac{4}{23} + \frac{23}{20}$	i 8 99 i 8 4 i 10 6	$+\frac{5}{2}$ +22	i 5 10 i 6 36	pP sP	 13·6
Theodosia Ksara Irkutsk Simferopol Yalta		$27.6 \\ 28.3 \\ 28.4 \\ 28.5 \\ 28.5 \\ 28.5$	$299 \\ 275 \\ 46 \\ 299 \\ 298$	i 5 29? e 5 38 i 5 36 5 39 i 5 35	$^+$ $^{0}_{0}$ $^+_{2}$ $^2_{2}$	e 9 483 10 14 9 54 1 10 9	-4 + 11 + 3	i = 31	PP	
Moscow Colombo Istanbul Helwan Bucharest	Е.	$29 \cdot 2 \\ 30 \cdot 9 \\ 32 \cdot 3 \\ 33 \cdot 3 \\ 34 \cdot 3$	$322 \\ 163 \\ 291 \\ 270 \\ 297 \\$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$-rac{0}{8}$	$\begin{array}{rrrr}10&19\\10&30?\\10&44\\i&11&22\\i&11&41\end{array}$	$^{+1}_{-22}$ + 4	6 27 	pP  pP pP	11 <u>·8</u>
Cernauti Campulung Sofia Helsinki Belgrade		$34 \cdot 4 \\ 35 \cdot 0 \\ 36 \cdot 4 \\ 37 \cdot 2 \\ 38 \cdot 2$	$304 \\ 300 \\ 295 \\ 326 \\ 298$	629 e636 i646 i652a i71	$^{+1}_{+3}_{+1}_{+1}_{+1}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$^{+2}_{-5}_{+6}_{+3}_{-8}$	i 9 21 i 9 9 i 7 39 e 7 55	PeP PeP PP PP	
Skalnate Pleso Budapest Kalossa Raciborzu	E. N.	$38.2 \\ 39.0 \\ 39.1 \\ 39.1 \\ 39.5$	$307 \\ 303 \\ 302 \\ 302 \\ 308$	$\begin{array}{ccccc} 7 & 2 \\ i & 7 & 9 \\ & 7 & 10 \\ & 7 & 11 \\ i & 7 & 12 \end{array}$	+ 23 + 34 + 42	e 12 35 12 53 12 56 12 59 e 13 1	$-1 \\ +5 \\ +9 \\ +5 $		PP PP PP pP	e 18.0 e 18.0
Ogyalla Nanking Upsala Taranto Zagreb		$39.6 \\ 39.8 \\ 40.7 \\ 41.3 \\ 41.3$	$304 \\ 83 \\ 322 \\ 292 \\ 301$	$\begin{array}{c} \mathbf{i} \ 7 16 \\ \mathbf{i} \ 7 13 \\ \mathbf{i} \ 7  \mathbf{20a} \\ 7 24 \\ \mathbf{i} \ 7 26 \end{array}$	$+ 5 \\ 0 \\ - 1 \\ + 1$	$\begin{array}{ccccccc} e & 13 & 0 \\ i & 13 & 7 \\ i & 13 & 11 \\ & 13 & 24 \\ i & 13 & 16 \end{array}$	+ 3 + 7 + 5 + 2 - 6	$     \begin{array}{r}                                     $	pP sP pP pP	e 15.5
Prague Lund Potsdam Collmberg Triest		$\begin{array}{r} 41 \cdot 9 \\ 42 \cdot 6 \\ 42 \cdot 7 \\ 42 \cdot 8 \\ 42 \cdot 8 \\ 42 \cdot 8 \end{array}$	$308 \\ 316 \\ 311 \\ 309 \\ 302$	i 7 30 i 7 38 i 7 36 a 7 37 i 7 38	$+ \begin{array}{c} 0 \\ 2 \\ 0 \\ 0 \\ + 1 \end{array}$	i 13 27 i 13 47 i 13 46 i 13 44 i 13 48	-4 + 6 + 4 + 4 + 4 + 4	e 8 17 i 8 29 i 8 30 i 8 30 i 8 30	pP pP pP	

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1949			104			
	Δ Δ		0 - C.	s. o-c.	Supp.	L.
Copenhagen Messina Cheb Catania Jena	$\begin{array}{c} & & & & & & & \\ 43 \cdot 0 & & & & & \\ 43 \cdot 1 & & & & \\ 43 \cdot 1 & & & & \\ 43 \cdot 2 & & & & \\ 43 \cdot 2 & & & & \\ 43 \cdot 7 & & & & & \\ 43 \cdot 7 & & & & & \\ 43 \cdot 7 & & & & & \\ 30 \end{array}$	6 17 39 0 e7 38a 8 17 43 9 17 46a	-2 + 3 + 1	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	m. s. 8 38 pP 9 2 PP i 8 31 pP e 8 38 pP	m. 
Padova Rome Bologna Florence Prato	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	6 i7 50a 9 i7 54a 9 i7 55a	$^{+2}_{+1}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	8     47     pP       i     8     44     pP       i     8     35     pP       i     8     44     pP	1111
Salo Ravensburg Chur Stuttgart Zürich	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	4 i7 58a 3 i7 59 6 e7 58a	$^{+1}_{-1}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccc} i & 8 & 47 & pP \\ i & 8 & 48 & pP \\ i & 17 & 27 & SS \\ i & 8 & 46 & pP \\ e & 8 & 51 & pP \end{array}$	
Strasbourg Vladivostok Basle Bergen Neuchatel	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	3 i 8 4 4 e 8 8a 3 i 8 9a	- 3 0 0	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	i 8 57 pP e 8 58 pP 8 44 pP	i 21.5
De Bilt Tunis Hukuoka Marseilles Kagosima	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	9 i 8 17 6 i 8 19 9 i 8 40?	$+ \frac{2}{-2}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\stackrel{i 9}{\stackrel{1}{\stackrel{9}{\stackrel{7}{\stackrel{7}{}}}} \stackrel{p P}{\stackrel{p P}{\stackrel{1}{\stackrel{1}{\stackrel{9}{\stackrel{7}{\stackrel{7}{}}}} \stackrel{p P}{\stackrel{p P}{\stackrel{1}{\stackrel{1}{\stackrel{1}{\stackrel{9}{\stackrel{7}{\stackrel{7}{\stackrel{7}{\stackrel{1}{\stackrel{9}{\stackrel{7}{\stackrel{1}{\stackrel{9}{\stackrel{7}{\stackrel{7}{\stackrel{1}{\stackrel{9}{\stackrel{7}{\stackrel{1}{\stackrel{9}{\stackrel{1}{\stackrel{9}{\stackrel{1}{\stackrel{9}{\stackrel{7}{\stackrel{1}{\stackrel{9}{\stackrel{7}{\stackrel{9}{\stackrel{1}{\stackrel{9}{\stackrel{1}{\stackrel{9}{\stackrel{1}{\stackrel{9}{\stackrel{1}{\stackrel{9}{9$	e 20.5 21.8 
Paris Clermont-Ferrand Kôti Aberdeen E. Kew	$\begin{array}{cccc} 49\cdot 8 & 30 \\ 50\cdot 1 & 30 \\ 50\cdot 8 & 7 \\ 51\cdot 0 & 31 \\ 51\cdot 0 & 31 \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	-1 +1	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	e 26.5 22.5 e 28.5
Durham Edinburgh Osaka Barcelona Jersey E.	$\begin{array}{cccccc} 51 \cdot 1 & 31 \\ 51 \cdot 8 & 31 \\ 51 \cdot 9 & 7 \\ 52 \cdot 0 & 29 \\ 52 \cdot 6 & 30 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-5 -1 -1	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	i 9 21 pP 9 31 pP i 9 39 pP i 10 9 sP	e 22.5
Algiers Tortosa Rathfarnham Castle Mizusawa Batavia	53.0 29 53.4 29 54.1 31 54.4 6 54.5 13	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$ \begin{array}{cccc} 0 & i \\ 0 & 1 \\ - & 1 \\ + & 1 \\ - & 7 & i \end{array} $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\stackrel{i 9}{=} \stackrel{41}{=} \stackrel{pP}{=} \stackrel{pP}{=}$	$   \begin{array}{c}     26 \cdot 5 \\     25 \cdot 1 \\     \hline     33 \cdot 5   \end{array} $
Tokyo Alicante Scoresby Sund Almeria Toledo	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	26.8
Tamanrasset z. Granada Malaga z. Reykjavik Tananarive	$57 \cdot 1$ 27 $57 \cdot 7$ 29 $58 \cdot 5$ 29 $58 \cdot 5$ 33 $59 \cdot 4$ 20	6 1927a 5 1933k 0 1937	$ \begin{array}{cccc} - & 2 & i \\ - & 2 & i \\ + & 1 & e \end{array} $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	i 10 13a pP 9 42 pP i 10 8k pP e 10 24 pP i 10 29 pP	i 27 · 1 26 · 8 e 23 · 7 e 28 · 7
Klyuchi Lisbon Ivigtut College Perth	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9 i 9 52a 4 i 10 50 7 i 11 14	- 1 i	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	e 31.0
Sitka Halifax Seven Falls E. Shawinigan Falls N. Saskatoon	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$+ 4 i \\ + 2 \\ + 1 \\ + 10$	$\begin{bmatrix} 1 & 22 & 10 & + & 4 \\ 22 & 38 & [+ & 1] \\ 23 & 2 & - & 1 \\ 23 & 18 & + & 5 \\ 23 & 0 & [+ & 9] \end{bmatrix}$	i 15 15 PP 13 26 pP 13 32 pP 13 38 pP 13 44 pP	$     \begin{array}{r}       i & 40 \cdot 8 \\       36 \cdot 5 \\       33 \cdot 5 \\       37 \cdot 5     \end{array} $
Weston Victoria Hungry Horse Seattle Fordham	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{ccccccc} 0 & i & 13 & 0 \\ 4 & i & 12 & 58 \\ 9 & e & 13 & 5 \end{array}$	+ 1 + 5 + 5 + 6 + 6 + 6 + 1 + 6 + 6 + 6 + 6 + 6 + 6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	i 13 49 pP i 13 58 pP e 16 38 PP i 14 2 pP	44.5 e 42.9
		Carl 14 - 2				

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1

i.

1949					105			2
Philadelphia Butte Pennsylvania Bozeman Cleveland	N. E.	∆ 97.4 97.6 97.6 98.0 98.1	Az. 334 337 337 2 340	P. m. s. e 17 7 i 13 11 i 17 3 e 13 13 i 13 13	0 - C. 8, PP + 1 PP + 1 + 1	S. $0 - C$ . m. s. s. i 24 24 +14 e 24 29 +17 i 24 17 + 5 i 24 5 -10 e 23 26 [-1]	Supp. m. s. e 23 24 SKS e 13 51 pP i 23 27 SKS e 14 10 pP i 14 8 pP	e 4 e 4
Woodstock Chicago Bermuda Brisbane Ferndale		98.6 99.4 99.5 100.4 101.9	$335 \\ 345 \\ 323 \\ 117 \\ 12$	e 17 22 e 13 15? e 13 25 i 13 19 e 17 40	$\begin{array}{c} \mathbf{PP} \\ \mathbf{-3} \\ \mathbf{+6} \\ \mathbf{-4} \\ \mathbf{PP} \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	e 25 16 PS i 17 22? PP i 14 41 pP i 17 3 PP	i 4 e 4
Lincoln Logan Shasta Dam Mineral Riverview	E.	$101.9 \\ 101.9 \\ 102.1 \\ 102.5 \\ 102.8 \\$	$351 \\ 2 \\ 11 \\ 10 \\ 123$	e 14 51 i 13 28 i 13 29 i 13 32 i 13 30 a		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	e 17 44 PKP i 17 39 PP e 18 17 PP i 17 33 PKP i 14 26 pP	e 4 e 4
Salt Lake City St. Louis Reno Ukiah Columbia		$102.9\\103.0\\103.5\\103.5\\104.8$	$\begin{array}{r}2\\345\\8\\11\\337\end{array}$	i 13 20 i 13 33 i 13 39 a e 13 37 e 18 6	$-14 \\ -1 \\ +3 \\ +1 \\ PP$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	i 17 34 PP i 14 30 pP i 17 47 PKP e 14 38 pP e 19 16 PPP	e 4 e 4 e 4
Berkeley San Francisco Branner Santa Clara Lick	z.	$104.9 \\ 104.9 \\ 105.3 \\ 105.4 \\ 105.5$	11 11 11 11 11	i 13 44 a e 17 18 i 13 49 e 13 46 i 13 48	+ 1 P P P	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	i 17 45 PKP e 18 5 PP e 25 45 PS i 18 11 PP i 18 12 PP	e 2 e 4
Tinemaha Fresno Honolulu Pierce Ferry Boulder City		$106.2 \\ 106.3 \\ 106.5 \\ 107.4 \\ 107.5$	8 9 47 45	i 13 50 a i 13 50 i 13 50 i 18 14 i 13 55 i 13 57	P P PP P P	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	i 18 1 PKP i 17 55 PKP i 25 49 S i 19 15 PP i 37 30 SSS	e 4
Pasadena Riverside Lubbock Mobile Palomar	z.	$109.1 \\ 109.3 \\ 109.7 \\ 110.0 \\ 110.0$		i 14 2a e 14 4 14 4 17 54 e 14 8	P PP [-10] P	i 24 18 [ 0] i 40 50 SKPP' e 26 8 S e 40 45 SKPP'	i 15 2 pP i 18 6 PKP 18 47 pPKP e 18 51 pPKP i 29 8 PKKP	4
Tucson Fort de France San Juan Chihuahua Merida	z.	$111 \cdot 4 \\ 111 \cdot 5 \\ 111 \cdot 6 \\ 114 \cdot 9 \\ 119 \cdot 7$	$2 \\ 309 \\ 316 \\ 357 \\ 339$	i 14 14 e 18 1 e 14 13 e 18 9 e 19 42	$\begin{array}{c} \mathbf{P} \\ [-6] \\ \mathbf{P} \\ [-4] \\ \mathbf{PP} \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	i 14 54 pP 19 4 PP e 15 21 pP i 19 17 PP i 29 9 PS	e 5 e 4
Apia Auckland Arapuni Wellington Tacubaya	N. E.	$120.3 \\ 121.0 \\ 122.1 \\ 122.7 \\ 122.7 \\ 123.4$	$\begin{array}{r} 85 \\ 115 \\ 117 \\ 120 \\ 349 \end{array}$	e 18 28 18 49 21 18 18 28 18 28 1 18 35	$[ \begin{array}{c} + & 4 \\ [ + 23 ] \\ [ + 23 ] \\ [ + 1 \\ ] \\ [ + 1 \\ ] \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	e 21 47 PPP 22 0 PPP e 36 36 SS i 19 26 pPKP i 20 10 PP	еб 64
Puebla Tuai Manzanillo Balboa Heights Bogota	N.	$123.5 \\ 123.5 \\ 124.3 \\ 126.6 \\ 127.2$	348 117 355 322 314	e 20 2 18 31 e 19 44 e 18 38 i 18 39	$[PP \\ [0] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] $	e 31 21 sPS e 25 15 [+3] i 26 19 [+58]	e 20 16 PP i 20 42 PP	7
La Paz La Plata Santa Lucia Santiago Punta Arenas	E. N. E. N.	$138.3 \\ 138.6 \\ 138.6 \\ 148.2 \\ 148.2 \\ 148.2 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.6 \\ 148.$	$288 \\ 257 \\ 257 \\ 265 \\ 265 \\ 265 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 \\ 226 $	i 18 47k 18 59 18 54 e 19 17 19 15 19 25 e 19 22	$\begin{bmatrix} -12 \\ 0 \end{bmatrix} \begin{bmatrix} -5 \end{bmatrix} \begin{bmatrix} +1 \end{bmatrix} \begin{bmatrix} +9 \end{bmatrix} \begin{bmatrix} +6 \end{bmatrix}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	i 19 1 pPKP 21 51 PP 21 42 PP 34 33 PPS 41 27 SS 22 53 PP 22 55 PP	6 7

1.11

Poona isPN = 5m.2s., iEN = 5m.42s. Kodaikanal P_cPE = 8m.24s. Moscow SSS = 11m.29s. Helwan eE = 7m.3s., PPE = 7m.16s., PPPE = 7m.30s. Bucharest iPPiE = 7m.43s., iP_cPN = 9m.27s., iP_cPE = 9m.33s., iE = 11m.20s. and 11m.33s., iSSiEN = 13m.2s., iS_cSiE = 16m.43s., iS_cSN = 16m.56s. Campulung iN = 6m.57s., iE = 7m.1s. and 8m.7s., eP_cPN = 9m.27s., eSE = 11m.39s.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

## 1949

# 106

Sofia i = 7m.36s., 7m.59s., 8m.20s., and 13m.39s., iSS = 14m.41s. Helsinki isP = 8m.1s., ePP = 8m.30s., epPP = 9m.25s., ipS = 13m.40s., isS = 14m.27s.Belgrade iPeP = 9m.42s. Budapest PPN = 8m.25s., PPPN = 8m.59s., PPPE = 9m.2s., PePE = 9m.20s., PePN = 9m.24s., PcSN =13m.14s., iE =14m.13s. and 14m.25s., SSN =15m.30s., SSSE = 15m.40s., SSSN = 15m.53s., iE = 16m.11s., SKSN = 17m.24s.Kalossa E. PPP = 8m.47s., i = 8m.54s., e = 10m.16s., e = 13m.7s., SSS = 15m.53s., e =16m.45s.; N. PPP = 8m.55s., i = 9m.11s., 9m.47s., 10m.44s., and 13m.7s., SSS = 15m.54s., i = 16m.51s.

Raciborzu ePN =7m.15s., ePP?NZ =8m.18s., ePPP?EN =8m.49s., eZ =8m.52s.,  $eP_cP_iZ = 9m.52s., eZ = 12m.56s. and 15m.5s., eSS_iEN = 15m.8s.$ 

Nanking PP = 9m.1s., sS? = 14m.25s., SS = 16m.19s.

Upsala iN = 7m.51s., iPPE = 9m.5s., ipPPE = 9m.35s., iN = 11m.16s., iE = 12m.49s..  $ipP_cSN = 14m.3s.$ , iN = 14m.27s., iE = 14m.30s.?

Taranto e = 10m.13s. and 28m.12s.

Zagreb eEZ = 7m.34s., iPP = 9m.15s., i = 10m.20s., 12m.7s.?, 13m.25s., isSE = 14m.57s., iSS = 16m.53s., iE = 19m.11s., i = 19m.35s., eZ = 25m.0s., eE = 29m.3s.

Prague eE =7m.56s., e =8m.42s., 9m.6s., 14m.50s., 15m.42s., and 18m.0s. Potsdam iPN =7m.40s., ipPE =8m.34s.?, iPPE =9m.25s., isPP =10m.28s., isS?N =

15m.0s., iSSN = 16m.11s. and other unidentified phases.

Collmberg iZ = 7m.40s. and 7m.44s., isPE = 8m.50s., ipPPZ = 10m.7s., esPPN =10m.32s., iZ = 10m.35s., iN = 13m.48s., isSN = 14m.59s., iE = 15m.9s., iSSN = 10m.32s.16m.58s.,  $iS_cSE = 17m.9s.$ , isSSN = 17m.47s.

Triest is P = 8m.53s.,  $iP_cP = 9m.32s.$ , isS = 15m.9s.,  $iS_cS = 17m.11s.$ 

Copenhagen 9m.30s., pPP = 10m.32s., sS = 15m.8s.

Catania iPP = 9m.9s., iPPP = 10m.17s.

Jena iP = 7m.45s., iPeP = 8m.58s., iPPEZ = 9m.34s., isPPN = 10m.36s., isPPZ = 10m.36s.10m.40s., is SN = 15m.15s., is SE = 15m.26s., is SN = 16m.46s., in = 17m.10s. and

17m.14s., iE =17m.18s., iZ =17m.50s., iE =18m.20s., iN =18m.30s.

Padova i = 7m.55s., sS? = 15m.42s., i = 17m.21s.

Rome is S = 15m.33s.

Bologna iZ = 8m.16s. and 9m.8s., iPPP = 10m.5s., esS = 15m.39s., iS_cS = 17m.23s.

Florence i = 10m.41s., iSS = 17m.21s.

Salo i = 8m.1s. and 9m.45s., iE = 14m.33s., iN = 15m.22s., is SN = 15m.46s., iS_cSE = 17m.26s.

Ravensburg iPP = 9m.51s., isPP = 11m.6s., iSePZ = 13m.4s.

Stuttgart iZ = 8m.1s. and 8m.7s., isP = 9m.10s., iPcP = 9m.34s., iPP = 9m.51s., ipPP = 10m.26s., isPP = 11m.0s., iS_cPZ = 13m.6s., isS = 15m.45s., iSS = 17m.28s., isSS = 19m.0s.

Strasbourg i = 8m.34s. and 8m.48s., isP = 9m.14s., iP_cP = 9m.36s., iPP = 9m.59s., ipPP = 10m.41s., isPP = 11m.2s., iPPP? = 11m.36s., iS = 14m.45s., i = 15m.46s., isS = 15m.59s. and 16m.2s.,  $iS_{c}S = 17m.17s$ . and 17m.20s., i = 17m.32s., 17m.43s., and 17m.50s., iSS = 18m.7s., isSS = 19m.11s., iSSS = 19m.30s., i = 19m.48s.

Bergen eN =8m.12s., eEZ =9m.4s., eZ =9m.24s.?, PPN =9m.41s., PPPEZ =10m.37s., eZ = 11m.12s., eN = 11m.16s., 12m.4s., and 15m.6s.,  $S_cSE = 17m.50s.$ 

De Bilt iZ = 11m.15s., isS = 16m.16s.

- Tunis i =8m.20s., 8m.47s., and 8m.50s., isP =9m.33s., iP_cP =9m.40s., iPP =10m.11s. i = 10m.32s., ipPP = 10m.56s., iPPP = 11m.15s., i = 11m.53s.,  $iP_cS = 13m.38s.$ ,  $iS_{c}P = 14m.19s.$ , isS = 16m.24s. and 16m.35s.,  $iS_{c}S = 17m.36s.$ , iSS = 18m.30s., i = 20m.6s. and 21m.27s.
- **Paris** i = 9m.39s., isP = 9m.43s., iPeP = 9m.56s., iPP = 10m.20s., 10m.26s., and 10m.33s., ipPP =11m.18s., iPPP =11m.33s. and 11m.40s., isPP =11m.44s., i =11m.53s. and 12m.32s.,  $iS_{e}P = 13m.31s.$ , isS = 16m.42s. and 16m.47s.,  $iS_{e}S = 17m.58s.$ , i = 18m.15s., eSS? = 19m.24s., esSS = 20m.15s., eSSS = 21m.6s., esSSS? = 22m.0s., ePKP, PKP = 10m.24s., eSSS = 20m.15s., eSSS = 21m.6s., esSSS? = 22m.0s., ePKP, PKP = 10m.24s., eSSS = 20m.15s., eSSS = 21m.6s., esSSS? = 22m.0s., ePKP, PKP = 10m.24s., eSSS? = 20m.15s., eSSS? = 21m.6s., eSSS? = 22m.0s., ePKP, PKP = 10m.24s., eSSS? = 20m.15s., eSSS? = 21m.6s., eSSS? = 22m.0s., ePKP, PKP = 10m.24s., eSSS? = 20m.15s., eSSS? = 21m.6s., eSSS? = 22m.0s., ePKP, PKP = 10m.24s., eSSS? = 20m.15s., eSSS? = 21m.6s., eSSS? = 22m.0s., ePKP, PKP = 10m.24s., eSSS? = 20m.15s., eSSS? = 21m.6s., eSSS? = 21m.6s.38m.47s., ePKP, PKS = 41m.42s.
- Clermont-Ferrand iP = 8m.36s., isP = 9m.57s., iPP = 10m.35s., isPP = 11m.48s., isS = 16m.46s., i = 16m.57s., iSS = 18m.58s., iSSS? = 20m.25s.
- Aberdeen eE = 7m.25s., iPPE = 10m.24s., iPPPE = 11m.24s., iE = 14m.20s., iPSE = 10m.24s.16m.14s., iSSE = 18m.48s., iSSSE = 20m.55s.
- Kew iEN = 8m.50s., esPPEN = 11m.51s., e = 13m.3s., iE = 13m.55s., isSN = 17m.4s., iN = 18m.3s., iSSEN = 19m.38s., iN = 26m.13s., iE = 28m.22s.
- Durham iPPPE = 12m.2s., iN = 12m.37s., iEN = 14m.51s., iN = 15m.34s., sSN = 17m.9s., iEN = 17m.16s.,  $iS_cSEN = 18m.8s.$ , iEN = 19m.57s., 20m.53s., and 21m.7s.
- Edinburgh  $P_cP = 9m.48s$ , PP = 10m.36s, PPP = 11m.44s,  $P_cS = 13m.34s$ , sS = 17m.13s.  $S_cS = 17m.59s., SS = 19m.12s.$
- Barcelona PP = 10m.25s., e = 11m.8s., i = 17m.17s.
- Jersey sPPE = 12m.4s., iE = 17m.30s.? and 21m.30s.?
- Algiers PP? = 10m.49s., iPP = 10m.53s., sS = 17m.31s.,  $iS_cS? = 17m.54s.$ ,  $pS_cS? = 17m.54s.$ 18m.50s., SS = 19m.50s., SSS? = 21m.26s.
- Tortosa  $P_cPE = 9m.52s.$ , PPN = 11m.9s., pPPEN = 12m.8s., PPPN = 12m.22s.,  $P_cSE = 12m.22s.$ 15m.55s.,  $S_cSE = 18m.10s.$ , SSN = 20m.5s., SSSEN = 22m.10s.
- Alicante  $P_cP = 10m.5s.$ , PP = 11m.13s., PPP = 12m.13s.,  $P_cS = 13m.31s.$ ,  $S_cS = 17m.57s.$ Scoresby Sund 10m.36s., pPPP=13m.34s., 14m.11s., sS=18m.17s., SS=20m.30s.
- Almeria iPP = 11m.33s., iPPP = 12m.45s., iPPS = 17m.23s.,  $iS_cS = 19m.13s.$ , iSS = 10m.13s20m.45s., iSSS = 22m.49s.
- Toledo i =9m.37s., pPE =10m.15s., iPcPE =10m.22s., iPP?E =11m.49s.,  $S_cP = 13m.51s$ .,  $P_{c}S = 14m.6s.$ , eS = 18m.27s.,  $S_{c}S = 18m.48s.$ , SSE = 20m.55s., E = 22m.12s., SSSE = 23m.27s.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

# 1949

t

۲.

107

S = 17m.58s., SP = 18m.13s., S_cS?Z = 18m.45s., isSE = 19m.20s., sSZ = 19m.30s., SSE = 21m.36s. Ivigtut 12m.7s., PP = 13m.31s., 20m.23s., i = 21m.13s., 22m.13s., and 25m.30s., SSS =  $\frac{1}{2}$ 

27m.54s.

College e =12m.1s., iPP =13m.41s., epPP =14m.46s., isPP =15m.12s., iPPP =15m.59s., e = 20m.49s., isS =21m.30s., eSS =25m.33s.

Perth S = 23m.5s.

Sitka i = 13m.32s., e = 22m.54s., isS = 23m.26s., iSP = 23m.35s., i = 24m.40s., eSS = 27m.10s., esSS = 29m.24s., iSSS = 34m.30s.

Halifax PP = 15m.54s., sS = 23m.4s., PS = 24m.8s., e = 24m.40s., SSS = 30m.24s.

Seven Falls PPE = 15m.30s., SKSE = 22m.41s., PSE = 24m.47s.

Shawinigan Falls PPN = 16m.17s., SKSN = 22m.48s., PSN = 24m.27s.

Saskatoon PPP = 17m.28s., PS = 24m.18s., PPS = 24m.35s., e = 25m.43s., SSS = 32m.18s.Weston PP = 16m.39s.

Victoria PP = 16m.50s., S = 23m.56s., sS = 24m.51s., PS = 25m.29s., PPS = 26m.18s., SS = 29m.30s.

Seattle epPP = 17m.23s., ePPP = 18m.56s., eSKS = 22m.38s., eSKKS = 23m.20s., i = 24m.56s., and 26m.54s., e = 31m.8s.

Fordham iNZ =17m.4s., 18m.13s., and 20m.14s., iN =24m.56s., isSNZ =25m.55s.

Philadelphia e = 18m.21s. and 20m.23s., epS = 25m.4s., ePS = 26m.2s., e = 26m.43s. and 37m.37s.

Butte iPPN =17m.12s., eN =18m.20s., iN =22m.10s., iSKSN =23m.30s., isSN =25m.5s., eSSN =30m.38s., eN =32m.52s. and 39m.24s.

Pennsylvania iE = 28m.51s.

Bozeman esP = 14m.38s., ePP = 17m.9s., i = 18m.26s., iSKS = 23m.26s., isS = 25m.10s., e = 32m.42s. and 38m.1s.

Cleveland iZ =14m.31s., iPPE =17m.15s., iPPZ =17m.19s., ipPP?E =18m.25s., iPPP = 19m.28s., ipPS?N =26m.52s.

Woodstock iPP = 17m.34s., e = 27m.7s., eSS = 33m.55s.

Chicago epPP =18m.33s.?, i =19m.6s.? and 22m.17s.?, iSKS =23m.30s.?, ipS =25m.15s.? iPS =26m.6s.?, e =26m.25s.?, eSS? =31m.51s.?, i =36m.41s.?

Bermuda iPP? = 17m.28s., iPPP = 20m.0s., e = 20m.50s., eSKS = 23m.20s., iPS = 26m.18s.iSS = 31m.30s.

Brisbane ePE = 13m.22s., iZ = 14m.15s. and 16m.24s., iSKSN = 22m.32s., iSKSE = 22m.36s., eZ = 23m.39s., iEN = 27m.38s., and 32m.47s.

Lincoln eE = 18m.53s., iSKSE = 23m.46s., iE = 25m.25s., ePS?E = 26m.28s.Logan i = 20m.54s., 22m.50s. and 25m.27s., eSP = 26m.46s., eSS = 31m.57s.

Logan i = 20m.54s., 22m.50s., and 25m.27s., eSP = 26m.46s., eSS = 31m.57s.Mineral eN =13m.40s., ePKPE =17m.44s., eSKSZ =23m.56s., eN =25m.33s. Riverview ePPN =17m.47s., iPPSN =28m.1s., iPPSEZ =28m.4s., iSSEN =32m.18s., and many i phases given without identification. Salt Lake City i=13m.38s., epPP=18m.27s., i=19m.0s., e=21m.0s., and 22m.40s., iSKS = 23m.30s., iSP = 26m.23s., iPS? = 26m.46s., eSS? = 32m.10s., e = 33m.39s.St. Louis iZ = 17m.57s., iSKS?N = 23m.51s.Reno iZ = 13m.46s.a, iN = 16m.44s. and 17m.16s., iPPN = 18m.2s., iPPE = 18m.10s., iE = 19m.30s., iSKSE = 24m.5s., iE = 24m.36s.Ukiah ePP = 17m.52s., epPP = 18m.49s., eS = 24m.38s., i = 25m.36s., eSS = 33m.42s.Columbia e = 25m.22s. and 32m.53s. Berkeley iZ = 14m.4s., iE = 15m.2s., iE = 17m.56s., iZ = 17m.59s., iPPZ = 18m.12s., iZ = 18m.16s., iE = 18m.34s., eE = 29m.20s., iZ = 29m.23s. and 29m.43s., iPKP, PKPZ = 37m.41s., iZ = 40m.3s.Branner ePKPE = 17m.49s., eN = 17m.56s.Santa Clara eZ = 14m.45s., iZ = 19m.6s. and 28m.11s. Lick iZ = 29m.21s. Tinemaha iPKKPZ = 29m.20s., iZ = 30m.35s., 32m.40s., and 34m.29s., ePKP,PKPZ = 37m.38s., eZ = 39m.56s.Fresno iZ =16m.51s., iPKPN =18m.0s., eN =39m.51s. Honolulu i = 19m.28s. and 21m.42s., e = 28m.7s., eSS = 33m.2s., eSS = 34m.4s. Pierce Ferry iPPP = 20m.17s., iPKP, PKP = 37m.36s.Boulder City i = 29m.15s. Pasadena esPZ = 15m.17s., iPKPZ = 18m.1s., iPP = 18m.43s., isPP = 19m.38s., ePPP?Z = 20m.54s., iSKKS?EN = 25m.16s., eSPP?Z = 28m.30s., iPKKP = 29m.10s., iPKP,PKPZ = 37m.34s., iSKP,PKPZ = 40m.50s., and other unidentified phases. Riverside iPPZ = 18m.40s., iPKKPZ = 29m.10s., iPKP, PKPZ = 37m.33s.Mobile 22m.26s., e = 26m.50s., esS? = 28m.26s., e = 29m.7s.Palomar eZ = 34m.7s., iPKP, PKPZ = 37m.32s.Tucson is P = 15m.33s., iPKP = 18m.1s., ePP = 18m.49s., epPPP = 22m.3s., iS = 26m.14s., ipS = 27m.14s., iPS = 29m.2s., eSS = 33m.55s., esSS? = 35m.49s., iSSS = 39m.20s.Fort de France is S = 27m.56s.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

# 1949

#### 108

21 Fact (1)

San Juan iPP = 18m.54s., e = 20m.11s., i = 26m.12s., eS = 26m.14s., e = 33m.38s., eSSS = 26m.14s., e = 33m.38s., 38m.39s. Chihuahua ePPPZ = 21m.51s.Merida i = 28m.24s., e = 45m.24s. and 47m.30s.Auckland SKKP?N = 31m.16s., SSN = 34m.10s.Arapuni eE = 31m.30s.Wellington PP = 20m.3s., PKS = 21m.5s., PPPZ = 22m.49s., SKKSZ = 27m.2s., PS?Z = 29m.50s.7, PPSZ = 30m.54s., PPP (△ >180°) = 35m.48s., SS = 36m.30s.7, SSS = 41m.12s.?, and other unidentified i readings. Tacubaya i = 21m.34s. and 21m.53s., iZ = 22m.14s., e = 24m.7s., eSKKSE = 26m.28s.,

eSPP = 30m.58s., e = 31m, 27s., i = 33m.8s., eS = 36m.51s., i = 38m.29s. and 41m.21s.Puebla e = 20m.24s., esPS = 31m.30s.

Manzanillo eSKKS = 26m.23s., e = 33m.26s.

Bogota iSKP = 22m.3s., i = 22m.55s., iPPPP = 27m.17s., eS = 30m.1s.

- La Paz isPKP? =19m.59s., iPPZ =21m.50s., ipPP? =22m.44s., iEN =33m.28s., iN = 35m.35s., iSSEN = 39m.30s., iN = 41m.14s.
- La Plata E., 19m.36s., 20m.8s., 22m.12s., PKS = 22m.35s., 23m.24s.
  - N., 19m.2s., 20m.6s., 22m.17s., PKS = 22m.48s., SS = 39m.36s., PSS = 41m.18s., Q = 55.5m.
- Santa Lucia E., 20m.12s., i = 20m.40s., iPP? = 22m.45s., 23m.41s., 31m.5s., 33m.11s., 34m.10s., 36m.21s., and 38m.15s., SSS? = 38m.56s.
  - N., 19m.58s., 21m.5s., i = 21m.29s., 24m.41s., 25m.1s., 35m.13s., 36m.29s., 40m.16s.,
  - i =41m.36s., 43m.13s., i =44m.0s., 47m.9s., and 47m.53s.

Punta Arenas N = 19m.26s., 19m.59s., 20m.26s., 25m.44s., 27m.40s., and 39m.43s.

A CARL CARE LOOK LOOKS - DOOD - IN A REAL ****

1.00

1000

1.0.0

10.1

March 4d. 15h. 26m. 59s. Epicentre 41°.2N. 84°.5E. (as on Feb. 24d.).

		$\Delta$	Az.	Р.	0 – C.	s.	0 – C.	L.
		0	a	m. s.	в.	m. s.	8.	m.
Almata		6.0	293	i 1 22	-10	i 2 36	- 7	
Murgab		8.6	254	2 15	+ 6	e 3 54	$+ \dot{6}$	
Andijan		9.2	271	e 2 21	$\dot{+}$ $\check{5}$	e 4 7	+ 4	1.000
Tchimkent		11.2	281	2 51	$+\tilde{7}$			
Tashkent		11.4	$\tilde{2}7\tilde{6}$		· —	56	+10	
Obi-garm		11.6	263	e 3 6 ?	+16	e 5 17?	+16	:: <del>:+:::</del>
Stalinabad		12.4	263	i3 1	0	e 5 23	+2	
Samarkand	1	13.4	269	e 3 13	- 1			
Calcutta	E.	18.9	168	e 4 39	+15	e 8 29	+36	
Sverdlovsk		22.0	323	4 53	- 5	i 8 50	- 6	
Bombay		24.4	207	e 10 1	s	(e 10 1)	+22	
Grozny		28.6	287	e 6 14	+14	·		
Moscow		33.6	312	e 6 42	- 2	e 12 0	- 6	
Copenhagen		47.7	313	8 40	ō	1070-07-07-07-07-07-07-07-07-07-07-07-07-		21.0
Collmberg	z.	48.6	306	e 8 46	- 1			
Stuttgart		51.8	305	e 9 10	- 2			e 27·0
Paris		55.8	307	i 9 41	Ö	e 17 5	-23	e 29·0
Hungry Horse		89.3	12	e 13 0	+1			

Long waves were also recorded at Kodaikanal, Upsala, Potsdam, and Kew.

#### March 4d. Other shocks from Hindu Kush epicentre of 10h.

Obi-garm.

101.6	Sees sear		12.001	1000	100 C - C	0.000	- 1a (* 1) (* 1)	410000		142111	0.000	20101	
	h.	m.	8.	h.	m.	<b>S.</b>	h.	m.	s.	h.	m.	8.	
	2	57	8. 413		29	59	16	52	59	20	37	37	
	5	31	13	14	29 32	20	16	58	53	20	47	56	
	11	44	45	14	44	58	17	8	17	20	54	28	
	11	$\frac{31}{44}$	35	14	44 57	46	17	37	32	21	8	11	
	11	58	15	15	6	57	17	39	18	21	12	49	
	12	5	18	15	12	24	17	57	55	21	17	17	
	12	58 5 14	$   \begin{array}{r}     13 \\     45 \\     35 \\     15 \\     18 \\     45 \\     16 \\     30 \\     59 \\     57 \\   \end{array} $	14 14 14 15 15 15	6 12 14	s. 59 20 58 46 57 24 31	18	$\begin{array}{c} 52\\ 5\\ 5\\ 8\\ 7\\ 9\\ 5\\ 1\\ 1\\ 2\\ 9\\ 3\\ 4\\ 5\\ 1\end{array}$	0	21	20	5	
	12	35	16	1222	12220	0202263	18	10	3	21	39	7	
	12	39	30	16	13	11	18	27	23	21	57	54	
	13	37	59	16	16	31	18	39	59	22	0	44	
	13	41	57	16	22	21	19	34	47	22	21	0	
	14	3	503	16	37	28	19	45	54	22	45	26	
	14	12	57	16	45	5	19	51	5	23	43	53	
	h. 25 11 11 12 12 12 13 14 14 14	$35 \\ 39 \\ 37 \\ 41 \\ 3 \\ 12 \\ 13$	56	16 16 16 16 16 16	13 16 22 37 45 51	$     \begin{array}{c}             11 \\             39 \\             21 \\             28 \\             5 \\             41 \\             41 \\           $	h. 16 16 17 17 17 17 17 17 18 18 18 18 19 19 19 19 20	2	$\begin{array}{r} \mathbf{s.}\\ 59\\ 53\\ 17\\ 32\\ 18\\ 5\\ 0\\ 33\\ 59\\ 47\\ 5\\ 5\\ 2\end{array}$	$20\\20\\20\\21\\21\\21\\21\\22\\22\\22\\23\\23\\23$	$\substack{\substack{\text{m.}\\37745\\12709502445}\\24455}$	$\begin{array}{r} \mathbf{s.}\\ 3521497574406331\\ 540631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631\\ 510631$	
			1200024						2000			1000	

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

ł.

	1949						109							
N	Stalinabad h. 2 5 10 10 10 11 11 11 12 12 12 12 13	m. 57 31 57 99 44 55 14 15	$     \begin{array}{r}             8.50\\             50\\             10\\             19\\             48\\             33\\             48\\             16\\             20\\             48\\             28\\             52         \end{array} $	h. 13 14 14 14 14 14 16 16 16 16 16	$\substack{\mathbf{m},\\ 33\\ 33\\ 13\\ 14\\ 32\\ 57\\ 13\\ 16\\ 22\\ 53\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58$	s.449 1864 203 221 45		h. 17 18 18 19 20 20 20 21	$   \begin{array}{r}     \text{m.} \\     395 \\     2843 \\     51347 \\     548 \\     8   \end{array} $	$     \begin{array}{r} \mathbf{s.18} \\                                    $	$\substack{\substack{\mathbf{h}, \\ 21\\ 21\\ 22\\ 22\\ 23\\ 23\\ 23\\ 23\\ 23\\ 23\\ 23\\ 23$	$\substack{\mathbf{m.}\\12\\17\\29\\5\\0\\14\\55}$	$   \begin{array}{r} \mathbf{s.} \\       53 \\       20 \\       7 \\       10 \\       47 \\       88 \\       28 \\       52 \\       26 \\     \end{array} $	
	Murgab. h. 2 11 12 14 14 14 16	m. 57 58 14 33 58 16	s. 58 31 57 18 45 15	h. 16 16 16 17 17	m. 22 53 59 6 39	${f s.}{16}{10}{22}{34}{30}$		h. 17 18 19 19 20	m. 58 40 35 52 37	s. 13 57 4 3 51	h. 21 22 23 23	m. 39 1 20 44 55	s. 22 43 42 10 40	
	Samarkand h. 2 10 11	1. m. 58 58 59	$     \begin{array}{c}             8. \\             12 \\             213 \\             26         \end{array}     $	h. 14 16	m. 33 23	8. 28 11		h. 17 18	m. 40 41	s. 30 18	h. 19 19	m. 35 52	s. 54 18	
	Andijan. h. 2 11 11 12 14	m. 58 30 58 6 4	$     \begin{array}{r}             8. \\             14 \\             50 \\             44 \\             35 \\             52 \\         \end{array} $	h. 14 14 16 16 17	m. 32 58 22 59 39	s. 49 16 31 29 46		h. 19 19 20 21	m. 35 51 38 40	s. 17 33 11 27	h. 22 22 23 23	m. 2 21 44 55	s. 529 23 52	
	Tashkent. h. 2	т. 58	8. 19	h. 14	m. 59	s. 14							44	(14.7.) (14.7.)
	Tchimkent h. 2 11 12	m. 58 46 0	$     \begin{array}{c}             8. \\             32 \\             35 \\             12 \\             4. \\         \end{array} $	h. 14 16 16	m. 59 14 17	s. 35 42 45		h. 18 19 19	m. 41 36 52	s. 18 45 43	h. 21 21 22	m. 40 58 2	s. 55 40 33	

$\begin{array}{c} 12\\12\\14\end{array}$	$\begin{array}{r}7\\16\\34\end{array}$	4 35 9	16     16     17	23 54 41	41 44 7	20 21 21	39 15 19	$     18 \\     38 \\     6   $	23 23	45 57	44 10	
Frunse. h. 2	m. 58	8. 44	h. 14	m. 34	s. 41	h. 16	m. 24	s. 12	h. 23	m. 46	8. 14	

March 4d. Readings also at 0h. and 2h. (near Ashkabad), 11h. (Shasta Dam (2)), 12h. (Hungry Horse and Shasta Dam), 14h. (College), 17h. (Auckland, Wellington, Overton, and Pierce Ferry), 18h. (Palomar, Pasadena, Riverside, Tinemaha, and Shasta Dam), 19h. (Tucson, Boulder City, Overton, Pierce Ferry, and Hungry Horse), 22h. (Mizusawa), 23h. (Overton and Pierce Ferry).

17 CARL 1 206 20 ... 133

March 5d. 1h. 38m. 58s. Epicentre 28°.4N. 138°.0E. (as on 1947, February 11d.).

A = -.6547, B = +.5895, C = +.4731;  $\delta = -3$ ; h = +2; D = +.669, E = +.743; G = -.352, H = +.317, K = -.881.

	Δ	Az.	Р.	0 – C.	S. 0 -	-C.	Supp.	L.
	D	•	m. s.	8.	m. s. s	3. n	n. s.	m.
Vladivostok	15.5	343	e 3 44	+ 2	i642 +	7		
Irkutsk	34.5	322	· · · · · · · · · · · · · · · · · · ·		10 359	8		
Stalinabad	57.4	299	e 8 9	8		)		· · · · ·
College	58.0	29	i9 52	- 5		<del></del>		
Sverdlovsk	59.9	321	10 18	+ 8	18 30 +	9 e 1	948 S _c S	

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

### 1949

110

		$\Delta$	Az.	1	Ρ.	0-C.	s.	0 – C.	Su	pp.	L.
		0	•	m.	8.	S.	m. s.	S.	m. s.		m.
Shasta Dam		78.7	49	e 12	3	- 3				( <del>11)</del>	
Mineral	z.	79.4	49	e 12	8	- 1					
Hungry Horse		80.1	40	e 12	17	+ 4			No. or A		
Reno	z.	81.0	50	i 12	17 a	the second se			·•	-	
Tinemaha	z.	83.3	51	i 12	37	+ 7		-		-	
Pasadena	z.	84.8	53	i 12	37	0	1000				
Logan	942675	85.0	44	e 12	37	- 1					
Riverside	Z.	85.5	53	i 12	38	- 3					
Boulder City	1940323	86.2	50	i 12	44	Ō				-	
Overton	z.	86.2	49	i 12	44	0		*****			
Palomar	z.	86.2	53	e 12	43	- 1					
Pierce Ferry	429012947	86.7	49	i 12	45	$-\bar{2}$	-				1
Stuttgart		90.6	328	e 13	19	+14					e 50·0
Triest		90.6	324	e 12	15?	-50					e 50·0
Tucson		91.0	51	e 13	8	+ 1			e 16 42	$\mathbf{PP}$	
La Paz		152.8	69	i 20	10	[+18]					
Additional rea College i =9 Sverdlovsk Reno iZ =1 Pasadena iZ Logan e =1 Riverside iZ Boulder Cit Palomar eZ Pierce Ferry Tucson e =1	m.58 2m.2 2m.2 2m.4 2m.4 2m.4 3m.4 2m.4 2m.4 2m.4 2m.4 3m.4 2m.4 2m.4 3m.4 2m.4 3m.4 2m.4 3m.4 3m.4 m.58 2m.4 3m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4 m.4	Ss. = 25m.5 4s., eE 2m.43s. 3s. 2m.45s. 12m.51 m.50s. 12m.53	=12r	n.56s.	, eN	=13m.4s.	and 131	n.34s.			

Long waves were also recorded at other European stations.

March 5d. Readings also at 0h. (Murgab, Tchimkent, near Obi-garm (3), Stalinabad (2), and near Ashkabad (2)), 3h. (near New Plymouth, Tuai, Wellington, Christchurch, La Paz, Tchimkent, near Stalinabad, Murgab, and Andijan), 4h. (Tchimkent, Frunse, near Stalinabad, Murgab, Andijan, and Samarkand), 6h. (Andijan, Tchimkent (2), near Kulyab (4), Stalinabad (4), and Murgab (3)), 7h. (Samarkand, near Kulyab, Stalinabad, Murgab, and near Ashkabad), 9h. (near Stalinabad (2) and Kulyab (2)), 11h. (Samarkand, Andijan, Tchimkent, near Kulyab, Stalinabad, and Murgab), 12h. (near Kulyab, Stalinabad, and Tchimkent), 13h. (Grozny, Tiflis, near

Leninakan, Tchimkent, near Kulyab, Obi-garm, Stalinabad, Murgab, Samarkand, and Andijan), 14h. (Ashkabad, Tchimkent, Frunse, near Obi-garm (2), Kulyab, Stalinabad, Murgab, Samarkand, Andijan, and Tashkent), 15h. (Murgab, Kulyab, near Obi-garm, Stalinabad, near Collmberg, Jena, Shasta Dam, and near Tucson), 16h. (Samarkand, Tchimkent, near Kulyab, Stalinabad (2), Obi-garm, Murgab, and near Ashkabad), 17h. (near Mizusawa), 18h. (near Tucson and near Copiapo). 20h. (Tchimkent, near Almata, Andijan, Frunse, Kulyab, Obi-garm (2), Samarkand, Stalinabad (2), Murgab, and Tashkent), 21h. (near College), 22h. (Tchimkent, Frunse, Almata, near Kulyab, Stalinabad, Murgab, Obi-garm, Samarkand, Andijan, near Copiapo, and Santa Lucia).

March 6d. 5h. Kurile Isles.

```
Mizusawa PE = 23m.10s., SE = 23m.34s.
Shasta Dam iP = 28m.29s.
Hungry Horse iP = 28m.30s.
Tinemaha ePZ = 29m.3s.
Overton eZ = 29m.14s., iZ = 29m.21s.
Pasadena iPZ = 29m.14s., iZ = 29m.28s.
Riverside ePZ = 29m.14s., iZ = 29m.32s.
Boulder City iP = 29m.19s.
Pierce Ferry iP = 29m.22s.
Tucson eP = 29m.47s., i = 29m.54s.
Stuttgart eZ = 30m.36s.
Strasbourg eP = 30m.41s., e = 31m.6s.
Zürich eZ = 30m.42s.
Basle eZ = 30m.46s., e = 31m.1s. and 31m.25s.
```

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

### 1949

.

 $\mathbf{r}$ 

# 111

1. 1. 1

March 6d. 11h. 27m. 54s. Epicentre 42°.2N. 84°.1E. (as on February 23d.).

 $A = +.0764, B = +.7391, C = +.6692; \delta = -7;$ h = -2.

Almata Frunse Murgab Andijan Tchimkent		∆ 5·3 7·1 8·6 8·9 10·7	Az. 284 279 247 264 275	P. m. s. i 1 25 e 1 48? 2 6 e 2 10 e 2 46	0 - C. + 3 - 3 - 3 + 8	S. m. s. e 2 27 e 3 81 i 3 44	0 - C. 8. + 2 - 4 - 4	m. Su 	рр. 	L. m.
Tashkent Obi-garm Stalinabad Samarkand Irkutsk		${ \begin{array}{c} 11 \cdot 1 \\ 11 \cdot 5 \\ 12 \cdot 2 \\ 13 \cdot 2 \\ 17 \cdot 0 \end{array} } $	$270 \\ 257 \\ 258 \\ 265 \\ 47$	e 2 49 i 2 47 i 2 53 e 4 5	$+ 6 \\ - 1 \\ - 5 \\ + 4$	e 4 53 e 5 14 e 5 30 e 7 6	$-\frac{6}{2}$ -10 -4			
Calcutta Ashkabad Sverdlovsk Bombay Hyderabad	E. N.	$\begin{array}{r} 19 \cdot 9 \\ 20 \cdot 2 \\ 21 \cdot 0 \\ 25 \cdot 1 \\ 25 \cdot 2 \end{array}$	$168 \\ 266 \\ 323 \\ 206 \\ 192$	$\begin{array}{r} & \\ e & 4 & 34 \\ i & 4 & 46 \\ e & 5 & 32 \\ & 5 & 31 \end{array}$	-51 + 42 + 2	e 8 26 	$+11 + \frac{2}{7}$	i 845	P _c P	
Poona Grozny Leninakan Copenhagen Collmberg		$25 \cdot 2 \\ 28 \cdot 0 \\ 30 \cdot 0 \\ 46 \cdot 8 \\ 47 \cdot 8$	$203 \\ 286 \\ 282 \\ 313 \\ 307$	e 5 31 e 5 46 6 36 8 33 e 8 39	+ 2 - 9 - 9 - 2	e 9 52		i 10 47 e 8 45	ss  P	16·1
Stuttgart Strasbourg Paris College Hungry Horse Shasta Dam	z.	$51.0 \\ 51.9 \\ 55.0 \\ 65.8 \\ 88.4 \\ 94.1$	$305 \\ 305 \\ 307 \\ 22 \\ 12 \\ 20$	e 9 4 e 9 13 i 9 34 i 10 48 i 12 55 i 13 21	-2+1+1-1-0-1			i 9 40	P 	

Additional readings :---

Poona iEN =10m.2s., iE =10m.31s. and 11m.19s. Strasbourg e = 8m.54s. and 8m.59s.

Long waves were also recorded at De Bilt, Kew, Potsdam, and Upsala.

March 6d. 16h. 36m. 40s. Epicentre 29°.8N. 51°.8E. (as on 1946, March 12d.).

 $A = +.5375, B = +.6831, C = +.4945; \delta = +6; h = +2;$ D = +.786, E = -.618; $G = + \cdot 306$ ,  $H = + \cdot 389$ ,  $K = - \cdot 869$ .

		$\Delta$	Az.	Р.	O - C.	S.	0 – C.	Su	pp.	L.
20-24-0 AL 2-02		0	0	m. s.	8.	m. s.	S.	m. s.		m.
Ashkabad		9.8	32	e 2 24	0				<u> </u>	
Leninakan		12.6	332	e 3 2	- 1	<del></del> 21		e 3 18	PP	
Tiflis		13.2	336	e 3 8	- 3	e 5 34	- 6			
Ksara		14.1	290	e 3 21	- 2					e 7·5
Grozny		14.3	342	e 3 27	+ 1	<u> </u>		· · · ·	-	-
Piatigorsk		15.8	336	3 44	- 1	100.0	<u> </u>		-	
Samarkand		15.9	48	e 3 50	+ 3			0.00		
Stalinabad		16.5	54	i 3 58	+4	i7 4	+ 6		1002	
Sotchi		16.8	328	e 3 54	- 4	e 7 24	88			
Helwan		17.8	275	i4 17	$+ \hat{6}$	e 7 47	+ 6 SS SS	4 42	PPP	_
Tashkent		18.2	47	i4 20	+ 4	i741	+ 4	e 4 53	PPP	
Tchimkent		19.0	44	i 4 28	+ 2					
Andijan		20.0	52	e 4 39	+ 2	e 8 20	+ 3			
Murgab		20.2	59	0444	+ 5	8 29	+ 8	<del></del>	10000	
Yalta		20.2	321	4 34	- 5	8 11	-10		-	-
Istanbul		21.6	308	e 4 50	- 4	-	Press and			e 13.0
Bombay	E.	22.0	116	e 4 16	-42	e 9 20	SS	-		
Almata		$24 \cdot 1$	49	e 5 22	+ 4				_	
Sverdlovsk		27.7	10	5 50	- 2	e 10 27	- 6	e 6 33	$\mathbf{PP}$	a s <del>tate</del> s
Moscow		27.8	343	e 5 49	- 4	e 10 26	- 9			
Triest		33.6	309	e 6 38	- 6	e 9 41	8			8
Collmberg		35.9	318	6 53	-11			e 8 3	PP	
Chur		36.8	310	07 10	- 1	3 <del></del>				
Stuttgart	z.	$37 \cdot 4$	314	e714	- 2	17 <u>122</u>				
Zürich	256542	37.5	311	i7 12	- 5	1000	0.1111	12272	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	:: <u>865</u>

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1949						112						
		Δ	Az.	F		0 – C.	s.	0 – C.		Sup	p.	L.
			•	m.	8.	8.	m. s.	<b>S.</b>	m.	8.		m.
Basle		38.2	311	e 7	22	- 1	e 15 44	SS				
Strasbourg		38.3	313	e 7	22	- 2		· · · · · · · · · · · · · · · · · · ·	e 7	45	2	
Paris		41.8	312	17	51	- 2		- <del></del>	- 27425	92 -		
Tamanrasset	z.	41.9	274	i 7	59a	+ 5			e 8	23	3	
College	0770	84.4	8	e 12	38	+ 2			10000			
Hungry Horse		101.2	351	e 14	5	+11			_	88 - C		
Pierce Ferry		113.1	347	e 9	48	3						

Additional readings :--

Helwan eZ = 5m.35s. and 7m.32s., SSZ = 8m.10s.

Tashkent eSS = 7m.56s.

Paris i = 7m.56s. and 8m.0s.

Long waves were also recorded at Calcutta.

March 6d. Readings also at 0h. (Tashkent, Samarkand, Andijan, near Obi-garm, and Stalinabad), 1h. (near Kulyab (2), Obi-garm (4), and Stalinabad (2)), 2h. (Stuttgart, Basle, Strasbourg, near Clermont-Ferrand, and near Bogota), 3h. (near Ashkabad), 4h. (Sverlovsk, Grozny, near Piatigorsk, Tiflis, Leninakan, Hungry Horse, Andijan, Murgab, Stalinabad (2), Samarkand, near Obi-garm (2), and Kulyab), 6h. (Ashkabad (3), near Obi-garm, Kulyab, and Stalinabad), 7h. (near Tchimkent (2), Stalinabad (3), Andijan (2), Obi-garm (2), Kulyab, Murgab, Samarkand, and Tashkent), 9h. (near Obl-garm), 11h. (Cleveland, Frunse, near Kulyab, Obl-garm, Samarkand, Stalinabad, Murgab, and Andijan), 12h. (Hungry Horse and Ashkabad), 13h. (Ashkabad, Copiapo, near Kulyab, Obi-garm, and Stalinabad), 14h. (Overton). 15h. (College, Hungry Horse, and near Murgab), 17h. (Pierce Ferry, near Istanbul, Samarkand, near Stalinabad, and Obi-garm), 18h. (Tchimkent, near Obi-garm, Stalinabad, Murgab, Samarkand, Andijan, and near Ashkabad), 19h. (near Obigarm), 22h. (Tashkent, near Almata, and near Obi-garm), 23h. (near Murgab, Andijan, and near Obi-garm (2)).

#### March 7d. 11h. Alaska.

College iP = 43m.2s., eS? = 43m.13s., iL = 43m.22s.Sitka eP = 44m.35s., eL = 46m.40s.Hungry Horse iP = 47m.48s. Shasta Dam eP = 48m.14s. Mineral iPZ = 48m.20s. Reno ePZ = 48m.36s., eE = 48m.49s., eN = 48m.59s., eSZ = 58m.49s., eE = 58m.56s., eN = 59m.22s.Berkeley ePZ = 48m.37s., iZ = 48m.42s. and 48m.46s. Lick iPZ = 48m.44s., iZ = 48m.48s.Overton iPZ = 49m.11s.

Boulder City eP = 49m.15s.

```
Pierce Ferry eP = 49m.15s.
Tucson e = 49m.56s., eL = 64m.14s.
Shawinigan Falls eN = 50m.28s.
Long waves were also recorded at other United States and Canadian stations and at
    Scoresby Sund.
```

March 7d. 14h. Region of Santa Cruz Islands. Depth probably 100km.

```
Brisbane iPZ =41m.39s., iPPEN =41m.57s., iZ =42m.7s., iSEN =45m.35s., iLN =
    49m.438.
Vladivostok iP = 47m.17s., iS = 55m.55s., iSSS = 62m.42s.
Berkeley iPZ = 49m.16s.k, iZ = 49m.24s.
College iP = 49m.18s., e = 52m.42s.
Lick iPZ = 49m.18s.
Shasta Dam iP = 49m.20s.
Mineral iPZ = 49m.23s.
Pasadena iPZ = 49m.26s., iZ = 49m.34s., and 50m.1s.
Riverside iPZ = 49m.27s., iZ = 49m.38s.
Reno ePZ = 49m.29s.k, eN = 50m.0s., iE = 50m.4s.
Tinemaha iPZ = 49m.31s.k, iZ = 49m.39s., eZ = 50m.9s.
Palomar iPZ = 49m.32s.k.
Pierce Ferry iP =49m.39s.
Boulder City iP =49m.42s.
Tucson iP = 49m.53s., eL = 78m.10s.
Logan eP = 49m.58s.
Arapuni eE = 50m.
Wellington e = 52m.48s., L = 56m.
Auckland eN = 54m.
Stuttgart ePKP?Z = 56m.20s.
Strasbourg ePKP? = 56m.33s., epPKP? = 56m.45s.
Tamanrasset ePKPZ = 56m.54s., e = 62m.18s.
Ksara ePP? = 58m.21s.
```

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

#### 1949

11

# 118

March 7d. Readings also at 1h. (Hungry Horse), 2h. (Santa Lucia), 3h. (Ksara, Mount Wilson, Riverside, and Tinemaha), 4h. (Ksara, near College, near Basle, Neuchatel, and Zürich), 5h. (Boulder City, Overton, Pierce Ferry, near Tucson, and near Obi-garm (2)), 6h. (La Paz, Logan, near Obi-garm (2), and near Stalinabad), 7h. (Batavia, Logan, and near Stalinabad), 8h. (near Murgab, Stalinabad, and Andijan), 9h. (near Stalinabad (2)), 10h. (Riverside, Tinemaha, Samarkand, near Tacubaya, near Murgab (2), and Stalinabad), 11h. (Cleveland and near Obi-garm), 12h. (near Obi-garm) 13h. (Hungry Horse, Overton, Pierce Ferry, Shasta Dam, near San Juan and near Obi-garm), 16h. (Collmberg), 17h. (Collmberg, Punta Arenas, Tchimkent, Frunse, near Obi-garm, Stalinabad, Murgab, Samarkand, Andijan,

Tashkent, near Tucson, near Lick and Branner), 18h. (Boulder City, Overton, Pierce Ferry, and Shasta Dam), 20h. (Ashkabad, near Ebingen and Stuttgart), 22h. (near Ashkabad), 23h. (Boulder City, Pierce Ferry, Shasta Dam, and near Messina).

#### March 8d. 2h. 22m. 12s. Epicentre 46°.4N. 12°.2E.

A = +  $\cdot 6764$ , B = +  $\cdot 1462$ , C = +  $\cdot 7218$ ;  $\delta = -11$ ; h = -4; D = +  $\cdot 211$ , E = -  $\cdot 977$ ; G = +  $\cdot 706$ , H = +  $\cdot 153$ , K = -  $\cdot 692$ .

		Δ	Az.	Р.	O - C.	s.	0 – C.	Suj	pp.
		0	0	m. s.	<b>s.</b>	m. s.	8.	m. s.	
Triest		1.3	125	e 0 24	- 1	i042	- 2	e 0 36	$\mathbf{PP}$
Salo		1.4	236	e 0 25	- 2	0 45	- 1	-	
Chur		1.9	284	e 0 34	0	e 0 59	0		
Padova		1.9	187	e 0 30	- 4	e 1 25	8		
Zagreb		2.7	103	e 1 24	S*	e 1 32	Sr		
Zürich		2.7	289	e 0 50	+ 5	e 1 26	+ 7		
Stuttgart		3.1	319	e 0 52	+ 1	e 1 30	+ 1 Sg	e1 2	$\mathbf{P}_{\mathbf{s}}$
Basle		3.4	291	e 0 58	+ 3	e 1 52	Sr		
Strasbourg		3.7	308	e 1 14	Ps	e 1 39	- 6	e 2 5	Sg
Jena	E.	4.6	355	e 1 30	$\mathbf{P}_{\mathbf{g}}$	e 2 29	Sg		
Collmberg	z.	4.9	6		0.0	e 2 43	Se Se	÷	

Additional readings :---

Stuttgart eP = 54s., eS = 1m.42s., eS_g = 1m.48s.Strasbourg e = 1m.24s., 2m.11s., 2m.20s., and 2m.24s.Jena eN = 2m.33s.

March 8d. Readings also at 0h. (Ashkabad), 1h. (Ashkabad (2) and near Stalinabad), 2h. (near Obi-garm and near Ashkabad), 4h. (Boulder City, Hungry Horse, Pierce Ferry, and Shasta Dam), 6h. (Wellington, Boulder City, Hungry Horse, Overton, Pierce Ferry, Shasta Dam, Tucson, Pasadena, Riverside, Palomar, Tinemaha, and near Obi-garm), 7h. (near Obi-garm, Stalinabad, and Samarkand), 8h. (Overton),

9h. (Tacubaya, Samarkand, Almata, near Murgab, Andijan, Obi-garm, Stalinabad, Tashkent, Tchimkent, Frunse, and near Alicante), 10h. (Ksara and near Obigarm), 11h. (near Mizusawa, near Messina, near Zürich, Basle, Stuttgart, and Strasbourg), 12h. (College), 13h. (Apia, Auckland, Wellington, Boulder City, Overton, Pierce Ferry, Shasta Dam, and near College), 15h. (near Andijan and near Copiapo), 17h. (Alicante, Poona, Frunse (2), Almata, near Kulyab (2), Stalinabad (2), Obi-garm (2), Murgab, Samarkand (2), Andijan (2), and Tashkent (2) ), 18h. (Samarkand, Andijan, near Murgab, Obi-garm, and Stalinabad), 19h. (near Tucson, near Berkeley, Lick, Branner, and San Francisco), 20h. (near Tucson), 21h. (Ashkabad and College), 22h. (near Ashkabad, near Berkeley, Lick, Branner, and San Francisco), 23h. (Boulder City, Hungry Horse, Pierce Ferry (2), and Shasta Dam).

March 9d. 4h. 16m. 31s. Epicentre 44°·1N. 11°·6E. (as on 1939, Feb. 11d.).

A = +  $\cdot 7058$ , B = +  $\cdot 1449$ , C = +  $\cdot 6935$ ;  $\delta = +9$ ; h = -3; D = +  $\cdot 201$ , E = -  $\cdot 980$ ; G = +  $\cdot 679$ , H = +  $\cdot 139$ , K = - $\cdot 720$ .

	Δ	Az.	р.	0-C.	s.	0-C.	Sur	pp.	L.
	0	0	m. s.	8.	m. s.	8.	m. s.		m.
Bologna	0.4	335	e 0 11	P*	e 0 20	- 1			
Florence	0.4	219	i0 3a	Pg	i0 8	S.	i 0 11	S.	
Padova	0.4	28	0 25	S	0 45	3		-	
Prato	0.4	239	i0 2	-11	i0 7	-14			
Salo	1.7	333	e 0 31	0	il 1	Se		· · · · ·	-
Triest	2.2	44	e 0 44	Ps	i1 7	+ 1	i1 14	S.	
Rome	2.3	164	e 0 40	0	1 8	- 1	e 0 42	$\mathbf{P}^{\bullet}$	
Chur	3.1	332	e 0 51a	0	e 1 30	+ 1	e 1 39	Sr	
Zagreb	3.6	59	e 0 59	+ 1	e 1 36	- 6	—		
Zürich	3.9	327	e1 1	- 1	e 2 7	Sg			

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

	10000		100 C
- <b>1</b> 1			
			-
- <b>1</b>	1000		
	_		
	1.111		
- N. T. B.		10 March 10	

114

	Δ	Az.	Р.	0 – C.	s.	0 - C.	Sur	pp.	L.
	0	•	m. s.	8.	m. s.	8.	m. s.		m.
Neuchatel	4.3	313	e1 7	- 1	e 1 58	- 2			
Basle	4.4	323	e 1 11	+ 1	02 5	$+ \bar{3}$	e 2 23	Sg	_
Stuttgart	$4 \cdot 9$	342	e 1 16	- 1	e 2 9	- 6	e 1 39	$\tilde{\mathbf{P}}_{\mathbf{g}}^{*}$	
Strasbourg	$5 \cdot 2$	331	e 1 20	- 1	e 2 20	$-\tilde{2}$	e 1 45	$\mathbf{\tilde{P}_{g}}$	
Jena	6.8	0	e 1 44	0	e 2 57	- 6		<u> </u>	
Paris	7.8	310	i 2 12	$\mathbf{P}^*$	i4 7	Sg	i 2 25	$P_{g}$	e 4·4
ATT-24543455 0000 0500					ness di	122226	이 관계에서 관계하지		225551 23

Additional readings :---

Bologna iNZ =17s., iZ =23s., i = 31s.  
Triest 
$$eP_g = 49s.$$
,  $iS_g = 1m.27s.$   
Rome  $eN = 55s.$ ,  $iS_g E = 1m.14s.$   
Stuttgart  $eZ = 1m.36s.$ ,  $eS_g = 2m.51s.$   
Strasbourg  $eP? = 1m.35s.$ ,  $e = 1m.50s.$ ,  $2m.28s.$ , and  $2m.36s.$ ,  $eS = 2m.39s.$ ,  $eS_g? = 2m.56s.$   
Jena  $eP_g E = 3m.43s.$ ,  $eP_g N = 4m.4s.$ ,  $eE = 5m.46s.$ ,  $eN = 5m.55s.$   
Long waves were also recorded at Potsdam and Collmberg.

March 9d. 4h. 21m. 5s. Epicentre 41°.8N. 71°.7E. (as on 1948, Sept. 10d.).

A =  $+ \cdot 2348$ , B =  $+ \cdot 7099$ , C =  $+ \cdot 6641$ ;  $\delta = +12$ ; h = -2; D =  $+ \cdot 949$ , E =  $- \cdot 314$ ; G =  $+ \cdot 209$ , H =  $+ \cdot 630$ , K =  $- \cdot 748$ .

		Δ	Az.	Р.	0 – C.	s.	0 – C.	Su	pp.	L.
(A) 7/24/37		ø	0	m. s.	s.	m. s.	8.	m. s.		m.
Andijan		$1 \cdot 2$	155	i0 18	- 6	i 0 36	- 5			
Tchimkent		1.6	288	i040	+10	i 1 10	+19			
Tashkent		1.9	255	i0 39	+ 5	i 1 14	+15			
Frunse		$2 \cdot 4$	63	i 0 35	- 6	i1 1	-11			
Obi-garm		3.2	207	i1 1	+ 4	e 1 44	$+ \bar{4}$		-	
Murgab		3.8	153	el 1	0	e 1 44	- 3		_	
Almata		$4 \cdot 2$	67	e1 0	- 7	e 1 46	-11			
Samarkand		4.2	241	i 1 11	$+ \dot{4}$	i 2 6	$+\hat{9}$			
Sverdlovsk		16.6	338	e 3 54	$-\hat{2}$	e 7 14	+14	-		
Grozny		19.1	283	e 4 33	$+$ $\tilde{6}$					3 <del>1006</del>
Tiflis		20.0	279	e 4 45	+ 8	8 31	+14			
Leninakan		20.9	277	e 4 507	+4		1 11	200		
Piatigorsk		21.0	286	e 4 56	$+$ $\overline{9}$					
Bombay		22.8	177	e 5 1	1 4	e 9 11	_			2251
Poona	Е.	$\tilde{2}\tilde{3}\cdot\tilde{2}$	175	e 5 10	+ i	e 9 14	- 4			12.9
Sotchi		23.5	285	e 5 15	+ 3			10		
Calcutta	E.	23.7	139			e 9 21	6			3556
Irkutsk		24.4	53	e 5 12?	- 9	60 21	•			
Hyderabad	N.	25.0	165	5 20	- 7	9 49	0	1-22		
Moscow		26.1	314	e 5 36	- i	J 45				
Potsdam	z.	40.2	306			0 10 11	90			
Collmberg	440	40.5	305	e 7 42	0	e 16 11	SS	- 0.00	mm	
Jena		41.4	303		×.	1100		e 9 22	$\mathbf{PP}$	
Stuttgart	z.	43.4	301	e750 e87	Y Y					
Chur	Z.	43.7	299		T 1	_		65.000		
	1.	#9.1	299	e8 9k	+1			******		1000
Strasbourg		44.4	302	e 8 15	+ 1				1170	
Paris		47.6	304	i 8 39	0			e 9 13	2	
College		69.3	18	i11 5	- 6					
				New York and the second s						

Long waves were also recorded at Kodaikanal, Copenhagen, De Bilt, and Upsala.

March 9d. 5h. 25m. 31s. Epicentre 41°.2N. 84°.5E. (as on 4d.).

Approximate determination.

 $A = +.0723, B = +.7512, C = +.6561; \delta = 0; h = -2;$  $D = + \cdot 995$ ,  $E = - \cdot 096$ ;  $G = + \cdot 063$ ,  $H = + \cdot 653$ ,  $K = - \cdot 755$ . Р. O - C. Az. S. 0 - C.Supp. L. m. s. m. s. m. s. 8. m. 0 i 2 58 S* i 1 41 e 1 54 i 2 11 e 2 15  $\begin{array}{r}
 6 \cdot 0 \\
 7 \cdot 6 \\
 8 \cdot 6 \\
 9 \cdot 2 \\
 11 \cdot 2
 \end{array}$  $293 \\ 286 \\ 254 \\ 271 \\ 271 \\$ Almata ----Frunse ----Murgab -----Andijan Tchimkent 281 e 2 43 -----

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1949					115					2 ⁸⁶ 11
		Δ	Az.	Р. m. s.	0 – C. s.	S. m. s.	0 – C. s.	m. s.	pp.	L. m.
Obi momo		11°6	263	i 2 50	0	e5 2	+ 1		_	
Obi-garm Stalinabad		12.4	263	1250 1257	- 4	i 5 15	- 6	· · · · · · · · · · · · · · · · · · ·		
Samarkand		13.4	269	e 3 9	- 5	10.10				
Ashkabad		20.4	268	e 4 40	- ĭ					
Sverdlovsk		22.0	323	4 53	- 5	e 8 47	- 9			
Hyderabad	N.	24.2	194			10 3	+28	() <del></del> ()		
Bombay	2.50	24.4	207			e 10 2	+23			
Poona	E.	24.7	205	9 59	S	(9 59)	+15	e 10 44	SS	13.8
Grozny	14.025	28.6	287	e6 0	0	· · · · · · · · · · · · · · · · · · ·	1 - 1 <u>2 - 2</u>	- 199 (1999) - 199 (1999)		
Moscow		33.6	312	e 6 42	- 2		- <u></u>			
College		66.7	22	e 10 59	$+ \tilde{4}$					

Long waves were also recorded at Kodaikanal, Copenhagen, De Bilt, and Upsala.

March 9d. 12h. 28m. 37s. Epicentre 37°.0N. 121°.5W. (as on 1947, June 22d.).

Intensity VII at Hollister, with considerable damage; VI at Alameda, Alviso, Berkeley, Fairfax, Hayward, Los Baños, Morgan Hill, Oakland, San Francisco, Santa Cruz, etc.; less strong at many other places. Macroseismic area 20,000 sq. miles.

Epicentre 37°01'N, 121°29'W.

L. M. Murphy and F. P. Ulrich. United States Earthquakes, 1949, Serial No. 748, Washington, 1951, p. 9-11, with macroseismic chart, p. 14.

		4183, I 853, E	경험을 위해 집에 가지 수요?	6826, C = 522;		$\delta = 0$ 13, H = -	-4; ·511, K	$\begin{array}{c} h = -1 \\ =801. \end{array}$		
5.1 1		Δ	Az.	P. m. s.	о – с. s.	S. m. s.	o – c. s.	m. s.	op.	L. m.
Lick		0.4	340	i0 9k	Pg					
Santa Clara		0.5	314	i0 3	-11	i 0 21	- 2			-
Branner		0.7	307	i016	- 1					
Berkeley		1.1	325	i 0 21	- 1	i 0 35	- 4		-	
San Francisco		1.1	315	i022	0	i 0 35	- 4			_
Fresno		1.4	101	i0 26	- 1	i043	- 3	a the sea		
Ukiah		2.5	328	e 0 48	$P^*$	i1 21	S.	i0 58	$\mathbf{P}_{\mathbf{g}}$	i 1.6
Tinemaha		2.6	88	i046	+ 2	i1 20	S*	· · •		
Reno		2.9	<b>22</b>	i0 49k	+ 1			i0 59	$\mathbf{P}_{\mathbf{z}}$	
Santa Barbara		$2 \cdot 9$	151	i 0 49	+ 1	i 1 27	+ 3			_
Haiwee		3.0	107	i0 50	0	i1 38	Se	_		
Mineral		3.4	359	i0 55	0	i1 29	+ 2	i1 7	$\mathbf{P}_{\mathbf{z}}$	
Shasta Dam		3.8	349	i0 59	- 2					_
Pasadena		3.9	135	i1 2	0	i1 46	- 4			
Ferndale	N.	4.2	330	i 1 27	$\mathbf{P}_{\mathbf{g}}$		-		e Store	
Pierce Ferry		6.1	96	i1 34	0	-		: <del></del>		
Salt Lake City		8.4	60	e 2 8	$+ \frac{0}{2}$	e 3 17	-26	e 3 5	8	e 3·8
Tueson		10.0	115	i 2 26	0	e 4 26	+ 4			i 5.0
Butte	N.	11.2	34	e 2 49	+ 5			-		e 5·9
Hungry Horse		12.6	23	i 2 49	14		_		-	
Rapid City	E.	15.6	57	e 4 53	+70	e749	+72		-	e 9·3
Lubbock	0009703	16.4	95	4 3	+10				200	
St. Louis		24.7	76	e 5 26	+ 2	e 10 42	SS			
Cleveland	E.	31.1	69	i9 51	2					
Alicante		87.4	42			26 39	7			

Additional readings :---Reno iEN =0m.53s. Mineral iN =1m.18s. and 1m.45s. Ferndale iE =1m.39s., iN =2m.29s., iE =2m.33s., iN =3m.1s. Tucson i =3m.3s. and 4m.56s. Cleveland iE =9m.55s. Long waves were also recorded at other North American stations and at Scoresby Sund.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

### 1949

## 116

March 9d. 14h. 55m. 33s. Epicentre 15°.8S. 174°.2W. Depth of focus 0.020.

Intensity III-IV at Apia. Apia Observatory, Western Samoa, Preliminary Seismological Bulletin, January-March, 1949, p. 3.

Epicentre 16°.5S. 174°.5W.; depth of focus 150km. (Strasbourg).

 $A = -.9577, B = -.0973, C = -.2706; \delta = -.12; h = +.6;$ D = -.101, E = +.995; G = +.269, H = +.027, K = -.963.

		Δ	Az.	Р		0 - C.	s.	0 - C.	S	upp.	L.
		ø	•	m.	8.	8.	m. s.	s.	m. s.		m.
Apia	1500	3.1	50	i 0	46	4	1 21	- 7			
Auckland	N.		203	4	57	+ 5	8 56	+- 8			
Arapuni	E.	$23 \cdot 9$	200	te de la companya de La companya de la comp			e 9 27?				
Tuai	N.	24.1	197	4	59	- 3	9 3	- 2	-	any second	( <del>111)</del>
New Plymouth	Е.	$25 \cdot 4$	201	5	16	+ 2			i5 38	$\mathbf{pP}$	
Wellington		$27 \cdot 1$	199	5	25	- 5	9 41	-13			
Kaimata	N.E.	29.4	202		46	- 4	10 29	- 2			
Riverview	- 1.5	36.0	$\bar{2}3\bar{4}$	the second se	46 a	- 1	i 12 9	- 4	i8 2	$\mathbf{PP}$	e 15.9
Berkeley	Z.	72.3	42		11a	$+\hat{1}$			i 11 21	PcP	C 10 0
Lick	z.	72.4	42	Contraction of the second s	l2k	$+\hat{2}$		-	i 11 50	pP	. <del></del> .
Pasadena	Z.	72.8	42	i 11	134	0	-		i 11 52	$\mathbf{pP}$	-
Fresno	Z.	73.2	43		18	+ 3	10.00	<u></u>	i 11 54	$\mathbf{pP}$	<u> 27.</u> 3
Palomar	6234	73.3	48		14	- 2			i 11 54	$\mathbf{p}\mathbf{P}$	
Riverside	z.	73.3	47		16	õ		_	i 11 54	nP	
Tinemaha	z.	74.4		i 11		+ ĭ			i 12 2	$\mathbf{pP}$ $\mathbf{pP}$	
Reno	Z.	74.8	42	e 11 :	27	+ 3			i12 8	$\mathbf{pP}$	
Boulder City		76.1	47	i 12	6	pP				P1	
Pierce Ferry		76.8	47	and the second	36	0			200		
Tucson		77.2	51	the second se	38	ŏ			i 12 15	$\mathbf{pP}$	e 38-7
College		82-9	11	i 12	<b>9</b>	+ ĭ			i 12 41	$\mathbf{p}\mathbf{\hat{P}}$	
Hungry Horse		83.2	36	i 12	9	0		_			
Collmberg		144.1	351	e 19 1	1 A. T. T. M. A. M.	r ŏı		2	e 24 5	2	1000
Jena		144.6	352		20	[+3]		·	e 20 2	pPKP	
Paris		146.9	4	e 19 9		[+ 2]			the second se	pPKP	1
Stuttgart	z.	147.0	355		23	ì∔ īj			e 20 9	pPKP	-
Strasbourg		147.3	357	i 19 2	28	[+ 6]			i 20 14	NPKP	
Basle		148.3	357		30	1+ 61	e 25 57	[-17]	e 20 23a	NPKP	- 2 <u>22</u>
Zürich		148.4	356		9	1-15			0 20 208	Prist	
Chur		148.9	355	Contraction of the second second	27	[+ 2]			i 19 31	. 2	
		Company of the second	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			CONTRACTOR OF A DESCRIPTION OF A DESCRIP			<ul> <li>An end of the second sec</li></ul>		

Triest 149.5 350 i 19 33 [+ 8]Clermont-Ferrand 150.1 4 i 19 34 [+8] [+10]i 20 18 pPKP Helwan z. 152.7 305 i 19 40 e 23 24 PP Tamanrasset z. 173.0 2 e 19 53 i 20 36kpPKP Additional readings :---Auckland iN = 6m.41s., sS?N = 9m.31s.Riverview iPPPEZ = 8m.15s., eZ = 15m.6s., iS_cSEN = 16m.55s.Reno iN = 11m.41s., iE = 12m.19s.Tucson i = 12m.37s. College i = 12m.19s. Jena eN = 20m.31s. Paris iPKP, =19m.35s., ipPKP, =20m.23s., ePP =21m.48s., e =22m.22s. Stuttgart iPKPZ = 19m.27s.a, eZ = 19m.41s. and 19m.53s., ePP?Z = 23m.32s. Strasbourg e = 19m.43s., i = 20m.21s. and 21m.14s., iPP = 21m.45s. Helwan eZ = 19m.53s. and 24m.9s. Tamanrasset eZ = 20m.2s., iPKP₁Z = 21m.22s.k, epPKP₁Z = 22m.4s., ePPZ = 25m.12s., ePPP = 29m.7s.

March 9d. Readings also at 0h. (Samarkand, near Obi-garm, Andijan, Murgab, and Stalinabad), 2h. (near Batavia), 3h. (College), 4h. (Obi-garm, Almata, Samarkand, near Frunse, Tchimkent, and Tashkent), 11h. (Klyuchi, near College, Samarkand, Andijan, Tchimkent, near Stalinabad, and Obi-garm), 12h. (near Santa Clara, Berkeley, Lick, Branner, Fresno, San Francisco, Mineral, and Reno), 13h. (College, near Florence, and near Copiapo). 14h. (Tamanrasset and near Andijan), 15h. (College, Mount Wilson, Riverside, Tinemaha, Stuttgart, near Bologna, and Florence), 16h. (Boulder City, Hungry Horse, and Pierce Ferry), 17h. (College and Copiapo), 18h. (College), 20h. (Tchimkent, Frunse, near Obi-garm (2), Stalinabad, Murgab, Andijan, and near Tucson), 21h. (Wellington, Auckland, Pierce Ferry, Shasta Dam, and Stuttgart), 22h. (near Florence, Salo, and Bologna (2)).

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

# 1949

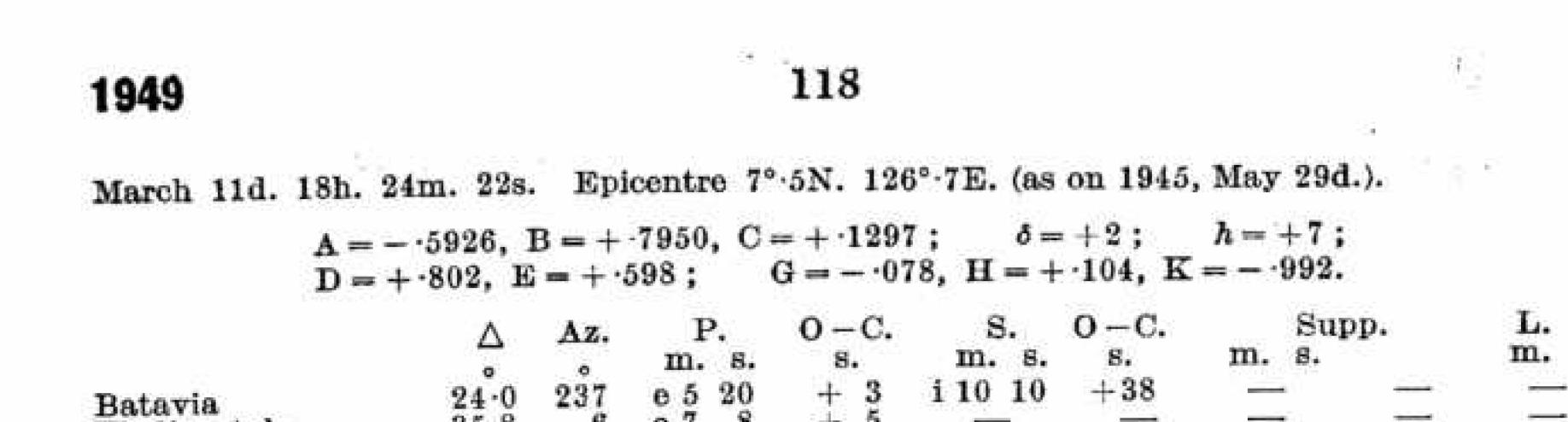
117

March 10d. 21h. 27m. 8s. Epicentre 38°·1N. 20°·4E. (given by Strasbourg).

A =  $+ \cdot 7394$ , B =  $+ \cdot 2750$ , C =  $+ \cdot 6145$ ;  $\delta = -5$ ; h = -1; D =  $+ \cdot 349$ , E =  $- \cdot 937$ ; G =  $+ \cdot 576$ , H =  $+ \cdot 214$ , K =  $- \cdot 789$ .

	$\triangle$ Az.	1	O - C.	s.	0 – C.		pp.	L.
	0 0	<b>m.</b> s.	s.	m. s.	8.	m. s.		m.
Taranto	$3 \cdot 4  315$		Sr	1 <del></del>				
Sofia	5.1 25		-15	e 2 26	+ 6		2000	
Belgrade	6.7 0		-11	i 3 30	S*	e 2 10	$\mathbf{P}_{\mathbf{z}}$	
Rome	7.2 304	State of the st	- 4	(e 3 16)	+ 3	199 <u>9 -</u> 72		
Istanbul	7.3 63	e 2 27	Pg	i 2 59	-16		-	
Bucharest	7.6 32		0	e 3 24	+ 1	e 2 35	$\mathbf{P}_{\mathbf{F}}$	
Zagreb	8.4 338	e 2 21	- 4	(a.) 700) 7073 (a	- <u></u>			e 4.5
Padova	9.0 318			e 4 24	+26			e 6.9
Triest	9.0 329	e 2 57	$\mathbf{P}_{\mathbf{g}}$	e 4 26	S*	e 3 14	PP	5.5
Salo	10.5 319	e 2 57	+22	e 4 55	+20		÷	
Zürich	12.7 321	0314k	+ 9		-		1	e 7·9
Basle	13.3 319	e 3 16	+3				9.02	
Ksara	13.3 104		·	(e 5 41)	- 1			e 9·7
Stuttgart	13.4 326	e 3 12	- 2	(0 0 11)		6 <u></u>		e 7.9
Strasbourg	$13 \cdot 9  3\overline{2}3$	e 3 33	$+1\bar{2}$			e 3 40	$\mathbf{PP}$	· · ·
Collmberg	14.2 341	e 3 25	+ 1				-	
Jena	14.3 337	e 3 28	+2					e 8·3
Clermont-Ferrand	15.0 306	e 3 42	$+ \tilde{7}$					000
Paris	16.8 315	e 4 1	$\div$ 3					
De Bilt	17.6 328			i747	+24			9.9
Kew	19.8 319	- 		e 8 39	+26	7 <u>7555</u>	1000	e 14·9
Tamanrasset z.	19.9 224	e 4 37	+ 1		1	-		e 10.3
Ottawa z.	67.9 311	e 10 56	- 6	_		123-5-22		0 10 5
College	77.0 355	e 11 42	-14			_	122	
Hungry Horse	84.9 331	i 12 28	-10					
Pierce Ferry	95.0 324	e 13 18	-18					
La Paz z.	98·9 255	21 22	PKŠ				_	

Additional readings and notes :---Taranto e = 2m.6s. and 2m.44s. Belgrade i = 3m.54s. and 5m.7s. Rome eP[•]N = 3m.49s., eS_gN = 4m.33s; the P and S entered have been reduced by 2m. and 1m. respectively to fit the table.


Bucharest eN = 3m.9s.

Ksara S reading increased by 13 minutes. Stuttgart eZ = 3m.21s. Strasbourg ePPP? = 4m.0s. Clermont-Ferrand e = 4m.18s. Tamanrasset iZ = 4m.46s. a, eZ = 5m.22s. Potsdam gives long waves only.

March 10d. Readings also at 0h. (Ottawa, Padova, Salo, Zürich, Stuttgart, near Bologna (2), Florence, Triest, and near San Juan), 1h. (Florence, near Bologna (3), and near Pierce Ferry), 2h. (College, near Andijan, Obi-garm (2), and Stalinabad (2)), 4h. (Apia, Palomar, Riverside, Tinemaha, Hungry Horse, and College), 7h. (Ashkabad), 8h. (Bologna and Pierce Ferry), 9h. (Frunse, Stalinabad, near Andijan, and Obigarm), 10h. (near Santa Lucia), 11h. (Wellington, Shasta Dam, Hungry Horse, College, near Andijan, Belgrade, Padova, Salo, Stuttgart (2), near Basle (2), Chur (2), Zagreb (2), Florence, Bologna, Zürich (2), and Triest (2) ), 12h. (Samarkand, near Obi-garm, and Stalinabad), 13h. (Murgab, near Obi-garm, Stalinabad, and near Andijan), 14h. (Bologna, Bogota, and La Paz), 15h. (La Paz), 18h. (Poona, Samarkand, near Obi-garm, Stalinabad, and Tchimkent), 19h. (near Mizusawa), 20h. (Obi-garm, Tchimkent, near Murgab, and Stalinabad), 21h. (near Ashkabad), 22h. (Ottawa, Stuttgart, Brisbane, and near Riverview, Dalton-Gunning area, N.S.W., Proc. R.Soc., N.S.W., 1950, 84, No. 1, pp. 17-27, with maps), 23h. (Riverview, Calcutta, Andijan, Frunse, Murgab, Obi-garm, Samarkand, Stalinabad, Tashkent, and Tchimkent).

10.1

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.



Vladivostok Andijan Obi-garm Stalinabad	51 51	$5 \cdot 8 = 6$ $8 \cdot 4 = 313$ $9 \cdot 8 = 311$ $0 \cdot 4 = 311$	e 7 8 e 9 59 e 10 7 e 10 10	$+ 5 \\ - 1 \\ - 3 \\ - 3$	18 5	+ 3			
Samarkand Sverdlovsk College Moscow Hungry Horse	71 81 81	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	e 10 58 11 17 i 12 16 e 12 27 e 13 56	$+33 \\ -34 \\ -36 \\ -6$	20 33 e 22 47	$-\frac{2}{4}$	$e_{22}^{e_{13}} \frac{41}{38?}$	PP sks	
March 11d. 19h	. 22m.	28s. Ep	icentre 36 (as	5°·7N. 7( s on 4d.).	g - noos a maran - so noos	epth of	focus 0.03	0.	
		△ Az.	P. m. s.	0 – C. s.	S. m. s.	0 – C. s.	m. s.	9 <b>p.</b>	<b>L</b> . m.
Obi-garm Stalinabad Murgab Samarkand Andijan		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-1 -1 +1 -1 -1 0	$\begin{array}{c} \mathbf{i} \ 1 \ \ 12 \\ \mathbf{i} \ 1 \ \ 17 \\ \mathbf{i} \ 1 \ \ 36 \\ \mathbf{i} \ 1 \ \ 52 \\ \mathbf{i} \ 1 \ \ 59 \end{array}$	-20 + 120 + 200 + 200			
Tashkent Tchimkent Frunse Almata New Delhi		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	e 1 12 i 1 23 e 1 40 i 1 57 e 3 22	$+65^{0}$	i 2 8 i 2 27 e 2 59 i 3 50 i 3 52	$^{-1}_{+1}^{0}_{+2}^{+1}_{-13}$			
Poona Grozny Leninakan Sverdlovsk College	E. 11 20 21 21 21	$   \begin{array}{ccccccccccccccccccccccccccccccccccc$	e 6 55 e 4 46 e 4 39 e 4 30 i 11 14 i 12 36	PP + 11 + 1 - 1 - 54	e 7 9	- 3	e 12 30	PeP PP	e 8.8

ų,

Shasta Dam Boulder City	107.5	i 10 23	3.	 	-	 
	34					

Additional readings :---College e = 12m.5s. Boulder City i =10m.56s.

March 11d. 20h. 27m. 38s. Epicentre 31°.5N. 93°.5E.

A = -.0521, B = +.8526, C = +.5199; $\delta = -6;$ h = +1;G = -.032, H = +.519, K = -.854. D = + .998, E = + .061;Supp. L. O - C. s. O - C.Р. Az. Δ m. m. s. m. s. s. s. m. s. 0 Φ. i4 38 i 5 56 Sg +16+ 3e 2 30 208 10.0 -E. Calcutta i 7.0 e 5 53 -16263 14.4 N. New Delhi -8 1 +-+ e 4 31 313 18.8 Frunse e 4 29 19.4 304 Andijan 6 e 4 38 ____ 22819.6 -----N. Hyderabad e 8 e 8 e 8 -238? e 4 42 e 4 47 e 4 56 i 4 53 42?  $\mathbf{2}$ 298 terrate de 20.7-Obi-garm 31 -14mainly. 298 Distances. 21.4 -Stalinabad  $\mathbf{SS}$ e 9 28 40 -120 Acres 10 21.8 305Tashkent 12.6 Q i 8 54 10 52 0 239 21.9 Poona 11.0 e 9 e 5 1 0 -241 2 -22.5 Bombay e 5 17 +10298 23.0Samarkand 10 18 +14220 25.9 -E. Kodaikanal + 9 e 34·4 e 10 43 313 Acres 1 63.5 Stuttgart  $\mathbf{PP}$ e 14 39 +28 e 12 0 24 72.8 College

Poona gives also iEN = 5m.3s.

Long waves were also recorded at Upsala, Potsdam, De Bilt, Strasbourg, and Kew.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

#### March 11d. 22h. 28m. 12s. Epicentre 25°.8N. 98°.4E. (as on 1941, Oct. 31d.). A = -.1317, B = +.8918, C = +.4329; $\delta = +5$ ; h = +3; D = + .989, E = + .146; G = - .062, H = + .428, K = - .902. 0 – C. S. 0-C. L. **P**. Supp. Az. m. m. s. m. s. s. m. s. s. 6.1 5 14 i 7 59 Calcutta e 2 26 + 4 9.7 253SE E. SS New Delhi 19.0 283N. -

:119

Hyderabad Poona Murgab	N.	$20.3 \\ 23.8 \\ 24.1$	$250 \\ 258 \\ 307$	i 5 5	$   \begin{array}{r}     46 \\     20 \\     19   \end{array} $	$^{+}_{+} \begin{array}{c} 6\\ +\\ 5\\ +\end{array}$	i 9 33	$^{+18}_{+5}$	i 8 32	PeP PP	16.3
Bombay Almata		$24.6 \\ 24.7$	$\frac{259}{320}$	e 5 i 5	$\frac{30}{29}$	$^{+}_{+}$ $^{7}_{5}$	e 9 54 e 9 53	$^{+12}_{+9}$			12.9
Kodaikanal	E.	$25 \cdot 1$	237	e 5	<b>29</b>	$^{+1}_{+3}$	e 10 0	+ 9		*****	
Frunse		25.9	317	е 5	38	+ 3				-	
Andijan		26.3	310	5	38	- 1		100	2012		
Irkutsk		26.8	8	55	41	- 3	e 10 16	- 3	****		
Stalinabad		28.0	305		52	- 3	10 34	- 4			
Tashkent		28.6	310	е 5	567	- 4	e 10 48?	0	e 6 52	$\mathbf{PP}$	
Tchimkent		28.8	313	i 6	0	-2 +2	<del></del>			-	
Samarkand		29.6	304	e 6	11	+ 2					
Vladivostok		32.3	49	i 6	28	- 5	e 14 0	SSS	e 16 43	SeS	
Sverdlovsk		41.1	329	e 7	46	- 1	13 59	- 2	17 0	SS	
Sotchi		50.4	307	e 8	57	- 4					
Moscow		52.7	322	e 9	17	- 1	e 16 44	- 2	****		5
Ksara		$54 \cdot 1$	294	e 9	<b>24</b>	- 5					
Collmberg		67.5	318	e 10	57	- 3			<u> </u>		
Jena	N.	68.5	317	e 11	3	- 3	++++++				
Salo	Z.	70.6	313	e 11	20						
Stuttgart	100100	70.6	315	e 11	16	$^{+}_{-}$ 1 $^{-}_{3}$	<u> 19</u> 2	_	-	-	e 37·8
Paris		74.7	317	i 11	41	- 2	59553 A	- <del>11</del> 2		1.00	
Kew		75.4	321	e 10	48?	-59					e 38·8
College		76.3	24	i 11	48	4			e 14 55	PP	( <del></del>
Tamanrasset	Z.	82-8	292	i 12	26k	- î	+	<del></del>			
Hungry Horse	an and the o	100.7	21	i 13	48	- 4	÷				
Bogota		148.9	345	e 19	52	[+ 6]	+	÷			
						the second second					

Additional readings :----

1949

Calcutta  $S_g E = 5m.51s$ .

Hyderabad SSN =9m.8s. Poona iE =6m.26s. and 9m.42s., eE =10m.36s. and 10m.58s. Tashkent eSS =12m.18s., eSSS =13m.12s. Jena eE =11m.6s. Paris eP =11m.44s. Long waves were also recorded at Batavia, Copenhagen, Potsdam, De Bilt, and Strasbourg.

March 11d. Readings also at 2h. (College, Hungry Horse, Samarkand, near Obi-garm and Stalinabad), 3h. (near Riverview), 4h. (Riverview, Shasta Dam, Hungry Horse, College, and near Ashkabad), 5h. (near Tacubaya, near College, and near Ashkabad), 7h. (near Andijan), 8h. (Samarkand, near Murgab, Obi-garm, and Stalinabad), 9h. (near Istanbul), 10h. (La Paz and near Tacubaya), 11h. (College, Hungry Horse, Pierce Ferry, and near Andijan), 12h. (Riverview and near Andijan), 14h. (Overton), 15h. (Murgab, Samarkand, near Obi-garm, and Stalinabad), 16h. (Hungry Horse), 17h. (Basle and near Ottawa), 18h. (Santa Lucia, Hungry Horse, Samarkand, and near Stalinabad), 19h. (New Delhi, Murgab, Obi-garm, Samarkand, Stalinabad, near Almata, and near Malaga), 20h. (Bombay, Ksara, Tashkent, Sverdlovsk, Stuttgart, and College), 23h. (Belgrade, Padova, Rome, Salo. Taranto, Triest, Zagreb, Stuttgart, Hungry Horse, Obi-garm, and near Andijan).

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

# 1949

# 120

March 12d. 19h. 27m. 53s. Epicentre 61°.0N. 148°.0W.

Intensity III at Anchorage, Alaska.

#### L. M. Murphy and F. P. Ulrich.

U.S. Earthquakes, 1949, Serial No. 748. Washington, 1951, p. 29. Epicentre given by Strasbourg.

$$A = -.4133, B = -.2582, C = +.8732; \qquad \delta = -4; \qquad h = -9;$$

D = -.530, E = +.848; G = -.741, H = -.463, K = -.487.

		Δ	Az.	Р.	$\mathbf{O} - \mathbf{C}$ .	Su	pp.	L.
		0	0	m. s.	8.	m. s.	1000000	m.
College		3.9	1	e 0 59	- 3			e 2·0
Hungry Horse		23.1	108	i 5 12	+ 4			i 12·4
Shasta Dam		25.7	130	i 5 33	0	0. <del>0.0000</del>		
Mineral	z.	26.3	130	i 5 30	- 9			
Reno	9978	27.7	128	e 5 53	+ 1	i7 1	PPP	
Berkeley	z.	28.2	133	i 5 55k	- 1			
Tinemaha		30.4	128	i6 18a		i6 26	$\mathbf{pP}$	
Overton	z.	32.4	124	i6 35	+ 1		· · · · ·	
Boulder City		32.7	124	i6 37	+ 1			
Pierce Ferry		32.9	123	i6 39	+ 1			
Pasadena		33.0	130	i6 39a	0	i6 46	pP	
Riverside	Z.	33.5	130	i6 43a	0	i648	$\mathbf{pP}$	
Palomar		34.2	129	i6 49a	0		-	
Tucson		37.6	123	i7 19	+ 1			e 22.2
St. Louis		41.7	96	e753	+1			
Ottawa	z.	43.6	77	e 8 8	0		_	
Cleveland	N.	43.7	85	e88 189	+ 1	=		
Shawinigan Falls	N.	44.1	73	e 8 12	0	-		
Weston	1.04.05	48.0	76	i 8 43	0	2		
Paris		68.0	21	i11 4	+ 1			
Stuttgart	z.	69.0	16	e 11 22?	+13			

Additional readings :---College i = 1m.7s. and 1m.16s. Mineral iZ = 5m.48s. Reno iZ = 6m.1s. Berkeley iZ = 6m.4s. Tinemaha ePePZ = 9m.8s.,  $eS_eP = 12m.52s.$ Overton iZ = 6m.58s.

Pasadena iZ = 6m.56s. Cleveland iPZ = 8m.18s. Long waves were also recorded at Chicago, Philadelphia, Lincoln, and Sitka.

March 12d. Readings also at 2h. (near Granada), 3h. (Tacubaya and Manzanillo), 7h. (Istanbul and near Andijan), 8h. (near College), 9h. (Ksara), 10h. (near Irkutsk, near Andijan, and near Basle), 11h. (near College), 12h. (near Andijan), 15h. (Andijan, Tchimkent, near Almata, and Frunse), 18h. (Boulder City, Pierce Ferry, Shasta Dam, Hungry Horse, Almata, Samarkand, near Andijan, Frunse, Murgab, Obi-garm, Stalinabad, Tashkent, and Tchimkent), 19h. (Padova, Salo, Stuttgart, near Basle, and Zürich), 20h. (near Tucson), 21h. (Tacubaya (2), Samarkand, Tchimkent, near Andijan, Murgab, Obi-garm, and Stalinabad).

March 13d. 12h. 35m. 19s. Epicentre 12°.5S. 106°.5E. Depth of focus 0.010. Epicentre given by U.S.S.R.

 $A = -.2774, B = +.9364, C = -.2151; \delta = +6; h = +6;$ D = + .959, E = + .284; G = + .061, H = - .206, K = - .977. Az. P. O-C. S. O-C. Supp. L. m. s. m. Batavia Calcutta -----Ξ Poona Murgab 60.0 23 e 12 46? PP e 18 55? PPS Vladivostok

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1949					121					
		∆ °	Az.	P. m. s.	о – С. s.	S. m. s.	0 – C. s.	m. s.	ıpp.	L. m.
Obi-garm		61.5	329	e 10 8	- 1					
Andijan		61.7	332	e 10 7	- 3	e 19 49	SoS			
Stalinabad		61·8 63·6	$329 \\ 327$	10 9 e 10 23	- 2					
Samarkand Tchimkent		64.2	332	i 10 26	- ĭ	-				
Grozny		78.4	321	e 11 54	$^{+2}_{+2}$	21 44	+ 6			—
Leninakan Sverdlovsk		78-4 78-8	$\frac{317}{338}$	e 11 54 11 46	+ 28	21 26	-16		$\equiv$	
Ksara		81.3	307	e 12 22	$+15^{-15}$	e 21 43				
Helwan	N.	83.6	302		-	i 23 5	$\mathbf{SP}$			
College Shasta Dam		$107.9 \\ 128.9$	25 47	e 13 29 e 18 46	P [-11]			(e 18 42) i 18 55	pPKP	e 18·7
Hungry Horse	223	131.0	34	i 18 46	[-15]	i 22 10	PKS		PKP	
Tinemaha Pasadena	z. z.	$133.1 \\ 134.1$	$50 \\ 54$	e 18 50 e 18 50	$\begin{bmatrix} -15 \\ -16 \end{bmatrix}$	e 22 5 e 22 17	PKS PKS	e 19 3 i 19 2	pPKP pPKP	
Riverside Boulder City	z.	$134.8 \\ 136.1$	$54 \\ 50$	e 19 0 e 18 47	$\begin{bmatrix} - & 8 \\ -23 \end{bmatrix}$			i 19 3	pPKP	
Overton	z.	136.2	51	i 18 57	[-13]					
Pierce Ferry		136.7	51	e 18 56	[-15]			e 21 3	8	
Tucson		140.6	53	e 19 12	[- 6]	e 22 14	PKS			
Harvard		150.1	356	i 19 27	[-7]		-	i 19 59	PKP ₂	
Weston		150.2	356	i 19 26	[- 8]					-

Additional readings :---Pasadena eZ = 19m.26s. Harvard i = 20m.41s.?

March 13d. 18h. 43m. 3s. Epicentre 21°.0S. 67°.5W. Depth of focus 0.005.

(as on 1947, July 16d.).

Intensity IV between 20° and 21° S. Lat. Macroseismic radius 300km. Suggested epicentre 22°.0S. 68°.5W.

F. Greve.

Boletin del año 1949, Instituto sismologico. Santiago p. 12.

A = +  $\cdot 3576$ , B = - $\cdot 8633$ , C = - $\cdot 3563$ ;  $\delta = +11$ ; h = +4; D = - $\cdot 924$ , E = - $\cdot 383$ ; G = - $\cdot 136$ , H = + $\cdot 329$ , K = - $\cdot 934$ .

	Δ	Az.	Р. m. s.	0 – C. s.	s. m. s.	0 – C. s.	m. s.	pp.	L. m.
	° -	071	재미가 있어도 좀 잘 많았는 것 –	102002560-	재정학생님께 한 가슴에 집했다.				
La Paz	4.5	351	i 1 19a	+12	i 2 13	+14	0 0	DD	
Copiapo N		202	i1 50	+11	2 51	- 5	2 8	$\mathbf{PP}$	-
Santa Lucia N	1 (17) (17) (17)	190	e 2 56	- 4	4 20	- 60	10.00		1 7 0
La Plata E	The second se	151	4 3	+18	6 42				i 7·2
N	. 16.2	151	4 27	+42	6 44	+ 2	<del></del> 2	-	7.2
Rio de Janeiro	22.6	99	i 4 59	+ 3	i9 3	+ 9	5 31	$\mathbf{PP}$	
Bogota	26.3	346	i 5 33	$^{+}_{+} \frac{3}{2}$	i9 59	+ 2	e 6 2	pP	-
Fort de France	36.0	12		- <u>-</u>	e 16 32	ScS			
San Juan	39.2	3	e 7 23	0	e 13 10	- 9	e 8 19	$\mathbf{PP}$	e 20·8
Tacubaya	50.7	321	i 8 56	+ 1		(			
			2.1 M A A A A A A A A	117.1.125			10.05	The	
Philadelphia	61.1	354			e 18 16	- 6	e 18 25	$\mathbf{PS}$	e 25·8
Fordham	61.8		e 10 14	0	e 18 31	0	e 19 23	$\mathbf{sS}$	02-33
Weston	63.2	358	i 10 23	- 1	e 19 1	+12	1 10 -11		
Harvard	63.3	358	i 10 31	+ 2			i 10 54	$\mathbf{p}\mathbf{P}$	
St. Louis	63·3	340	i 10 17	- 7	i 18 36	-14	i 10 47	$\mathbf{pP}$	-
Cleveland	63.5	349	i 10 24	- 2	i 18 47	- 5	i 10 54	pP	
Ottawa z.	100 and 100 and 1	354	i 10 44	- ī			i 10 58	pP	
Tucson	67.2	322	i 10 46	- 3	e 14 4	PP	i 11 34	pP	
Shawinigan Falls N	the second se	357	i 9 51	-60	· · · · ·		/		
Palomar N	A state of the	318	i 11 17	ŏ			i 11 48	pP	
	0.0427.0420	10202000	92-2-40-50 <i>0</i> -5						
Pierce Ferry	71.8	322	i 11 15	- 3			3 <del>- 10</del>		
Boulder City	72.2	321	i 11 17	- 3			e 11 45	$\mathbf{pP}$	
Overton Z.		322	i 11 19	- 2					
Riverside	72.4	318	i 11 19k	- 2	The second second		i 11 50	$\mathbf{pP}$	
Pasadena	73.0	318	i 11 22k	- 3	i 20 42	- 3	i 11 51	$\mathbf{pP}$	

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Supp.       L.         m. s.       m.         e 14       26       PP         i 11       53       pP         i 12       21       pP         i 12       19       pP         i 12       20       pP
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
i 11 49a - i 11 50k - e 11 51 - i 11 56 - i 11 57 -	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	i 12 19 pP
i 11 50k - e 11 51 - i 11 56 - i 11 57 -	$\begin{array}{ccc} 2 & - & - \\ 2 & - & - & - \end{array}$	
e 11 51 - i 11 56 - i 11 57 -	$\cdot \overline{2} \longrightarrow -$	i 12 20 pP
i 11 56 - i 11 57 -	김상 🐔 - 김 - 김 - 김 - 김 - 김 - 김 - 김 - 김 - 김 -	The state of the s
i 11 57 -		
	6	
i 12 5 -	- 2	
i 12 25k +	- 7	i 12 56a pP
i12 26a +	4•	i 12 58a pP
$12 \ 3k -$	-19 22 27 $-10$	
	-6 22 35 $-8$	15 21 PP 44.0
i 12 31 +	-3 22 46 $-2$	i 13 3 pP —
12 34 -		13 6 pP 41.1
e 21 5	? i 23 56 $[+2]$	
e 13 29 +	그 김 부장님 이 이 이 아무지 않는 것은 것이 많이	
		e 18 3 PP
e 13 58 -	2 e 27 36 PS	e 18 3 PP —
	- e 24 49 [+ 4]	e 28 57 PPS
e 18 8	? e 28 49 PS	e 19 17 PP
e 21 11 PE	CP. e 30 46 SKKS	
	i 12 26 a + 12 3k - 12 19 - 12 19 - 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 12 31 + 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

```
Logan i = 12m.14s.
Tinemaha iZ = 11m.45s. and 12m.4s.
Reno iZ = 12m.8s.k, iE = 12m.16s., iZ = 12m.35s., eSN = 22m.16s.
Berkeley iZ = 12m.35s.
Tamanrasset eZ = 12m.32s., isPZ = 13m.20s.k.
Almeria PPP = 17m.17s., PPS = 24m.47s., SS = 27m.57s.
Toledo e = 23m.46s.
Alicante PP = 14m.36s., PPP = 16m.11s.
College e = 14m.29s.
```

March 13d. Readings also at 0h. (Pierce Ferry), 3h. (Pierce Ferry and La Paz), 4h. (College, Boulder City, Shasta Dam, Hungry Horse, Bogota, and near La Paz (2)), 7h. (Padova, Salo, near Triest and Stuttgart), 9h. (La Paz, Bogota, Pasadena, Riverside, Tinemaha, Tucson, Overton, Pierce Ferry (2), Shasta Dam, Hungry Horse (2), College, Calcutta, Bombay, and Poona), 10h. (Shasta Dam, Hungry Horse, near College, and near Batavia), 12h. (College, Pasadena, Riverside, Tinemaha, Boulder City, Overton, Pierce Ferry, Shasta Dam, and Hungry Horse), 13h. (Overton, Obi-garm, Samarkand, Stalinabad, near Ashkabad, and near Alicante), 14h. (Hungry Horse), 15h. (Rome, Sitka, College (2), Hungry Horse, Boulder City, Pierce Ferry), 17h. (near Boulder City and Pierce Ferry), 18h. (Boulder City, Pierce Ferry, Tucson, Hungry Horse, College, near Andijan, Murgab, Obi-garm, Samarkand, Stalinabad, and Tchimkent), 20h. (Reno, near Berkeley, Branner, Fresno, Lick, San Francisco, Santa Clara, Andijan, near Obi-garm, Stalinabad, and rear Grozny), 23h. (near Andijan (2), Obi-garm (2), Murgab, Samarkand, and Stalinabad (2) ).

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

#### 민준아지 : 128 1949 March 14d. 3h. 6m. 33s. Epicentre 52°.8N. 168°.2W. (as on 1948, May 22d.). $\delta = -15$ ; h = -6; A = -.5943, B = -.1242, C = +.7945;D = -.204, E = +.979; G = -.778, H = -.162, K = -.607. L. 0 – C. O - C. Supp. S. **P**. Az. m. m. s. m. s. 8. m. s. s. 33 15.9 $e^{-8} 9 + 7$ College e 5 9 PP e 11.8

Sitka		19.3	64	i 4 31	+ 2	e 8 9	+ 1	e o 9	PP	6 11.9
Shasta Dam		33.1	93	i 6 39	- 1					
Minorol	Z.	33.8	93	i 6 45	- 1		1000			
Mineral	***	34.0	75	i 6 47	- ī					
Hungry Horse		UT V		- v - ·						
Berkeley	z.	34.9	97	i6 49a	- 6		1993			21121
Branner	z.	35.3	97	e 6 57	- 2					
	Z.	35.4	93	e 6 59k	- 1					
Reno	Z.	35.6	97	17 1	0					
Lick	Z.	37.2	96	i 7 14	- 1					
Fresno	L.	01 #	0.0						10000	
Tinemaha		37.9	94	i721	+ 1			i7 37	$\mathbf{pP}$	·····
		38.9	82	e 7 27	- 2					
Logan	z.	39.9	97	e 7 37	Ô			i7 52	$\mathbf{pP}$	
Pasadena	Z.	40.5	97	e 7 41	- 1			i7 56	$\mathbf{p}\mathbf{P}$	301002
Riverside	Z.	40.5	92	e 7 42	ô		-		-	
Overton	Ze.	40.0	94	C 1 14	v					
Boulder City		40.7	93	i746	+ 2					
Pierce Ferry		41.1	92	i747	0	2.000 CT		-		
	N.	41.2	97	e 7 55	+ 7			2 <u>000</u>		+
Palomar	1000 A.S	45.6	93	e 8 22	- 2	-		e 9 53	$\mathbf{PP}$	
Tueson		53.6	72	18 43	$-4\bar{2}$	i 16 14	-44	e 18 43	. ?	
St. Louis		00 0			1. T. T. J.	ರು ಕೇಳಿಯ ಸಮಾ	1922	CS - T. S.		1000
Ottawa		57.0	57	e 9 51	+ 1					30.4
		61.3	57	i 10 20	0	e 16 19	- 2			
Weston	Z.	78.8	2	e 12 7	+ 1					
Stuttgart	24.	82.0	õ	e 12 3	-20	<u> </u>		2- <del>300-19</del> 2	( <del>1111)</del>	
Salo		91.2	341	e 13 17	+ 9	e 22 49	\$			1100
Ksara		01 6	0.11		5-41 ( 16 <b>9</b> 6)	1960 B. B. C. B. P. C.	0.500			

Additional readings :— College e =4m.17s. and 6m.25s. Sitka e =5m.37s., 6m.18s., and 7m.7s. Berkeley iZ =7m.6s. and 7m.10s., eE =19m.57s. Reno iE =7m.15s., eN =7m.18s., iZ =7m.46s., iE =7m.49s. Palomar iN =8m.6s. Weston i =10m.43s. Weston i =10m.43s.

Stuttgart eZ =12m.17s. Salo e =12m.34s. and 13m.20s. Long waves were also recorded at Victoria, Chicago, Philadelphia, Seven Falls, and Honolulu.

March 14d. 6h. 10m. 12s. Epicentre 37°.0N. 121°.5W. (as on 9d.).

Felt throughout the same region as the shock of 9d., but less strongly. Intensity VI at Gilroy Hollister and Morgan Hill; V at Alviso, San Francisco, and Santa Cruz.

L. M. Murphy and F. P. Ulrich. United States Earthquakes, 1949, Serial 748, Washington, 1951, p. 11, with macroseismic chart, p. 12.

		$\stackrel{\triangle}{\circ}$	Az.	P. m. s.	O - C.	S. m. s.	0 - C.	m. s.	op.	L. m.
Lick		0.4	340	i0 9	$\mathbf{P}_{\mathbf{g}}$	i0 15	Sg	5533		÷
Santa Clara		0.5	314	i 0 13	- 1	i 0 22 i 0 26	$-\frac{1}{2}$			-
Branner		$0.7 \\ 1.1$	$307 \\ 325$	i 0 16 i 0 21 a	<b>- 1</b>	i 0 37	- 2			
Berkeley San Francisco		î.î	315	i 0 22	õ	i 0 38	- 1	8. <del>1.1.1.1</del> 		
Fresno Ukiah Tinemaha Reno Santa Barbara	z.	$     \begin{array}{r}       1 \cdot 4 \\       2 \cdot 5 \\       2 \cdot 6 \\       2 \cdot 9 \\       2 \cdot 9 \\       2 \cdot 9 \end{array} $	$101 \\ 328 \\ 88 \\ 22 \\ 151$	i 0 26 e 0 57 i 0 46 i 0 51k i 0 48	$-1 \\ P_{g} \\ + 2 \\ + 3 \\ 0$	i 0 42 e 1 25 i 1 18 i 1 27 e 1 20	$- \frac{4}{S_{g}} + \frac{1}{3} + \frac{3}{4}$	i 0 58	Pe	е <u>1-7</u>

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

4.5	A ( ) A	1 <b>1 1</b> 1 1
	8 A	
- 2 - 2		

124

		Δ	Az.	P. m. s.	0 – C. s.	S. m. s.	0 – C. s.	m. s.	pp.	L.
Mineral Shasta Dam Pasadena Riverside Boulder City		° 3.4 3.8 3.9 4.5 5.5	$359 \\ 349 \\ 135 \\ 130 \\ 99$	$i \begin{array}{cccc} 0 & 55 \\ i \begin{array}{cccc} 1 & 1 \\ e \begin{array}{cccc} 1 & 2 \\ e \begin{array}{cccc} 1 & 10 \\ e \begin{array}{cccc} 1 & 26 \end{array}$	$     \begin{array}{c}       0 \\       0 \\       0 \\       - 1 \\       + 1     \end{array} $	i 1 46 i 1 49 i 1 58		i 1 6 	$\frac{\mathbf{P}_{\mathbf{f}}}{\mathbf{P}_{\mathbf{f}}}$	m. 
Overton Pierce Ferry Logan Tucson Hungry Horse	z.	$5 \cdot 7$ $6 \cdot 1$ $8 \cdot 9$ $10 \cdot 0$ $12 \cdot 6$	$92 \\ 96 \\ 54 \\ 115 \\ 23$	i 1 27 e 1 34 e 2 25 e 2 26 e 3 7	$-100 \mathbf{P}^{\bullet}$ $\mathbf{P}^{\bullet}$ -14	e11	9	$i \frac{1}{3} \frac{45}{15}$	$\frac{\mathbf{P_g}}{\mathbf{P_g}}$	e 4.8 e 4.9

Additional readings :---Berkeley iEZ = 25s., iE = 36s., iSE = 40s. Fresno iZ = 39s., iN = 2m.46s. Reno iE = 1m.15s., iZ = 1m.22s., iSN = 1m.30s., iEZ = 1m.34s., iN = 1m.40s. Tucson e = 4m.39s. Long waves were also recorded at Salt Lake City.

March 14d. 12h. 45m. 56s. Epicentre 45°.6N. 15°.3E.

Intensity VI at Petrova Vas (45°37'N. 15°10'E.), Suhor and Vivodina ; V at Karlovac Slavetic and Loka. Epicentre as adopted. Macroseismic radius 24km.

#### M. D. Uzelac.

Annuaire microséismique et macroséismique de Institut séismologique de Beograd, 1949, Nouvelle Série, No.9, Belgrade, 1950, p. 54.

	A = + .6772, B = 0 = + .264, E = -0				$\delta = -1;$ = + .188,		-4; ·702.
	$\Delta$	Az.	Р.	0 – C.	s.	0-с.	Supp.
1946 to - 16	0	0	m. s.	s.	m. s.	s.	m. s.
Zagreb	0.5	66	i0 12	- 2	i0 18	- 5	
Triest	1.1	273	i 0 24	$+ \bar{2}$	i 0 38	+ ï	
Padova	2.7	245		·	e 1 21	+2	e 1 27 Se
Salo	3.4	272	e1 8	$\mathbf{P}_{\mathbf{g}}$	e 1 36	÷ ī	e 1 49 Sr
Zürich	5.0	293	e 1 18a	- "0	e 2 30	S*	e 1 27 Sg e 1 49 Sg e 2 48 Sg
Stuttgart	5.2	309	e 1 29?	+ 8	e 2 52	Sr	e 1 41 Pg

Jena gives also eN = 3m.11s.

- March 14d. Readings also at 0h. (Sitka, College, Victoria, Bozeman, Butte, Mount Wilson, Riverside, Tinemaha, Boulder City, Overton, Pierce Ferry, Reno, Shasta Dam, Mineral, and Hungry Horse), 1h. (Chicago, Ottawa, Philadelphia, and Ksara), 2h. (near Obi-garm), 4h. (Hungry Horse, Pierce Ferry, and near Bogota), 5h. (near Samarkand, Tchimkent, Andijan, Murgab, Obi-garm, and Stalinabad), 6h. (Tacubaya), 7h. (Tucson and Tacubaya), 8h. (College and Hungry Horse), 9h. (Frunse, Murgab, Almata, Neuchatel, and near Zürich), 10b. (near Zürich), 11h. (near Samarkand, Andijan, Murgab, Obi-garm (2), and Stalinabad), 12h. (College, near Basle, Neuchatel, Zürich, and Stuttgart), 13h. (College, Hungry Horse, Pierce Ferry, and near Andijan), 15h. (College), 16h. (Hungry Horse), 17h. (La Paz and Tamanrasset), 18h. (Bogota, Rome, and near Apia), 19h. (Mount Wilson, Tinemaha, Tucson, Boulder City (2), Overton, Pierce Ferry, Shasta Dam, Hungry Horse, College, Berkeley, near Branner, Fresno, Lick, San Francisco, Reno, and Mineral), 20h. (near City and Stalinabad).
- March 15d. Readings at 1h. (College, Salo, near Triest and Zagreb), 3h. (near Catania and Messina), 5h. (Salo, near Triest and Zagreb), 6h. (Santa Lucia), 7h. (La Paz), 11h. (near Taranto), 12h. (Andijan (2), Frunse, Samarkand (2), Tashkent (2), near Murgab, Obi-garm (2), and Stalinabad (2) ), 16h. (Klyuchi), 17h. (Ksara, Belgrade, Rome, Basle, Strasbourg, Stuttgart, Paris, Jena, Clermont-Ferrand, Tamanrasset, and Pierce Ferry), 18h. (Tchimkent, Samarkand, near Obi-garm, Stalinabad, and near Mizusawa), 20h. (Butte, Bozeman, Boulder City, near Hungry Horse, and near Leninakan), 21h. (Overton and near Tucson), 22h. (Basle, Zürich, and Overton), 23h. (near Obi-garm).

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

## 1949

#### 125

8.__70t

19

March 16d. 22h. 15m. 7s. Epicentre 5°.48. 151°.3E.

Intensity IV-V at Kokopo and III-IV at Rabaul. Epicentre 5°.5S., 151°.0E. Depth 60km. (Pasadena).

Monthly seismic bulletin, Brisbane, March, 1949, p.2.

A = -.8737, B = +.4784, C = -.0878;  $\delta = -7$ ; h = +7; D = +.480, E = +.877; G = +.077, H = -.042, K = -.996.

		$\triangle$	Az.		0 – C.	. s.	0 – C.		pp.	L. m.
Brisbane Riverview Melbourne Subic Bay	E.	22.4 28.6 33.1 36.6	$175 \\ 180 \\ 189 \\ 304$	m. s. i 4 58a i 5 58a i 6 56 i 7 13		m. s. i 8 58 i 10 42 i 11 53 e 12 56		m. s. i 5 20 i 6 7	PP pP	14·7 e 18·4
Apia		37.4	106		÷ 8		_	e 7 35	pP	e 15·9
Auckland Arapuni Tuai Kaimata Wellington	N. E. N. NE.	$38.3 \\ 39.6 \\ 40.9 \\ 41.4 \\ 41.7$	$149 \\ 149 \\ 149 \\ 158 \\ 154$	$\begin{array}{cccc} 7 & 22 \\ 6 & 53? \\ 7 & 42 \\ 7 & 47 \\ 7 & 47 \\ 7 & 47 \end{array}$	-22 - 42 - 42 - 32 - 5	$ \begin{array}{r} 13 & 8 \\ 13 & 41 \\ e & 13 & 49 \\ \hline 14 & 13 \end{array} $	-11 + 3 - 9 + 3	8 48  9 37	PP  PP	$19.9 \\ 16.9 \\$
Perth Christehurch Batavia Mizusawa Vladivostok		$42.6 \\ 42.7 \\ 44.3 \\ 45.0 \\ 51.1$	$227 \\ 157 \\ 267 \\ 249 \\ 342$	$e \begin{array}{ccc} 8 & 3 \\ 7 & 58 \\ 1 \begin{array}{ccc} 8 & 8 \\ 8 & 24 \\ 1 \begin{array}{ccc} 9 & 7 \end{array}$	$+ \frac{4}{2}$ $- \frac{5}{5}$ $+ \frac{1}{1}$	$\begin{array}{r} 14 & 23 \\ e & 14 & 44 \\ e & 18 & 17 \\ i & 16 & 26 \end{array}$	$-\frac{1}{3}$	9 53 	PP  PPS	18.1
Honolulu Calcutta Irkutsk Colombo Kodaikanal	Е. Е.	$56.3 \\ 67.4 \\ 69.6 \\ 72.3 \\ 75.1$	$\begin{array}{r} 60 \\ 297 \\ 331 \\ 279 \\ 283 \end{array}$	e 9 49 e 11 1 11 16 11 34 i 11 49	+ 42 ++ 3 5 3	i 17 29 i 19 46 i 20 44 i 21 25	$-\frac{5}{9}$ $-\frac{8}{1}$	$i \begin{array}{c} 20 \\ 15 \\ e \\ 15 \\ 26 \\ 17 \\ 17 \\ 17 \\ 15 \\ 17 \\ 15 \\ 17 \\ 15 \\ 15$	$\frac{\overline{\mathbf{PS}}}{\overline{\mathbf{SS}}}$	e 23.8 37.9 36.6
Hyderabad New Delhi Poona Bombay College	N. N.	$75 \cdot 3$ 78 $\cdot 6$ 79 $\cdot 8$ 80 $\cdot 8$ 82 $\cdot 7$	$290 \\ 301 \\ 290 \\ 290 \\ 290 \\ 22$	e 11 48 e 12 14 e 12 9 e 12 20 i 12 25	+ 19+ 33+ 32	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		14 30 i 22 58 e 15 13 e 15 29 e 15 28	PP PS PP PP	33.5 i 33.4 35.9 32.1 e 37.4
Murgab Frunse Andijan Sitka Obi-garm		83·3 83·8 84·9 85·4 86·6	$309 \\ 314 \\ 312 \\ 32 \\ 310$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$+ 3 \\ + 5 \\ + 5 \\ + 39$	i 22 49 e 22 56 23 31 i 23 4 i 22 46?	-1 +1 ScS -7 -37	$e 24 3 \\ 1 15 31?$	PS PP	e 35·1
Tchimkent Tashkent Stalinabad Samarkand Ukiah		87 · 3 87 · 3 87 · 3 88 · 8 89 · 4	313 312 310 310 310 51	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+ 3 + 3 + 3 + 3 + 4 + 5	i 23 29 i 23 33 i 23 14 e 25 3 e 23 57	$     \begin{bmatrix}             0 \\             + 4 \\             - 2] \\             PS \\             + 8         $	$     \begin{array}{r}             0 & 16 & 12 \\             1 & 23 & 24 \\             0 & 25 & 8     \end{array} $	SKKS PS	e 37.0
Berkeley Santa Clara Shasta Dam Victoria Lick	z.	$90.3 \\ 90.5 \\ 90.5 \\ 90.6 \\ 90.7$	$52 \\ 52 \\ 49 \\ 42 \\ 52$	i 13 4 a e 13 4 i 13 4 13 7 i 13 6	$ \begin{array}{c} 0 \\ 1 \\ - \\ 1 \\ 2 \\ 0 \end{array} $	i 23 57 i 23 56 i 24 2	$-\frac{0}{3}$ + $\frac{2}{2}$	i 16 51 e 25 20 e 16 28 16 53		e 40.7 e 41.3 40.9
Mineral Seattle Fresno Reno Pasadena	Z. Z. Z.	$91.0 \\ 91.3 \\ 92.1 \\ 92.3 \\ 93.2$	$49 \\ 42 \\ 53 \\ 50 \\ 56$	i 13 7 i 13 12 i 13 14 a i 13 18 a		e 24 0 e 23 44 e 24 25	$-\frac{6}{1}$ $[-\frac{2}{2}]$	i 16 49 e 16 50 e 16 58	PP PP	e 40.6 e 43.2 e 43.6 e 38.3
Tinemaha Riverside Palomar Sverdlovsk Boulder City	Z. N.	$\begin{array}{r} 93 \cdot 4 \\ 93 \cdot 9 \\ 94 \cdot 3 \\ 94 \cdot 6 \\ 96 \cdot 1 \end{array}$	53 56 57 327 54	i 13 19a i 13 22 i 13 24 i 13 24 i 13 24 i 13 31	$+ 1 \\ + 1 \\ + 1 \\ 0 \\ 0$	e 23 51 i 23 54	$\begin{bmatrix} - & 6 \\ - & 5 \end{bmatrix}$	$\frac{17}{14}$	PP PP	
Pierce Ferry Hungry Horse Butte Logan Salt Lake City	N.	96.8 96.9 97.9 98.5 98.5	54 41 43 48 49	i 13 34 i 13 34 i 13 38 e 14 23	$-\frac{0}{4}$	e 24 16 e 24 14 e 25 2	$\begin{bmatrix} & - & 0 \\ - & 6 \end{bmatrix}$	i 17 25 i 38 29 e 24 38 e 17 32 e 17 35	PP	e 41·2 e 44·8 e 40·9

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1949		126		
Bozeman Tucson Tananarive Grozny Tiflis	$ \begin{array}{c c} & & & & \\ & & & & \\ & & & & \\ & & & & $	P. $0-C.$ m. s. s. i 13 46 + 1 22 15 PKS e 18 39 PP e 14 177 + 3	e 25 8 - 6 i $24 52 \{-11\}$ e 24 51 [+1] e	Supp.       L.         m. s.       m.         36       2       SSS       e 43·3         17       46       PP       e 42·0         32       32       SS       e 48·8         25       16?       SKKS       —         18       43       PP       —
Leninakan Piatigorsk Moscow Tacubaya Helsinki	$\begin{array}{ccccccc} 106\cdot 5 & 311 \\ 106\cdot 6 & 314 \\ 107\cdot 4 & 327 \\ 110\cdot 1 & 71 \\ 111\cdot 8 & 334 \end{array}$	e 18 44? PP e 19 0 PP e 14 22 + 3 e 19 2 PP e 19 23 PP	$\begin{array}{c} 25 & 0 & [+2] \\ 24 & 54 & [-7] \\ e & 28 & 49 & PS \end{array}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Yalta Ksara Scoresby Sund Upsala St. Louis	$\begin{array}{ccccccc} 112 \cdot 7 & 316 \\ 113 \cdot 9 & 304 \\ 114 \cdot 5 & 357 \\ 115 \cdot 1 & 336 \\ 115 \cdot 2 & 49 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	29 32 PS 54.9 29 12 PKKP e 51.9 19 39 PP
Chicago Istanbul Helwan Bergen N. Copenhagen	$\begin{array}{ccccccc} 116\cdot 3 & 45 \\ 117\cdot 3 & 313 \\ 118\cdot 4 & 301 \\ 119\cdot 1 & 341 \\ 119\cdot 8 & 334 \end{array}$	$\begin{array}{c} \mathbf{e} \ \underline{18} \ 54 \\ \underline{18} \ 51 \\ 18 \ 51 \end{array} \begin{bmatrix} + \ 7 \\ + \ 1 \end{bmatrix} \\ 18 \ 54 \ [+ \ 2] \end{array}$	e 25 35 [- 2] e e 21 54 PKS 27 10 {+ 7} e 30 23 PS 27 36 {+23}	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Cleveland Budapest Ogyalla Belgrade Potsdam	$\begin{array}{cccccccc} 120 \cdot 7 & 43 \\ 121 \cdot 2 & 323 \\ 121 \cdot 5 & 324 \\ 121 \cdot 7 & 320 \\ 121 \cdot 7 & 331 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	e 25 53? [-1] e e 27 7 (-18]	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Ivigtut Collmberg Prague Ottawa Jena	$\begin{array}{ccccccc} 122 \cdot 1 & 11 \\ 122 \cdot 4 & 329 \\ 122 \cdot 4 & 328 \\ 122 \cdot 7 & 37 \\ 123 \cdot 3 & 330 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$e 27 48 \{+16\} e$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Cheb Zagreb Aberdeen E. Seven Falls E. Triest	10 Million	$\begin{array}{llllllllllllllllllllllllllllllllllll$	e 28 17 {+32}	$\begin{array}{c}$
De Bilt Philadelphia Taranto Stuttgart Fordham	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	e 20 53 PP e 22 17 PKS 19 16 [+12] i 19 6a [+2] i 19 5 [+1]	e 31 13 PS e e 27 55 {+ 3} e e 38 21 SSP e 32 28 PPS e	
Strasbourg Harvard Chur Weston Padova	$\begin{array}{ccccccc} 126 \cdot 7 & 330 \\ 126 \cdot 8 & 38 \\ 126 \cdot 9 & 327 \\ 127 \cdot 0 & 38 \\ 127 \cdot 1 & 324 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	e 26 6 [-5] e = 37 55 SS e 22 4 PKS e	$ \begin{array}{c} - & e & 63 \cdot 9 \\ - & e & 61 \cdot 9 \\ - & 52 \cdot 3 \end{array} $
Zürich Salo Bologna Basle Florence	$\begin{array}{ccccccc} 127 \cdot 1 & 329 \\ 127 \cdot 2 & 326 \\ 127 \cdot 4 & 323 \\ 127 \cdot 5 & 329 \\ 127 \cdot 8 & 323 \end{array}$	e 18 51k $[-15]$ 19 8a $[+1]$ e 19 10a $[+3]$ e 19 8 $[+1]$ e 19 9 $[+1]$		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Prato Kew Neuchatel Pavia Rome	$\begin{array}{cccccccc} 127 \cdot 9 & 323 \\ 128 \cdot 1 & 337 \\ 128 \cdot 2 & 329 \\ 128 \cdot 2 & 326 \\ 128 \cdot 2 & 321 \end{array}$	e 19 9 [+ 1] i 19 11 [+ 3] e 19 10 [+ 1] e 19 12 [+ 3] i 19 12 [+ 3] i 19 12 [+ 3]	$\begin{array}{ccccccc} e & 31 & 18 & PS \\ e & 22 & 28 & PKS \\ \hline & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & $	$2\overline{1} 14  P\overline{P}  e  58 \overline{\cdot 9}$ $\overline{21} 19  P\overline{P}  \overline{=}$
Paris Jersey E. Clermont-Ferrand La Plata N. Barcelona	$\begin{array}{ccccccc} 129 \cdot 0 & 333 \\ 130 \cdot 6 & 337 \\ 130 \cdot 9 & 331 \\ 131 \cdot 6 & 147 \\ 134 \cdot 5 & 327 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22 49 PKS i i 26 29 [+ 7] i 39 23 SS	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

Tortosa $135 \cdot 8$ $327$ $19$ $21$ $[-2]$ $22$ $58$ PKS $24$ $54$ PPP $e$ $6$ Bermuda $136 \cdot 8$ $46$ $e$ $21$ $1$ PP $e$ $40$ $22$ SS $e$ $40$ $48$ SSP $e$ $55$	49	
Bogota $134 \cdot 8$ $88$ $e$ $19$ $25$ $[+4]$ $                                                                                                                                                                -$ <t< th=""><th></th><th>L.</th></t<>		L.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		m.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	gota	
Tortosa $135 \cdot 8$ $327$ $19$ $21$ $[-2]$ $22$ $58$ $PKS$ $24$ $54$ $PPP$ $e$ $6$ Bermuda $136 \cdot 8$ $46$ $e$ $21$ $[-2]$ $e$ $40$ $22$ $SS$ $e$ $40$ $48$ $SSP$ $e$ $55P$ <td< td=""><td></td><td>63.4</td></td<>		63.4
Bermuda 136.8 46 e 22 11 PP e 40 22 SS e 40 48 SSP e 5	The State of the	the second se
· 그는 것 같이 같은 것 같이 같이 있는 것 같이 같이 있는 것 같이 없는 것 같이 없는 것 같이 않는 것 같이 없는 것 같이 없	C TRANSPORT PROPERTY AND A DESCRIPTION OF A	
		e 67·4
	ledo	67.7
Almeria 140.3 326 i 19 37 $[+6]$ 26 41 $[+1]$ 22 45 PP 7	TO ETC E POLISIONE.	70.9

SSP 19 52 pPKP 176.3 140.6 327 119 8a [-24] 41 43 Granada [+3] e 26 35 [-6] e 22 31 PP e 59·7 66 e 19 35 San Juan  $141 \cdot 1$  $\mathbf{PP}$ 70.0 33 6 SKSP i 22 58 Z. 141.4 327 i 19 30a [-3] Malaga 73.6 17 14 334 19 30 302 119 35a Lisbon  $142 \cdot 1$ [-4]e 19 52 pPKP 0] z. 142.6 Tamanrasset 2 e 37 47 e 51 19 Q 71 Fort de France 146.7 Additional readings :---Riverview iPPZ = 6m.46s., iP_cPE = 9m.14s., iSN = 10m.37s., iSSE = 11m.58s., and other readings without phase. Auckland PP?N = 8m.37s., PcPN = 9m.27s., iN = 10m.24s., eN = 11m.29s. and 12m.53s., SSN = 14m.30s.Tuai S?N = 13m.32s.Wellington i=8m.33s., iZ=8m.59s., eZ=10m.47s., iZ=11m.45s., S=13m.59s., SS= 17m.19s., Q = 19m.17s.Perth SS = 16m.53s., SSS = 17m.33s.Mizusawa PN = 8m.34s., eSE = 18m.20s.Honolulu iP = 9m.56s.,  $eS_cS = 19m.58s.$ New Delhi eN =12m.38s., iN =23m.43s. and 28m.53s. Sitka ePS = 25m.2s., eSS = 29m.5s.Poona iE =12m.39s., iN =23m.48s., PKKSN =33m.40s., SKKS₂ =37m.32s. Bombay eSN = 22m.31s., SSN = 28m.15s., SSE = 28m.22s.College e = 17m.3s., i = 23m.50s., eSS = 28m.2s.Obi-garm iSKS = 22m.30s.? Tashkent ePS = 24m.52s., iSS = 29m.53s., iSSS = 33m.23s.Berkeley iE =13m.7s., iPPZ =21m.32s., iSE =23m.32s., iZ =23m.35s., iN =24m.5s. and 26m.6s., eN = 36m.53s. Victoria SKKS = 23m.42s., SS = 29m.53s.Lick eN = 13m.12s. Reno iZ =13m.28s., iPPEN =17m.38s., eSKSE =23m.48s., eN =24m.5s., eZ =24m.17s., eE = 24m.35s.Pasadena iPSEN = 25m.42s.Tinemaha iZ = 13m.35s. Palomar eN = 13m.42s. Sverdlovsk iSKKS = 24m.15s., PS = 25m.59s., SS = 31m.5s.

Pierce Ferry i = 18m.54s., iPKP, PKP = 38m.34s.Logan i = 24m.36s., eSS = 31m.52s.Salt Lake City eS = 23m.56s., e = 24m.11s., eSS = 25m.59s., eSSS = 29m.55s.Tucson e = 15m.38s. and 20m.41s., ePS? = 26m.33s., eSSS = 36m.8s., e = 38m.29s. Tananarive PS = 27m.16s. Tiflis PPP = 20m.59s., iPS = 28m.3s., SS = 33m.53s.Helsinki ePPP = 25m.37s., ePPS = 34m.51s., e = 43m.22s.Scoresby Sund PPS = 30m.39s., SS = 36m.5s.Upsala eSS?E = 36m.9s., eE = 38m.53s.?, eN = 42m.53s.?, eE = 43m.17s., e = 48m.53s.? St. Louis epPP = 19m.49s., i = 25m.54s. and 27m.9s., e = 28m.18s. and 29m.25s. Helwan eZ =18m.56s., 19m.35s., and 22m.28s., PPPZ =22m.53.s, eE =26m.5s., PSE = 30m.8s. Copenhagen 26m.14s., PS = 30m.16s., PPS = 31m.42s.Cleveland iPKPZ = 19m.7s., eSKSE = 26m.9s., eSKKSN = 27m.15s., iSSN = 36m.45s.Belgrade e = 25m.33s. and 30m.18s. Potsdam iZ = 20m.56s.a, iPPPZ = 23m.9s., iZ = 23m.30s., ePS?Z = 30m.4s., iZ = 23m.4s.32m.0s. and 36m.3s., iSSPZ = 37m.27s. Jena eN = 30m.5s. and 30m.9s. Aberdeen readings reduced by 10 mins. Triest iPPP=23m.45s., iPS=31m.19s., iPPS=32m.27s., iSS=37m.45s., ePSPS= 38m.58s. De Bilt eSS = 37m.53s.? Philadelphia eSS = 37m.51s., eSSS = 42m.22s.Stuttgart epP?Z = 19m.25s., e = 20m.38s., ePPP = 23m.43s., ePSKS = 30m.53s., iPPS = 32m.44s., e = 33m.41s., eSS = 37m.53s., eSSS = 42m.35s.Strasbourg ePP = 21m.0s. and 21m.3s., eSKP? = 22m.26s., ePPP = 23m.50s. and 23m.53s. eSKS = 26m.26s., eSKKS = 27m.59s. and 28m.19s., ePS = 31m.7s., 31m.14s., and 31m.28s., ePKKS = 32m.23s., ePPS = 32m.45s., eSS = 38m.3s., eSSS = 42m.58s., and many other readings without phase. Harvard i = 19m.22s.Kew eSKSEN = 26m.32s., eEN = 29m.2s., eZ = 31m.2s., ePSEN = 31m.31s., eSS = 39m.21s., eEN = 41m.6s., eSSSEN = 42m.50s.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

# 1949

.

# 128

Rome SKP = 22m.29s., SS = 39m.13s., SSS = 44m.13s.Paris pPKP? =19m.29s., i=20m.46s., pPP? =21m.41s., i=21m.59s. and 22m.33s., iPPP = 24m.14s., PPS = 33m.7s., i = 35m.47s. and 37m.41s., eSS = 38m.41s., SSS = 43m.16s. Clermont-Ferrand iSKP = 22m.40s., i = 23m.0s., iPPP = 24m.34s., i = 24m.45s., ePS = 32m.0s., iPPS = 33m.31s., eSSS = 43m.57s., Q = 56m.53s.? La Plata N = 51m.11s. and 52m.17s. La Paz iPP? = 22m.56s., SSE = 40m.9s. Tortosa SKKSE = 28m.23s., SSE = 39m.13s., SSSE = 43m.48s. Bermuda e = 23m.6s., eSKSP = 32m.53s.Alicante PP =23m.14s., PPP =26m.25s., SKKS =29m.17s., SS =41m.13s., SSP =42m.9s. Toledo i =19m.30s. and 23m.4s., e =25m.51s., i =26m.24s., eE =41m.29s. Almeria PKS = 23m.11s., PPP = 25m.37s., SKSP = 32m.51s., PPS = 35m.10s., SS = 41m.21s., SSS = 46m.41s.Granada iPP = 22m.8s.a, pPP = 23m.19s., PPS = 36m.6s., SSS = 50m.34s. San Juan e = 20m.9s., i = 23m.11s., e = 34m.28s. and 36m.3s., eSS = 40m.10s.Malaga QZ = 59m.0s. Lisbon N = 21m.25s., 44m.53s.?, and 50m.17s., E = 52m.53s.? Tamanrasset ePPZ = 23m.15s., epPPZ = 23m.39s.Long waves were also recorded at Columbia, Lincoln, Halifax, and Raciborzu.

March 16d. Readings also at 3h. (Samarkand, near Obi-garm and Stalinabad), 4h. (College), 5h. (near Obi-garm (2) ), 7h. (Hungry Horse, Overton, and Shasta Dam), 8h. (Hungry Horse), 9h. (Samarkand, near Obi-garm, Stalinabad, and Murgab), 10h. (near College), 11h. (near Boulder City and Pierce Ferry), 12h. (near Andijan, Tchimkent, and Obi-garm), 13h. (near Riverview), 14h. (near College, near Obigarm, Stalinabad, Samarkand, and Andijan), 15h. (Copiapo, Hungry Horse, Pierce Ferry, Shasta Dam, Tucson, Pasadena, Tinemaha, and near College (2) ), 17h. (near Apia and near Mizusawa), 18h. (near College, near Boulder City, Pierce Ferry, and Tucson), 22h. (near Branner).

March 17d. 3h. 32m. 58s. Epicentre 33°.9N. 139°.6E. Depth of focus 0.010. (as on 1946, Feb. 17d.).

Intensity IV at Tomisaki ; II-III at Yokohama, Tokyo, Utunomiya, and Osima. Epicentre 34°.0N. 139°.6E. Depth 80km. Macroseismic radius 200-300km.

Seismo. Bull. Cent. Met. Obs., Japan, 1949, Tokyo, 1950, pp. 7, 8, with macroseismic chart.

 $A = -6334, B = +5391, C = +5552; \delta = +7; h = +1;$ D = +.648, E = +.762; G = -423, H = +.360, K = -.832.

		$\triangle$	Az.	1	P.	0 – C.	s.	0-C.
		•	0	m.	8.	s	m. s.	8.
Mera		1.0	11	0	15	- 5	0 32	- 4
Omaesaki		1.3	301	Ō	a second second second	+11	0 47	+5
Shizuoka		1.4	317	Ő	이 이 친구 집 집에 가지?	+ 5		
Yokohama		1.5		õ	and the second	'ŏ	0 45	- 2
Hunatu		<b>1</b> .7	336	Ŏ	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	+ ĭ	ŏ 55	+ 4
Tokyo		1.8	4	0	30	0	0 49	- 4
Kumagaya		2.2	355	Ő	38	$+ \tilde{2}$	1 3	$+\hat{1}$
Tukubasan		2.3	10	Ŏ		- ī	îš	- 2
Kakioka		2.4	12	ŏ	36	- 2	ĩ ỹ	$+ \tilde{2}$
Maebasi		2.5	350	ŏ		+ <b>ī</b>	î 4	- õ
Nagoya		2.5	300	0	44	+ 4		
Mito		2.6	16	ŏ	40	÷ î	1 12	0
Utunomiya		2.6	5	ŏ	35	- 6		
Gihu		2.8	303	Õ	40	- <b>4</b>	1 20	+ 3
Kameyama		2.8	290	Ö	42	$- \bar{2}$	1 20	+ 3 + 3
Nagano		3.0	339	0	48	+ 1	1 29	+ 7
Kyoto		3.4	291	1	24	s	(1 29)	- 8
Osaka		3.5	284	1	35	s	(1 35)	+ 1
Hukusima		3.9	10	Õ	56	- 3	1 43	- 1
Sumoto		3.9	277	1	48	8	(1 48)	+ 4
Sendai		4.5	12	1	4	- 3	2 3	+ 4
Mizusawa	E.	5.4	12	1	18	- 9	2 12	- 9
Akita		5.8	4	1	31	+ 6 + 5		_
Morioka		5.9	11	1	31	+ 6 + 5	2 37	+ 4
Shasta Dam		74.2	52	e 11	27	- 1		
Hungry Horse		75.1	42	i 11	13	-20		

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

### 1949

### 129

March 17d. 21h. 5m. 6s. Epicentre 5°.4S. 151°.3E. (as on 16d.).

Intensity VI at Waterfall Bay (New Britain); III at Rabaul. Epicentre 5.5°S. 151°E., depth 60km. (Pasadena).

Monthly seismic bulletin, Brisbane, March, 1949, p.2.

$$A = -.8737, B = +.4784, C = -.0878; \delta = -7; h = +7.$$
  
 $\triangle Az. P. O-C. S. O-C. Supp. L.$ 

		Δ	AZ.	m. s.	s.	. m. s.	o = 0. s.	m. s.	pp.	m.
Brisbane Riverview Melbourne Apia Arapuni	Е. Е.	37.4	$     \begin{array}{c}             0 \\             180 \\             189 \\             106 \\             149 \\             149         $	i 4 57k i 6 6a i 6 52	-5 +6 +12 0	i 9 3 i 10 43 i 11 55 13 54	-1 -5 -4 +16	$   \begin{array}{c}     i & 5 & 35 \\     i & 6 & 15 \\     e & 7 & 26   \end{array} $	PP pP 1	i 10.8 e 12.9 e 17.9 17.1
Tuai Kaimata Wellington Perth Batavia	N.	$40.9 \\ 41.4 \\ 41.7 \\ 42.6 \\ 44.3$	$149 \\ 158 \\ 154 \\ 227 \\ 267$	$\begin{array}{rrrrr}7 & 45 \\ 7 & 54 \\ 8 & 0 \\ \mathbf{i} & 8 & 14 \\ \mathbf{e} & 8 & 52 \end{array}$	$-1 \\ +4 \\ +8 \\ +15 \\ +39$	$13 \ 35 \\ 13 \ 57 \\ i \ 14 \ 22 \\ e \ 15 \ 26$	$-30 \\ -13 \\ -13 \\ +38$	e 8 8 9 40 i 17 34	PP SS	1 19.8 22.9
Vladivostok Honolulu Calcutta Irkutsk Colombo	Е. Е.	69.6	$342 \\ 60 \\ 297 \\ 331 \\ 279$	i 9 7 e 11 2 11 14 11 16	$+1 \\ +3 \\ +1 \\ -13$	i 16 18 i 17 28 e 20 16 20 18 20 51	$   \begin{bmatrix}     - & 6 \\     - & 6 \\     + 21 \\     - & 3 \\     - & 1   \end{bmatrix} $	i 11 3 e 18 4 i 24 40 e 13 40?	PP PPS SS PP	e 25.6
Kodaikanal New Delhi Poona Bombay Almata	E. N.	Construction of the second second second	$283 \\ 301 \\ 290 \\ 290 \\ 316$	i 11 48 e 12 7 i 12 13 e 12 18 e 12 29	+ 22 + + 1 + 1 + 15	i 21 24 i 22 23 e 22 16 e 22 26		$     \begin{array}{r}       26 & 16 \\       i & 22 & 58 \\       i & 22 & 52 \\       15 & 27 \\                                   $	SS PS PS PP	36.6 i 33.4 33.2 31.9
College Murgab Frunse Andijan Sitka		82.7 83.3 83.8 84.9 85.4	$22 \\ 309 \\ 314 \\ 312 \\ 32$	i 12 24 12 35 e 12 35 12 41 i 12 40	-35 + 35 + 35 + 35 + 30 + 30 + 30 + 30 +	e 22 27 e 22 52 i 22 59 e 23 1	$-\frac{17}{-\frac{3}{-\frac{7}{-10}}}$	e 15 32	PP  PPS	e 35.5
Obi-garm Tashkent Tchimkent Stalinabad Samarkand		86.6 87.3 87.3 87.3 88.8	$310 \\ 312 \\ 313 \\ 310 \\ 310 \\ 310$	i 12 49 i 12 51 i 12 51 i 12 51 i 12 50 e 13 4	+ 3 + 1 + 1 + 0 + 7	e 23 21 i 23 13 i 23 27 i 23 11	$\begin{bmatrix} - & 2 \\ - & 3 \end{bmatrix} \\ \begin{bmatrix} - & 2 \\ - & 2 \end{bmatrix} \\ \begin{bmatrix} - & 5 \end{bmatrix}$	i 23 8 e 16 25	SKS PP	
Ukiah Berkeley Santa Clara Shasta Dam Victoria		$89.4 \\ 90.3 \\ 90.5 \\ 90.5 \\ 90.6$	$51 \\ 52 \\ 52 \\ 52 \\ 42$	$i 13 4 \\ e 13 6 \\ i 13 3 \\ 13 2$	$+ \frac{1}{2}$	e 23 44 i 23 56 i 24 2 23 53	-51 + 3 - 7	e 25 11 1 25 8 e 16 54 i 16 26 29 54?	PS PS PP PP SS	e 40.6 e 41.3 e 41.6 40.9
Lick Mineral Seattle Fresno Reno	z. z. z.	$90.7 \\ 91.0 \\ 91.3 \\ 92.1 \\ 92.3$	$52 \\ 49 \\ 42 \\ 53 \\ 50$	i 13 5 i 13 6 i 13 12 i 13 13 a	$= \frac{1}{1}$	e 22 59 i 24 11	[-41] -41]	i 16 41 e 24 2 i 16 51	PP S PP	e 42·2 e 44·8
Pasadena Tinemaha Riverside Palomar Sverdlovsk	N.	$93 \cdot 2$ $93 \cdot 4$ $93 \cdot 9$ $94 \cdot 3$ $94 \cdot 6$	56 53 56 57 327	i 13 17 a i 13 19 a i 13 20 a i 13 25 i 13 23	$ \begin{array}{c} 0 \\ + \\ - \\ + \\ + \\ - \\ 1 \end{array} $	e 24 5 2 24 25	{ 0} 	i 16 58 	PP  PP	38.5
Boulder City Pierce Ferry Hungry Horse Butte Logan	N.	$96.1 \\ 96.8 \\ 96.9 \\ 97.9 \\ 98.5$	54 54 41 43 48	i 13 30 i 13 33 i 13 33 e 13 33	$-\frac{1}{1}$ - 1 - 9	e 24 10 e 24 19 e 30 47 e 24 37 i 24 40	$\{ \begin{array}{c} + & 3 \\ + & 8 \\ + & 8 \\ 8 \\ - & 2 \\ - & 4 \\ - & 4 \\ \end{array} \}$	e 38 27 i 17 25 e 17 15 e 30 6 1 e 30 20 1	P'P' PP PP PKKP	e 41·2 e 45·4
Salt Lake City Bozeman Tucson Rapid City Grozny	E.	$98.5 \\ 99.0 \\ 99.3 \\ 104.6 \\ 104.8$	$49\\44\\57\\46\\313$	i 13 45 e 14 9 e 18 587	$-\frac{1}{0}$	i 24 17 i 24 47 e 26 30 e 25 51	$\{ - 3 \\ 0 \\ PS \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\ - 8 \\$	e 26 9 i 25 36 i 17 44 e 18 44	PS S PP PP	e 40.6 e 41.3 e 41.9 e 49.7

Continued on next page,

2.1

10

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

#### 1949

4

#### 180

	43			0 - C.	B. m. s.	0 – C.	the second se	ipp.	n
	105.7	311		4? 0		Construction and Construction of Construction	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	i pp	-
	106.5	311	e 19	0 PP					
						the second s			e 6:
	112.7				e 28 51	PS PS	0 30 39		0.0
	113.9	304	i194	And the second se	29 43	$\mathbf{PS}$		••	
	the second s		the second se		25 50	the second se	29 22	$\mathbf{PS}$	5
			e 18 2			the second se	e 19 54	( PP	e 5
7.	116.9	238	i 17 1		e 25 54	1+17	_	-	e 4
	117.3	313	e 18 4	9 [+ 1]	i 26 4	[+24]			
	118.4	301		2 PP	e 30 15	PS			
	the second se			9 $[-12]$	30 9		36 54	SSP	е 5
		the second se				a construction of the second		and the second se	5
	1152354	1992	1 835525055	985 9780 - 4897	0000000000		1933/1940/62/72	804020	5
	$121.7 \\ 122.1$	320 11	e 18 5	7 [+_1]	e 25 53 30 42	[- 3] PS	e 36 32	ss	e 6. 5
	122.4	329	e 18 5	8 [+ 1]	e 37 18	ŝŝ			e 6
	122.7	37			e 26 8	[+ 9]	e 37 6	SS	5
	123.3	330					e 20 40	$\mathbf{PP}$	
E.	124.0 124.7	342	i 20 1	I PP	i 30 44	PS PS	e 57 1 e 38 19	Q	e 60
в.		and the second sec	e 19 1	5 (+13)	A. A. Martin, J. M. Martin, M. M. Martin, M. Martin, M. M. Ma Martin, M. Martin, M. M			and the second se	Э.
	125.4	334	and the second	and the second se	A strain strain for a strain strain.				e 5'
	125.7	43			e 26 24	[+16]	e 32 27	PPS	e 5
	125.9	329			e 22 27	PKS	e 19 26	pPKP	6
		the second se		and the second s	A STATE OF A	and the second			54
		and the second se		and the second			0 21 8	PP	61 e 58
	126.9	327		2. J. 1999 (J. 1997) - J. 1997 (J. 1997) - J.	0				e 64
	127.0	38	A DESCRIPTION OF A DESC	2	i 31 33	$\mathbf{PS}$		1307	53
	127.1	324		All states are set of the set					
	and the second			그는 그는 것이 지난 김 씨가 나는 것이 좋다.				np	
	$127.2 \\ 127.4$	$320 \\ 323$		1. Contraction of the second secon	_	_	e 21 7 e 23 8	111	
	127.9	323	e 19 1	2 (+ 41	-				
	128.1	337	e 19	(i - 1)	e 22 48	PKS	e 21 10	$\mathbf{PP}$	e 59
		321		Contraction of the second s	22 32	PKS	33 14	PPS	220234
a	<ul> <li>A set of the set of</li></ul>	And the set of the first		The second se					e 62
a	\$10253 (4)	12023-122	225 23	a Suman	1 20 20	{+ 3}	0 21 37	$\mathbf{PP}$	63
		the second se	Contraction of the second s	2 A set of the set	1 00 11	DVO	e 01 re	DD	67
	the second se		the second se						57 63
	135.8	A COMPANY OF A COMPANY		<ol> <li>COMPARENT CONTRACT</li> </ol>	the second se	the second se	the second se	the second se	e 63
	136-8	46	the second se	A second s	e 29 34	{+32}	e 23 4	PKS	e 57
221	138-1	326	and the second		26 22	[-14]	22 58	PKS	e 69
z.		the second states of the secon		1 State State State State State State			Card Contraction of the second	PP	68
						the second se			74
	141.1	66	그는 영향은 이상에 가지 않는 것이 있는 것을 했다.		$e^{\frac{41}{23}}$	PKS	$e \frac{22}{22} \frac{20}{31}$	PP	e 57
7.	141.4	327	the second se	the second se	35 10	PPS	i 22 38	PP	67
1000 C	142.1	334	the second se	the second se	-		- Construction of the second s second second s second second sec second second sec	PKP ₃	71
z.	142.6	302	i 19 41	a?[+ 6]	i 38 10		i 20 4k	pPKP	1000
	z.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

## 1949

# 131

```
Bombay PSE = 22m.45s., SSN = 27m.57s., SSE = 28m.11s.
College i = 12m.36s.
Sitka i =23m.27s.
Tashkent iPS = 24m.55s.?, iSS = 29m.12s., iSSS = 33m.12s.
Ukiah e = 24m.6s., eSS? = 29m.6s.
Berkeley iN =24m.0s. and 24m.20s., iZ =25m.20s., eN =39m.18s., eZ =39m.42s., eE =
    40m.0s.
Victoria SKKS =23m.37s.
Lick eN = 13m.22s.
Santa Clara iPPPSE = 25m.17s.
Reno iE =13m.23s., iN =13m.29s., iZ =13m.44s., eSN =24m.8s., eN =24m.37s.
Pasadena ipP?Z=13m.32s., iSZ=24m.48s., iPSZ=25m.31s., eSSZ=30m.12s.
Tinemaha iZ = 13m.35s.
Riverside ipP?Z =13m.39s.
Palomar iN =13m.50s.
Sverdlovsk PS = 25m.39s., SS = 31m.6s., SSS = 34m.48s.
Boulder City i =16m.25s.
Pierce Ferry ePKP, PKP = 38m.13s.
Hungry Horse e = 38m.10s., ePKP, PKP = 38m.29s.
Logan e = 17m.0s., eSS = 35m.57s.
Tucson e = 21m.26s., ePKKP = 30m.7s., eSSS = 35m.20s.
Rapid City iSE = 26m.10s., eE = 38m.34s.
Tiflis iPPS = 27m.56s.?, iPPS = 28m.50s.
Helsinki ePPP = 25m.8s., ePPS = 34m.49s.
Scoresby Sund SKKS = 26m.54s., PPS = 30m.48s., SS = 36m.12s.
Upsala eN = 20m.41s., eE = 24m.25s., eN = 27m.35s., eE = 29m.6s., eN = 29m.16s.,
    eSS?N=34m.54s?, eSSSE=39m.18s., eSSSN=40m.12s., eN=44m.54s.?
Helwan eZ = 20m.26s. and 21m.7s.
Copenhagen SKKS = 27m.37s., PS = 30m.12s., SS = 37m.6s., SSS = 41m.24s.
Cleveland iSSN = 36m.42s.
Belgrade e = 20m.44s. and 21m.54s.
Collmberg eZ = 19m.17s., eE = 42m.30s.
Jena ePKPE = 19m.5s., eN = 20m.35s.
Triest eSKP = 22m.17s., iPS = 31m.15s., ePSPS = 38m.51s.
Philadelphia eSS = 37m.52s.
Stuttgart ePP = 21m.1s., ePPP = 23m.54s., ePS = 31m.12s., ePPSZ = 32m.14s., ePPS =
    32m.36s., Q = 33m.42s., eSS = 38m.24s., eSSS = 42m.54s., eQ = 60.9m.
Strasbourg e = 20m.16s., ePP = 21m.2s., e = 21m.47s., eSKP = 22m.30s., ePPP = 24m.11s.,
    eSKS=25m.59s., and 26m.5s., eSKKS=27m.55s. and 28m.0s., ePS=31m.2s.,
    ePPS = 32m.57s. and 33m.57s., e = 34m.5s., eSSS = 42m.57s., e = 45m.31s., 47m.54s.,
    49m.53s., and 50m.15s.
Zürich eZ = 19m.49s.
Kew eEN =23m.28s., ePSEN =31m.21s., ePPSEN =33m.5s., eSSEN =39m.22s., eEN =
    41m.5s.
Rome SS = 38m.54s., SSS = 43m.54s.
Paris i =20m.47s. and 21m.54s., iPPP =24m.20s., e =31m.50s., ePPS =33m.15s., eSS =
```

38m.18s. Clermont-Ferrand iSKP = 22m.38s., i = 23m.4s., iPPP = 24m.32s., i = 24m.46s., iPPS = 33m.31s., iSS = 39m.28s., iPSS? = 40m.0s., iSSS = 43m.56s., Q = 54m.54s. Bogota i = 23m.53s., eS?EN = 31m.43s.Tortosa PPPEN = 24m.59s., PSE = 32m.10s., PPSEN = 34m.1s., SSS?E = 43m.58s. La Paz iE = 24m.2s. Bermuda e = 35m.4s., eSS = 41m.7s.Alicante PKP₂=19m.38s., PP=23m.6s., SKKS=29m.38s., SS=42m.8s., SSP= 42m.58s., SSS = 47m.52s.Toledo eZ = 41m.4s. and 57m.3s. Almeria PPP=25m.55s., SKS=26m.47s., SKKS=29m.35s., PPS=25m.11s., SS=41m.21s. Granada S = 30m.17s. San Juan e = 39m.17s.Malaga QZ = 58m.10s. Lisbon SSSIN = 50m.30s. Tamanrasset iPKP?Z = 19m.49s., ePP?Z = 23m.26s., epPPZ = 23m.51s.Long waves were also recorded at Auckland, Columbia, and Lincoln.

March 17d. 22h. 53m. 59s. Epicentre 5°.6S. 147°.0E. (as on 1939, Jan. 30d.).

A = -.8347, B = +.5421, C = -.0969;  $\delta = -1$ ; h = +.7; D = +.545, E = +.889; G = +.081, H = -.053, K = -.995.

		Λ	Az.	Р.	0-C.	s.	0 – C.	Sup	p.	L.
			0	m. s.	s.	m. s.	8.	m. s.		m.
Brisbane		22.5	167	i4 32	-30	i 8 42	-23	i 5 33	$\mathbf{PP}$	
Riverview		28.4	173	e 5 58	0	i 10 49	+ 4	i 16 31	$S_cS$	e 14·1
Arepuni	E.	41.5	146			e 17 49	SSS			
Vladivostok	27223	50.4	346	e 8 27 ?	-34			e 11 7	$\mathbf{PP}$	
Irkutsk		68.1	334	e 11 25?	+21	e 20 51	+ 2		8-18	

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1949					132					
		∆ °	Az.	Р. m. s.	0 – C. s.	S. m. s.	O - C.	m. s.	pp.	<b>L</b> . m.
Andijan Obi-garm Stalinabad		$82.1 \\ 83.6$	$313 \\ 310$	$e 12 27 \\ e 12 37$	$^{+}_{+}$ $^{3}_{6}$	e 22 56	+ 3			
Tashkent Tchimkent		$84.3 \\ 84.5 \\ 84.5$	$310 \\ 313 \\ 313$	e 12 37 e 12 36 i 12 38	$^{+2}_{+2}$	$e \begin{array}{c} 22 & 57 \\ i \begin{array}{c} 23 & 4 \end{array}$	$-\frac{5}{2}$	e 23 36	$\overline{\mathbf{ps}}$	
College Sverdlovsk		$     84.8 \\     92.6 $	$\begin{smallmatrix}&23\\327\end{smallmatrix}$	i 12 33 e 13 16	$- \frac{4}{+ 1}$	e 23 43	[-5]	e 12 49	PeP	-
Shasta Dam		93.5	49	i 13 19	Ō			-	1.14	
Pasadena	Z.	97.1	56	e 13 33	- 2					
Tinemaha	Z.	97.1	53	e 13 35	0	- married	( <del></del>			i 44·1
Riverside Boulder City	z.	97.8 99.9	56	e 13 36	- 2				<u></u>	
Hungry Horse		100.1	$\frac{55}{42}$	e 13 42 i 13 46	- b - 3		232	1.1.1.1	2.00	
Overton	z.	100.2	54	e 13 48	$-1^{-3}$					
Pierce Ferry		100.5	55	e 13 47	- 1					
Stuttgart		$124 \cdot 1$	327	e 19 2	[+ 1]	_		e 19 18	8	e 66·0
Weston		130.1	36	i 22 9	PKS				-	
La Paz		138.9	123	23 1	PKS					
Tamanrasset	Z.	139.1	300	i 19 42k	[+13]	e 23 16	PKS		******	
Fort de France		150.9	70			e 38 25	ŗ		-	

Additional readings :--

Brisbane iPZ = 4m.46s., iSSE = 9m.11s.

Riverview ipP?Z = 6m.7s.

Tashkent eSS = 28m.18s.

Pasadena iZ = 13m.48s.

Riverside eZ = 13m.51s.

Long waves were also recorded at Auckland, Wellington, Sitka, Paris, and Strasbourg.

16

March 17d. Readings also at 0h. (Bozeman, Sitka, Salt Lake City, near Tacubaya and Puebla), 1h. (La Paz, Fort de France, San Juan, and Hungry Horse), 2h. (College, Strasbourg, Stuttgart, Sverdlovsk, near Andijan, Frunse, Tchimkent, Tashkent, Almata, Murgab, Stalinabad, Samarkand, and Obi-garm), 3h. (Boulder City, College, Hungry Horse, Pierce Ferry, Shasta Dam, Tucson, Pasadena, Riverside, Tinemaha, De Bilt, Potsdam, Stuttgart, Paris, and Tamanrasset), 5h. (Boulder City, Pierce Ferry, Tucson (2), Mount Wilson (2), Riverside, Tinemaha, near La Paz and near Taranto), 6h. (College, Hungry Horse, Shasta Dam, Tinemaha, and near Tortosa), 7h. (Boulder City, College, Pierce Ferry, Tucson, Mount Wilson, Riverside, Tinemaha, Stuttgart, Strasbourg, and Andijan), 8h. (Auckland, College,

Mount Wilson, Riverside, and Tinemaha), 9h. (near Mizusawa), 10h. (Kew, Mount Wilson, Riverside, and Tinemaha), 13h. (near Ashkabad (2)), 14h. (Hungry Horse (2)), 15h. (Grozny and Piatigorsk), 16h. (near Boulder City, Pierce Ferry, Balboa Heights, near Oaxaca, Tacubaya, and Puebla), 17h. (College and near Alicante), 19h. (Hungry Horse, Overton, Pierce Ferry, Shasta Dam, and near Tucson), 20h. (Hungry Horse, Tashkent, Obi-garm, Stalinabad, near Frunse, Almata, Andijan (2), Murgab and near Tortosa), 21h. (Calcutta, Poona, near Murgab, Andijan, and Obi-garm), 22h. (Stuttgart).

#### March 18d. 3h. 24m. 41s. Epicentre 42°·4N. 147°·0E. Depth of focus 0·025. (as on 1945, June 22d.).

Intensity II-III at Urakawa. Macroseismic radius >300 km. Epicentre as adopted. Depth 60km.

Seismo. Bull. Cent. Met. Obs., Japan, 1949. Tokyo, 1950, p.8.

 $A = -.6212, B = +.4034, C = +.6718; \delta = -6; h = -3;$ D = +.545, E = +.839; G = -.563, H = +.366, K = -.741.

	$\Delta$	Az.	Р.	0-C.	s.	0-C.	Supp.	L.
NEX 2 CONTRACTOR CONTRACTOR	•	•	m. s.	s.	m. s.	8.	m. s.	m.
Nemuro	1.4	312	i0 9	-23	0 24	-34		
Sapporo	4.2	282			i 1 43	-12	-	
Miyako	4.7	236	el 9	- 2	2 7	+ 1		
Mori	4.8	269	1 10	- 2				
Aomori	4.9	254	i 1 13	- 1				

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1949					183					
		Δ	Az.	Р.	о −с.	s.	0 – C.	$\mathbf{Su}_{\mathbf{j}}$	pp.	L.
		0	•	m. s.	s.	m. s.	s.	m. s.		m.
Morioka	1000	$5 \cdot 2$	241	e 1 14	- 4	2 19	+ 1			
Mizusawa	Е.	5.2	236	e 1 24	+ 2	$   \begin{array}{ccc}     2 & 28 \\     2 & 35   \end{array} $	+ 3	500 C		
Isinomaki		5.9	230			2 35	+ 1	e 2 30	S	+
Sendai		6.2	230	e 1 32	+ 1	$\begin{array}{ccc} 2 & 45 \\ 3 & 2 \end{array}$	+4			
Hukusima		6.8	229	1 43	+ 5	3 2	+7			
Kakioka		8.1	223	e 1 57	+ 2	3 31	1.5	1220	1000	
Maebasi		8.6	228	0101	1 <u>1</u>	e 3 45	$^{+}_{+}$ 8	1000		
Tokyo		8.8	222	e 3 16	2	3 48			_	12922
College		42.2	35	i 7 31	- 5	$e 12 \overline{41}$	$+60^{+60}$	<u> </u>		e 15·8
Shasta Dam		64.5	58	i 10 16	-2	~				e 15·8
Hungry Horse		64·9	47	i 10 20	- 1					
Tinemaha		69.2	59	e 10 49	$\frac{-1}{+1}$	22.52			- 22	
Pasadena	z.	71.1	61	e 10 59	· ô		- Included			
Riverside	z.	71.7	ĞÎ	e 11 2	- ĭ			200	0.212	
Overton	z.	72.0	57	i 11 5	ô	2			$\rightarrow$	
Boulder City		72.1	58	i11 6	+ 1				1923 (Ma	
Pierce Ferry		72.5	57	i 11 8	Ô					
Tucson		77.0	59	e 11 34	+ ĭ					
Ksara		81.4	308	e 8 19	. 9					
Stuttgart	z.	81.9	334	e 11 59	ó	보오늘			823	
Strasbourg		82.5	334	e 12 19	$+1\ddot{7}$					
Paris		83.9	337	i 12 11	+ i	1000				223.5

Additional readings :---Tucson e = 11m.49s. Stuttgart eZ = 12m.10s. Paris i = 12m.19s., e = 13m.27s.

March 18d. Readings also at 0h. (Kew, Lick, Reno, near Mineral, Pierce Ferry, near Andijan, Frunse, Murgab, Obi-garm, Samarkand, Tashkent, and Tchimkent), 1h. (Chur, Stuttgart, near Basle, Zürich, near Istanbul, near Bogota, near Pierce Ferry and Boulder City), 4h. (Hungry Horse), 5h. (near Boulder City and Pierce Ferry), 7h. (Overton and Pierce Ferry), 8h. (Overton, Pierce Ferry, and near Boulder City), 10h. (Strasbourg), 11h. (Logan, near Collmberg, Jena, Stuttgart, and near Malaga), 13h. (Helwan), 14h. (College), 16h. (near Triest), 17h. (Tamanrasset, College, and near Tucson), 18h. (Santa Lucia, Frunse, near Andijan, Obi-garm, Samarkand, Stalinabad, Tashkent, and near Tchimkent), 20h. (La Paz), 21h. (Overton).

March 19d. 1h. 3m. 3s. Epicentre 29°.0N. 123°.0E. Approximate.

A = -.4771, B = +.7347, C = +.4823;  $\delta = +2$ ; h = +2; D = +.839, E = +.545; G = -.263, H = +.404, K = -.876.

		$\triangle$	Az.	Р.	0 – C.	s.	0 – C.	Su	pp.
		0	9	m. s.	s.	m. s.	8.	m. s.	
Vladivostok		15.8	25			e 7 20	SSS		
Irkutsk		27.1	335			e 10 49?		-	-
Andijan		42.6	300	8 3	+ 4		1	<u> 163</u> 8	1000
Tchimkent		44.7	303	e 8 17	- î		-		
Obi-garm		44.8	298	i 8 17	Ô				
Stalinabad		45.5	298	8 231	0	e 15 2	- 3		_
Samarkand		46.8	299	e 8 37	+4	e 15 22	- 2	323	1000
Sverdlovsk		$51 \cdot 2$	322	i 9 14	+ 7	16 33	+ 8	20 15	SS
Ashkabad		54.1	298	e 9 26	- 3	10 00	T 0	50 10	66
Piatigorsk		63.6	301	e 10 31	- 4	) [			_
College		63.8	29	e 10 41	+ 5			11 28	$P_cP$
Moscow		64.0	322	i 10 40	$+$ $\tilde{2}$	i 19 14	+ 1	** ***	- C-
Ksara		72.3	300	e 11 26	- 3	- 10 11	·	e 16 9	PPP
Collmberg		79.2	323	e 12 8	ŏ	-	220	0 10 0	
Stuttgart	Z.	82.7	323	e 12 26	- ĭ				
Strasbourg		83.5	323	e 12 31	0	-	-		
Hungry Horse		87.6	35	i 12 50	- ĭ	i 23 33	1 1	i 22 57	SKS
Shasta Dam		87.9	44	i 12 49	- Ã	1 20 00	· _	1 22 01	040
Boulder City		95.5	44	e 13 7	$-2\hat{1}$	-			
Pierce Ferry		95.9	44	e 13 10	$-\tilde{20}$			i 13 29	$\mathbf{P}$
Tucson		100.5	45	e 17 59	$\mathbf{P}\mathbf{\tilde{P}}$		_	1 15 25	
1999년 1997년 199 1997년 1997년 1997		0.000.000000	100000		201200	-2-171		1.200	1

Sverdlovsk also gives ePP = 11m.17s.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

# 1949

1000

10.0

N 62

# 184

42.5

March 19d. 11h. 42m. 55s. Epicentre 33°.8N. 134°.5E. (as on 1947, Sept. 2d.).

Intensity IV at Tokushima; II-III at Sumoto, Irako. Macroseismic radius 200-300 km. Seismo. Bull. Cent. Met. Obs., Japan, for 1949. Tokyo, 1950, p.p. 8, 9, with macroseismic chart.

$$A = -.5836, B = +.5939, C = +.5537; \delta = -11; h = +1;$$
  
 $D = +.713, E = +.701; G = -.388, H = +.395, K = -.833.$ 

	Δ	Az.	Р.		0 – C.	s.	O - C.
	0	0	m.	s.	8.	m. s.	s.
Sumoto	0.6	30	0 1	2k	- 3	0 23	- 3
Kobe	1.0	32	0 2	lok	- 1	0 34	- 2
Siomisaki	î.ĭ	108	CONTRACTOR AND A DEC	5k	- 7	0 30	- 9
Orolto	1.2	45		25	+ 1		
Osaka	1.4	79		8	$\pm$ i	0 47	+ 1
Owase	A 1			103		5. S.S.	
Kyoto	1.6	40	0 2	29	- 1	0 49	- 2
Toyooka	1.ž	9		lk	Ō	0 52	- 2
Vamarama	1.9	57		37	+ 3	1 9	Sr
Kameyama	2.3	299		36	$^{+3}_{-4}$	1 4	- 5
Hamada	2.4	49	100 Million 100	<b>16</b>	$+ \hat{5}$	1 16	+ 4
Gihu	A 12	10	V 1				1111111-00
Magaza	2.4	56	0 4	13	+ 2	1 17	+ 5
Nagoya Shizuoka	3.4	68	A second se Second second sec second second sec	2	Pr	1 56	Sr
Hukuoka	3.4	269		8	+ 3	1 39	+ 2
	3.6	36		5	P*	2 0	Sg
Toyama	3.9	63	<b>i</b> 1	8	$\mathbf{\hat{P}_{g}}$	- <u>(E.</u> 8	
Hunatu	5.5	03			~ 8		
Kagosima	4.0	238	1 2	22	Pg	2 6	S*
Wazima	$\hat{4} \cdot \hat{0}$	26		58	_F	i <del>terri</del> nen	
	4·1	45		23	P*	2 19	Sg
Nagano	4.7	64		29	Pg		- <u></u>
Tokyo	$\frac{4}{5}.2$	56		35	$\bar{\mathbf{P}}^*$		
Utunomiya Shaata Dam	77.5	49	the second se	26	+27		
Shasta Dam	85.5	49		57	-44		
Pierce Ferry	00.0	10	U II U				

March 19d. 18h. 19m. 30s. Epicentre 31°.6N. 130°.4E. Depth of focus 0.025.

Intensity VI at Kitakata (Miyazaki Pref.); V at Kagosima, Miyaki, Simidu; IV at Kôti, Tokusima; II-III at Kumamoto, Wakayama, Uwazima, Kashiwara.

Epicentre 31°.0N. 131°.2E. Depth 60km. Macroseismic radius >300km.

Seismo. Bull. Cent. Met. Obs., Japan, for 1949. Tokyo, 1950, pp. 9, 10, with macroseismic chart.

	A == - ·5530, ]	B = + ·	6498, C	$= + \cdot 5214$		-9;	h = +1;		
	D = +.762, E	$= + \cdot 6$	548;	G = -33	8, $H = +$	•397, К	=853.		
	Δ	Az.	Р.	0-C.	_s.	0 – C.	Supp	).	L. m.
	0	•	m. s.	s.	m. s.	8.	m. s.		
Kagosima	0.1		0 19	- 6	1.000 - 0.000				
Mirrogolri	0.9	70	0 24 a	- 4	0 46	- 5	the second se	<del></del>	5.078
Miyazaki	1.2	12	0 29a	- 2	0 52	- 3			-
Kumamoto	$1 \cdot 2$	338	0 33 .		0 55	0	<del></del>	and the second sec	2 <del>.000</del> 2
Nagasaki	1.6				1 Š	- 3			
Hukuoka	2.0	0	0 36 a	- 4		189 8			
17 641	3.3	54	0 50 a	- 3	1 28	- 7			
Kôti		23	0 54	3	1 30	-11			-
Hamada	3.6	20	CONTRACT CONTRACTOR AND A		1 56	-10			
Sumoto	4.7	53	1 7a		2 2	9			-
Siomisaki	4.9	67	1 6	- 8	$     \begin{array}{ccc}       2 & 2 \\       2 & 8     \end{array} $				-
Kobe	5.1	51	1 13a	- 3	2 0	2000 - MC	100000	11111	(included)
	2.9	54	1 16	- 3	2 16	- 4			
Osaka	5.3	54	1 16	- 4	2 18	- 4			
Owase	5.4	62		<b>a</b>	2 24	$+ \hat{2}$			-
Toyooka	5.4	42	1 18	- 2	-224	- 3	+	_	-
Kyoto	5.6	51	1 22	- 1	0 01	· ·			
Kameyama	6.0	$     \frac{42}{51}     56 $	1 28	U	2 31	- 5			
	0.1	50	1 38	+ 9	2 45	+ 6			
Hikone	6.1	52		+ 9	2 49	+ ĭ			
Gihu	6·5 6·5	53 55	1 35	8	2 48	â			
Nagoya	6.2	22	1 35	. 10		+ 5			
Omaesaki	$7 \cdot 2$	64	1 57	+13	3 10				
Shizuoka	7 · 2 7 · 5	61	1 52	+ 4	3 22	+10			

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

			3		8 E					
1949					185					
Toyama Wazima Hunatu Nagano Yokohama		∆ 7.6 7.9 8.0 8.2 8.6	Az. 46 41 59 50 61	$\begin{array}{cccc} \mathbf{P.} \\ \mathbf{m. \ s.} \\ 1 & 55 \\ 2 & 4 \\ 2 & 0 \\ 2 & 2 \\ 2 & 13 \end{array}$	0-C. s. + 6 + 11 + 6 + 5 + 11	$\begin{array}{c} {\rm S.}\\ {\rm m.~s.}\\ {\rm 3~18}\\ {\rm 3~15}\\ {\rm 3~26}\\ {\rm 3~32}\\ {\rm 3~48}\end{array}$	0 - C. s. + 4 - 6 + 3 + 4 + 11	m. s.	эр. — —	L. m.
Tokyo Kakioka Hukusima Sendai Mizusawa		8.8 9.3 10.3 10.9 11.5	60 58 51 50 46	$     \begin{array}{ccccccccccccccccccccccccccccccccc$	+ 11 + 5 - 1 0 + 2	$   \begin{array}{ccccccccccccccccccccccccccccccccccc$	+12 + 7 + 10 + 5 + 13			
Vladivostok Morioka Irkutsk Calcutta Almata	Е,	${}^{11\cdot 6}_{11\cdot 9}_{28\cdot 1}_{38\cdot 3}_{43\cdot 4}$	$\begin{array}{r} & 6 \\ 44 \\ 324 \\ 267 \\ 302 \end{array}$	i 2 44 2 45 5 36 e 7 2 e 7 45	$+ 3 \\ 0 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0$	e 5 9 5 3 i 15 46	$+\frac{22}{+9}$			
Batavia Frunse New Delhi Murgab Andijan	х.	$43 \cdot 8 \\ 45 \cdot 1 \\ 45 \cdot 8 \\ 46 \cdot 2 \\ 47 \cdot 0$	$215 \\ 301 \\ 281 \\ 295 \\ 298 \\$	i746 e80 e82 e89 e813	-+212+221	i 14 5 i 15 31 14 42	+ 1 + 59 + 4	e 17_36	$\mathbf{s}$	
Tchimkent Tashkent Obi-garm Stalinabad Samarkand		$48 \cdot 8 \\ 49 \cdot 2 \\ 49 \cdot 4 \\ 50 \cdot 1 \\ 51 \cdot 2$	$301 \\ 300 \\ 296 \\ 296 \\ 298$	i 8 30 8 30 i 8 33 i 8 36 e 8 46	$+ 3 \\ - 1 \\ + 1 \\ - 1 \\ 0$	e 15 28 e 15 34	ss + 5 + 1	$     \begin{array}{r}                                     $	pP pP pP	
Poona Bombay Sverdlovsk College Grozny	Е.	$52 \cdot 3 \\ 53 \cdot 1 \\ 53 \cdot 3 \\ 58 \cdot 4 \\ 65 \cdot 5$	$269 \\ 270 \\ 320 \\ 30 \\ 307 \\$	i 8 55 i 8 59 i 8 51 i 9 38 e 10 26	$^{+1}_{-10}$ +1 +1	i 17 6 e 16 7 i 16 20? e 17 30 e 18 59?	+ 6	i 9 52 e 9 54 i 9 56 i 10 14	pP pP pP pP	22.5 e 26.8
Moscow Tiflis Piatigorsk Riverview Sotchi		$66.0 \\ 66.8 \\ 67.1 \\ 68.0 \\ 69.5$	$322 \\ 306 \\ 309 \\ 162 \\ 310$	$\begin{array}{cccc} 10 & 27 \\ i & 10 & 33 \\ e & 10 & 36 \\ e & 10 & 30 \\ e & 10 & 47 \end{array}$	-100+1-10-3	$     \begin{array}{cccc}             19 & 2 \\             i 19 & 11 \\             i 19 & 30 \\             \underline{} & 30       \end{array} $	+ 3 + 3 + 7 + 7	11 21 11 27 i 20 33	pP pP sS	e 29·5
Melbourne Yalta Upsala Scoresby Sund Ksara	E.	$70.4 \\ 72.7 \\ 73.5 \\ 76.3 \\ 76.7 \\ 76.7 \\ $	$168 \\ 312 \\ 331 \\ 351 \\ 301$	$e \begin{array}{c} 11 & 7 \\ 11 & 10 \\ 11 & 10 \\ 11 & 31 \end{array}$	$-\frac{2}{3}$	$\begin{array}{c} \mathbf{i} \ 19 \ 57 \\ \mathbf{e} \ 20 \ 22 \\ 21 \ 2 \end{array}$	$+ \frac{6}{-4}$ + $\frac{4}{-6}$	e 14 20 i 12 28	PP pP	e 42.5
Istanbul Copenhagen Potsdam Ogyalla Collmberg	z.	$77.6 \\ 78.3 \\ 80.1 \\ 80.3 \\ 80.8$	$311 \\ 330 \\ 327 \\ 321 \\ 325$	$ \begin{array}{r} 11 & 36 \\ i & 11 & 40 \\ i & 11 & 50 \\ \hline i & 11 & 54 \\ \end{array} $	$+\frac{0}{0}$	21 22 e 21 56 e 21 49	$+\frac{4}{17}$ + $\frac{17}{5}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	PP pP pP SS pP	e 45.5
Prague Shasta Dam Jena Hungry Horse Cheb		$80.9 \\ 81.6 \\ 81.7 \\ 81.8 \\ 81.9 \\ 81.9$	$324 \\ 47 \\ 325 \\ 38 \\ 325 \\ 325 \\ \end{array}$	$i 11 59 \\ e 11 59 \\ i 12 0 \\ - 0$	+1 + 1 + 1 + 1 + 1	$\begin{array}{c} e \ 21 \ 47 \\ e \ 22 \ 0 \\ e \ 22 \ 3 \\ e \ 22 \ 4 \end{array}$	+2 +7 +9 +9	e 12 37 e 12 2 e 12 39 e 23 13	pP P P P P P P P P P P P P P P P P P P	e 38·5
Helwan Mineral De Bilt Reno Triest	z. z.	$81 \cdot 9 \\ 82 \cdot 3 \\ 83 \cdot 9 \\ 83 \cdot 9 \\ 84 \cdot 1$	$300 \\ 47 \\ 329 \\ 47 \\ 321$	i 11 59 i 12 2 i 12 9a i 12 12k i 12 14	$+ 1 \\ + 1 \\ + 2 \\ + 3$	21 56 i 22 18 i 22 16	$+ \frac{1}{3}$ $- \frac{1}{1}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	pP pP pP pP pP pP	i 41.8 e 40.5
Stuttgart Strasbourg Zürich Salo Basle		$84 \cdot 3 \\ 85 \cdot 2 \\ 85 \cdot 6 \\ 85 \cdot 8 \\ 86 \cdot 0$	$325 \\ 326 \\ 325 \\ 323 \\ 325$	i 12 12 i 12 16a e 12 20a e 12 17 e 12 20	$+ \begin{array}{c} 0\\ 0\\ 0\\ 2\\ 2\\ 0\\ 0 \end{array}$	e 22 17 e 22 34 e 22 27 e 22 40 e 22 34	$ \begin{array}{r} - & 2 \\ + & 6 \\ + & 5 \\ + & 6 \\ - & 2 \end{array} $	$\begin{array}{c} e & 12 & 48 \\ e & 12 & 59 \\ e & 13 & 4 \\ e & 12 & 57 \\ \end{array}$	pP pP pP	e 44.5 38.5

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1949					136					(#) (#)
		Δ	Az.	. P.	0 – C.	State of the second	о-с.		pp.	L.
Tinemaha Kew	z.	86·3 86·6	$^{49}_{332}$	m. s. i 12 23 e 12 22	$^{s.}_{-1}$	m. s. e 22 42	s. + 1	m. s. i 13 2 e 23 46	$_{\mathbf{PS}}^{\mathbf{pP}}$	m. e 38.5
Paris Rathfarnham Pasadena	Castle	$   87 \cdot 4 \\   87 \cdot 5 \\   88 \cdot 1 $	$328 \\ 336 \\ 51$	i 12 27 e 12 28 i 12 31	$\begin{array}{c} & 0 \\ + & 1 \\ + & 1 \end{array}$	e 22 573 22 37	$^{+8}_{-13}$	i 13 9 e 13 7	pP pP	e 51.5
Riverside Overton Boulder City Clermont-Ferr Pierce Ferry	z. z. and	88.7 89.0 89.2 89.4 89.6	$51 \\ 47 \\ 48 \\ 326 \\ 47 \\ 47$	e 12 35 i 12 37 e 12 37 i 12 37 i 12 37 e 12 37	+ 23 + 32 + 10	24 28	sS	e 13 14 i 13 16 e 13 16 e 16 13 i 13 18	pP pP pP PP pP pP	36·5
Tucson Granada Bogota La Paz	z.	$94.1 \\ 99.2 \\ 137.1 \\ 157.4$	$     \begin{array}{r}       48 \\       324 \\       37 \\       52     \end{array} $	i 13 0 i 19 6 19 38	+ 2 [+ 6] [+ 5]	31 0	ss	i 13 39	р <u>Р</u> 	53 <u>·2</u>
Upsala eP and 3 Ksara PP Copenhage Potsdam i Collmberg Hungry H Helwan P	i iN = PP = 1 $epP^*$ $i epP^*$ $i S_cS$ 9m.5( $pP^* =$ $PP^*E$ 7m.0s =14m n SS = 2 = 12 eE = 1 orse i PZ = 1	18m.11i 0m.24s =9m.15i =9m.15i =18m.3i s., esSi $11m.73.i21m.38i=16m.3i.29s.i=22m.3im.51s.s11m.57s=30m.5i5m.12s.i$	s., iS s. 4s., i 29s. = 19n , iSeS 3., eS 18s., e 0s., 2 and 3. and 3. an	SSN = 21n PP = 9m.5 n.7s. = 20m.13 SE ? = 23n SE = 20m 7m.35s. 14m.59s. 12m.8s.	5s. s. 1.40s., eS .46s., and esSE? =	23m.15s.	eE =24	m.30s.?, e		5045c
De Bilt iZ Triest iPS Stuttgart Strasbourg	=16m =23m ePS = 2	.30s. 23m.13s	=231 s., eSs	S = 28m.08		m.6s.				

Clermont-Ferrans e = 15m.14s., e = 25m.26s. and 30m.28s. Tucson e = 16m.19s. Long waves were also recorded at Almeria, Alicante, and Bergen.

Paris i =12m.32s., isPP =16m.53s., ePPS =25m.1s.

Zürich ePP = 15m.27s.

- March 19d. Readings also at 1h. (near La Paz), 2h. (Zürich), 3h. (Boulder City, Pierce Ferry, and near Balboa Heights), 4h. (near Klyuchi), 6h. (College), 8h. (Hungry Horse and near College), 11h. (Tucson, Overton, Pierce Ferry, Shasta Dam, near Kobe, and near Istanbul), 13h. (Pasadena, Tucson, Boulder City, Overton, Pierce Ferry, Shasta Dam, and Hungry Horse), 14h. (Istanbul, near Apia, near Obigarm and Stalinabad), 15h. (Pasadena, Tinemaha, Tucson, Boulder City, Overton (2), Pierce Ferry, Hungry Horse, College, Paris, and Stuttgart), 17h. (Hungry Horse, Calcutta and near College), 23h. (Hungry Horse and Overton).
- March 20d. Readings at 1h. (near Andijan, Murgab, Obi-garm, and Stalinabad), 2h. (Samarkand, Tashkent, and Tchimkent), 4h. (near Klyuchi), 5h. (Samarkand, near Obi-garm, Stalinabad, and near College), 6h. (Ksara, Sverdlovsk, Moscow, Obi-garm, Stalinabad, College, and Hungry Horse), 8h. (near Samarkand, Tashkent, Tchimkent, Obigarm, Stalinabad, and near Granada), 10h. (Tinemaha, Frunse, and near Andijan), 11h. (La Paz, College, Zi-ka-wei, and Nanking), 12h. (Hungry Horse, De Bilt, and Paris), 13h. (College and Hungry Horse), 14h. (College and Hungry Horse), 16h. (Overton, and near College), 17h. (Hungry Horse and near Mizusawa), 18h. (Hungry Horse, Overton, Istanbul, Stuttgart, and near Messina), 19h. (Andijan, Frunse, Murgab, Obi-garm, Stalinabad, Tashkent, Tchimkent, near Almata, Weston, College, Hungry Horse (2), Shasta Dam (2), Boulder City, Pierce Ferry (2), Overton, Tucson (2), near Haiwee, Tinemaha, Pasadena, and Riverside; three separate shocks), 20h. (College), 21h. (Andijan, Samarkand, near Obi-garm and Stalinabad), 23h. (Overton, Pierce Ferry, Shasta Dam, and Hungry Horse).

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

# 1949

# 137

March 21d. Readings at 0h. (Hungry Horse), 2h. (Overton and near Istanbul), 3h. (near College), 5h. (near Boulder City and Pierce Ferry), 8h. (Fresno, Overton, Pierce Ferry, Shasta Dam, Hungry Horse, Branner, Mineral, near Lick and Reno), 10h. (Tucson, Boulder City, Overton, Pierce Ferry (2), and Hungry Horse), 11h. (Pasa-dena, Riverside, Tinemaha, Tucson, Overton, Pierce Ferry, Shasta Dam, Hungry Horse, Victoria, and College (2) ), 12h. (Istanbul and Sofia), 14h. (College), 15h. (Copiapo, La Paz, La Plata, Santa Lucia, Mount Wilson, Riverside, Tinemaha, Tucson, Boulder City, Overton, Pierce Ferry, and Hungry Horse), 17h. (Pasadena, Tinemaha, Tucson, Boulder City, Overton, Pierce Ferry, Hungry Horse (2), near

Tacubaya and Puebla), 19h. (Pierce Ferry), 20h. (near Almeria), 21h. (near Stalinabad and near Malaga), 22h. (College, near Obi-garm and Stalinabad), 23h. (Frunse and near Almata).

March 22d. 2h. 10m. 10s. Epicentre 38°.8N. 25°.3E. (as on 1949, Jan. 14d.).

		$\Delta$	Az.	Р.	0 – C.	s.	0 – C.	Sup	p.	$\mathbf{L}.$
		•		m. s.	s.	m. s.	s.	m. s.	*	m.
Sofia		4.2	339	e1 7	0	e 2 9	S*	i 2 16	Sg	
Bucharest	N.	5.6	6	e 1 45	P•	i 3 10	Sg	e 1 52	Pg	
Helwan	z.	10.3	149			e4 7	-23	-		e 5·9
Stuttgart		15.3	316	e 3 36	- 3					e 8·3
Strasbourg		16.0	314	i 3 54	+ 6	e 5 1	3	i4 3	$\mathbf{PP}$	e 7·8
Paris		19.2	309	i4 26	- 2	e8 3	+4	eren <del>de G</del> anere	-22-200	e 10·8
Tamanrasset	z.	23.2	236	e56	- 3			i 5 25k	$\mathbf{PP}$	

Additional reading :---

Sofia i = 2m.22s.

Long waves were also recorded at several other European stations.

#### March 22d. 18h. 44m. 0s. Epicentre 44°.4N. 6°.4E.

Intensity VI-VII at Le Lauzet; VI at Ubaye and St. Vincent-les-Forts; V at Le Vernet and Méolans ; IV at Barcelonnette, Pontis, and Savines ; III at Ebrun. Epicentre as adopted, Macroseismic Area, 1800sq.km.

#### J. P. Rothé and N. Dechevoy.

La Séismicité en France de 1940 a 1950. Annales de l'Institut de Physique du Globe de Strasbourg.3e partie Géophysique. New Series T. VII. Le Puy, 1954, p. 55, Macroseismic Chart, p. 54.

 $A = +.7123, B = +.0799, C = +.6973; \delta = -2; h = -3;$  $D = + \cdot 111$ ,  $E = - \cdot 994$ ;  $G = + \cdot 693$ ,  $H = + \cdot 078$ ,  $K = - \cdot 717$ . Supp. 0 - C.S. . O - C. L. **P**. Az. Δ 8. m. s. m. s. m. s. m. s. 0 ο. Se e 1 41  $3 \cdot 1$  $\mathbf{P}_{\mathbf{g}}$ e 1 11 68 Salo  $\mathbf{P}_{\mathbf{g}}$ Sg 3.2 15e 1 56 e 1 - 5 Basle 2  $\tilde{\mathbf{P}}^*$  $\mathbf{P}^*$ 3.3 42 e 1 46 Sg e 1 Chur _ Pg  $3 \cdot 3$ 27 e 1 51 Sg e 0 59 6 e 1 Zürich  $\mathbf{P}_{\mathbf{g}}$ e 2.7 Pr Sg e 1 29 4.3 12 e 1 24 e 2 - 9 Strasbourg Sr. e 1 26 P*  $\mathbf{P}_{\mathbf{F}}$ e 1 287 e 2 39  $4 \cdot 8$  $\mathbf{23}$ Stuttgart 3 i 1 31 e 1 21 e 2 19 3305.2 -0 Paris 3 e 0 47 e0 8 5.4 74 Triest Additional readings :--Strasbourg  $e = 1m.41s., eS = 2m.13s., eS_g = 2m.25s.$ Stuttgart e = 2m.21s. and 2m.46s.,  $eS_{g}? = 2m.53s$ . Paris  $eS? = 2m.41s., eS_g? = 2m.57s.$ 

Long waves were recorded at Collmberg and Jena.

March 22d. Readings also at (Hungry Horse, Overton, Pierce Ferry, College, and near La Paz), 1h. (Overton, Pierce Ferry, Shasta Dam, Hungry Horse, near Obi-garm and Stalinabad), 2h. (Mizusawa, Batavia, Hungry Horse, Boulder City, near Obigarm and Stalinabad), 4h. (La Paz), 12h. (Apia, Pasadena, Tinemaha, College, Boulder City, Overton, Pierce Ferry, Shasta Dam, and Hungry Horse), 14h. (Pretoria), 16h. (near Alicante), 17h. (Hungry Horse), 18h. (Almata, Frunse, Murgab, Obi-garm, Stalinabad, Sverdlovsk, and Ksara), 19h. (Pasadena, Riverside, Tinemaha, Tucson, Boulder City (2), Overton, Pierce Ferry (2), Shasta Dam, Hungry Horse, Logan, La Paz (3), and near Malaga), 20h. (Pasadena, Riverside, Tinemaha, Tucson, Boulder City, Overton, Pierce Ferry, Mineral, Reno, Shasta Dam, Hungry Horse, Logan, Ottawa, Weston, and Tamanrasset), 22h. (Pretoria, and near Almata).

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

# 1949

### 138

х.

March 23d.	6h. 36r	n. 33s.	Epi	centre 2°.8	8S. 143°	·1E.				
		and the second	and the second	·5997, C=	the second se	and the second se		h = +7; $L =999.$		
		$\triangle$	Az.		0 - C.		0 - C.	Su	pp.	L. m.
Brisbane Riverview Batavia Auckland Apia	N.	$26.3 \\ 31.8 \\ 36.3 \\ 44.7 \\ 45.9$	$\hat{\overset{\circ}{160}}_{167}^{167}_{264}_{143}_{107}$	$   \begin{array}{r}     m. & s. \\     i & 5 & 36 \\     i & 6 & 28 a \\     i & 6 & 28 a \\     i & 7 & 7 \\     \hline     8 & 30   \end{array} $	$+\frac{3}{0}$	m. s. i 10 10 e 11 35 i 12 52 e 19 27?		m. s. i 6 15	PP 	i 13 · 1 e 15 · 9 e 25 · 6
Vladivostok Bombay Frunse Andijan Obi-garm	Е.	$46.8 \\ 72.3 \\ 76.3 \\ 77.4 \\ 78.9$	$349 \\ 291 \\ 315 \\ 313 \\ 311$	$egin{array}{cccc} { m e} & 8 & 31 \\ { m e} & 11 & 32 \\ { m e} & 12 & 1 \\ { m e} & 11 & 59 \\ { m 12} & 4 \end{array}$	-23 + 39 + 13	$ \begin{array}{r} i \ 15 \ 23 \\ e \ 20 \ 52 \\ e \ 21 \ 54 \\ \end{array} $	-10 - 10 - 5	e 10 31	PP 	
Stalinabad Tchimkent College Sverdlovsk Shasta Dam		79.5 79.7 83.8 88.2 95.2	$311 \\ 314 \\ 24 \\ 327 \\ 50$	i 12 9 e 12 14 i 12 29 e 13 25	$-\frac{1}{3}$ - 2	$\begin{array}{r} 22 & 13 \\ - \\ 2\overline{3} & 34 \end{array}$	$+ \frac{2}{-4}$	e 1 <u>5</u> 43	PP	
Grozny Tinemaha Pasadena Leninakan Riverside	Z. Z. Z.	$97.3 \\ 98.6 \\ 98.8 \\ 98.8 \\ 99.5 \\$	$313 \\ 54 \\ 56 \\ 311 \\ 56$	e 19 37 e 13 57 e 13 42 e 17 56 e 13 45	PPP +15 - 1 PP - 1			e 19_35	PPP	
Hungry Hor Ksara Stuttgart Kew Tamanrasset La Paz	z. z.	$100.6 \\ 105.8 \\ 119.6 \\ 121.7 \\ 134.4 \\ 143.7$	$\begin{array}{r} 41 \\ 304 \\ 327 \\ 333 \\ 301 \\ 123 \end{array}$	e 13 48 e 18 42 e 18 51 e 19 20 19 56k	$\begin{bmatrix} - & 3 \\ PP \\ [-1] \\ - & 1 \end{bmatrix} \\ \begin{bmatrix} 0 \\ +19 \end{bmatrix}$	e 28 38 e 42 0? e 22 55	PPS SSS PKS	$= \frac{1}{60} \frac{27?}{49}$	Q PP 	e 67 <u>·4</u>

Additional readings :---

Brisbane iPN = 5m.39s., eSN = 10m.13s.Riverview eSN = 11m.40s., iE = 11m.56s. and 14m.45s.Vladivostok iPS = 15m.52s.?, SS = 19m.4s.?College ePPP = 17m.41s.Hungry Horse e =17m.13s. and 22m.57s. Long waves were also recorded at Wellington, Tucson, Paris, and De Bilt.

March 23d. 9h. 30m. 6s. Epicentre 19°.1N. 67°.1W. (as on 1944, Aug. 9d.).

	$\mathbf{A} = + \cdot \mathbf{D} = - \cdot \mathbf{D}$	000000000000000000000000000000000000000							-1; ·300, F	h = +5; $C = -946.$		
		Δ	Az.	1	2.	0-	c.	s.	0-C.	Su	pp.	L.
		0	0	m.	s.	S		m. s.	s.	m. s.		m.
San Juan		1.2	128	i 0	48	F	Pg .	i14	Sg			e 1·2
Bogota	Z.	15.9	206	i 3		+	4	i 6 37	- 7			~ 연구구
Philadelphia		21.9	344	e 5		+-	3	e 9 3	+ 9		-	e 11.0
Fordham		22.4	348	e 5		+++++++++++++++++++++++++++++++++++++++	3	i9 8	+ 4			1,622 mm 1 m 1 <del>10 m</del> 1
Weston		23.5	353	i 5	the second se	÷	2	i 9 18	- 5	i 5 43	$\mathbf{PP}$	+
Harvard		23.6	353	е 5	17	+	4	e 9 29	+ 4			e 15·9
Ottawa	Z.	27.2	347	e 5	the second se	++	4	e 11 28	+63			
St. Louis		28.0	319	i 5	50	1.11	5	e 10 32	- 6			e 13.5
Tueson		41.3	298	e 7	47	-	2	and a second second		++		
Logan		44.1	312	e 8	7		5		••••••			
Pierce Ferry		44.4	303	i 8	13	-	1			÷		
Overton	Z.	44.9	304	i 8	17	-	1		******			
Boulder City		45.1	303	i 8	18		<b>2</b>					
Riverside	Z.	46.9	300	i 8	33		1	1000 C	2010			
Pasadena	z.	47.6	300	i 8	39		0			i 8 54	$\mathbf{pP}$	
Hungry Horse	D	47.7	320	i 8	39	-	1	11000				
Tinemaha	z.	48.0	303	i 8	41		2	- 10- R		i 8 53	pP	
College		69.0	334	е 11	10	+	1	<u>144</u>	—	e 13 49	$_{\mathbf{PP}}^{\mathbf{pP}}$	

Harvard i = 5m.30s., 9m.37s., and 9m.46s.St. Louis e = 11m.0s.

Long waves were also recorded at Bermuda and La Paz.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

# 1949

139

March 23d. Readings also at 0h. (near Andijan, Frunse, Murgab, Obi-garm, Samarkand, Stalinabad, Tashkent, and Tchimkent), 1h. (Andijan and near Stalinabad), 2h. (Manzanillo, Tacubaya, Tucson, Zagreb, Florence, Bologna, Salo, Prato, Stuttgart, near Rome and Triest), 3h. (Collmberg), 4h. (Tinemaha, Shasta Dam (2), and Hungry Horse (2)), 5h. (Helwan, Ksara, and Perth), 7h. (near Mizusawa), 9h. (Pierce Ferry, Hungry Horse, and College), 10h. (Pierce Ferry, Shasta Dam, Hungry Horse, near Sofia and near Batavia), 12h. (Malaga), 13h. (New Delhi), 14h. (Hungry Horse and Poona), 18h. (Copenhagen, near Algiers and near Tucson), 22h. (Ksara, Pretoria, La Paz, and near Hungry Horse), 23h. (College (2) and De Bilt).

승규는 전화가 가지 않는 것이 있는 것이 같이 가지 않는 것이 같이 많이 많이 많이 많이 없다.

March 24d. 2h. 46m. 45s. Epicentre 46°.2N. 7°.9E.

Intensity V in the Mischabel group and the Matter Valley ; IV-V in the Rhone Valley ; and IV in the Saas Valley. Macroseismic radius 25km. Epicentre as adopted.

E. Wanner.

Jahresbericht des Erdbebendienstes der Schweiz im Jähre, 1949, Zürich, 1950, p. 2, macroseismic chart, fig. 1.

 $A = + .6880, B = + .0955, C = + .7194; \delta = 0; h = -4.$ 

Δ	Az.	P. m. s.	O - C.	в. m. s.	0 – C. s.	m. s.	р.	ь. m.
1.0	321	e 0 22	+ 1	i 0 35	- 1		_	
1.4	351	e 0 27	ô	e 0 46	õ		$\equiv$	
2.4	358	e 0 42 e 0 49 e 0 44?	$P_g^{P_g}$	$e 1 22 \\ e 1 17$	Sg - 2	e 0 59	$\mathbf{P}_{\mathbf{g}}$	e 1.6
	$1.3 \\ 1.4 \\ 1.9$	$\begin{array}{cccc} & & & & & & & & & & & & & & & & & $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

March 24d. 19h. 26m. 17s. Epicentre 31°.8S. 14°.0W. Given by Strasbourg.

	Δ	Az.	Р.	0 – C.	s.	0-C.	Sup	p.	L.
	~	0	m. s.	s.	m. s.	s.	m. s.		m.
Pretoria Z.	37.3	91	i7 13?	- 3		_	÷		
La Paz	51.2	275	9 9	+ 2			-		24.2
Famanrasset Z.	57.4	22	i 9 50k	3 - 3					
Bogota	67.6	292	e 11 2	+ 1			( <del>) () ()</del>		33.7
Helwan Z.	74.9	40	e 11 47	+ 3	e 22 8	$\mathbf{PS}$			-
Rome	77.3	20	e 12 1	+ 3	e 21 45	- 3	e 15 5	$\mathbf{PP}$	
Clermont-Ferrand	78.7	13	i 12 11	$^{+3}_{+5}$					41.7
Zsara	80.4	41	e 12 13	- 2	e 22 59	$\mathbf{PS}$	77		
Friest N.	81.1	19	e 11 59	-19	a second h			+	-
Basle	81.3	<b>15</b>	e 12 19	- 1				1000	
Zürich	81.4	15	e 12 18	- 2					
Paris	81.6	11	e 12 19	- 2			i 15 29?	$\mathbf{PP}$	e 43·7
Strasbourg	82.4	15	e 12 19	- 6	· · · · · ·				
stutteart.	82.8	16	e 12 24	- 3					e 40·7
Jena N.	85.4	17	e 12 40	0				3777	-
Collmberg	86.1	18	e 12 43	- 1		-			
Pierce Ferry	115.3	298	e 19 10	$\mathbf{PP}$	-	10000			
Hungry Horse	119.3	311	e 18 55	[+ 4]					
Shasta Dam	123.0	301	e 19 2	[+ 3]					

Additional readings :---Tamanrasset i =9m.58s.k and 10m.15s.a. Helwan eZ =12m.0s. and 22m.57s. Paris i =12m.26s. Strasbourg e =12m.29s. and 12m.46s. Stuttgart eZ =12m.32s. and 12m.36s. Jena eN =12m.44s. and 13m.6s. Collmberg eEZ =12m.48s. Long waves were also recorded at De Bilt and Kew.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

# 1949

# 140

March 24d. 20h. 56m. 53s. Epicentre 41°·3N. 126°·0W. (given by Bulletin of Seismological stations of Northern California).

Ukiah Mineral		$3.0 \\ 3.5$			$ \frac{8}{-1} \frac{1}{2} $	m. s. i 0 59 i 1 43	$\mathbf{P}_{g}$	m. s.	_	m. i 1·2
Berkeley San Francisco Branner		$4.5 \\ 4.5 \\ 4.9$	$139 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 $	l i1 14	$^{+1}_{-60}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$^+ 2 + 4 + 5$	i 1 33	$\stackrel{\mathbf{P}_{g}}{=}$	
Santa Clara Reno Lick Fresno Seattle Victoria		$5.0 \\ 5.1 \\ 5.2 \\ 6.6 \\ 6.9 \\ 7.4$	$140\\108\\138\\131\\22\\13$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+ 20 + 12 + 23 + 23 + 23 + 20 + 20 + 20 + 20 + 2	$egin{array}{cccc} e & 2 & 34 \\ i & 2 & 27 \\ i & 2 & 27 \\ i & 3 & 15 \\ e & 2 & 48 \\ & 3 & 20 \end{array}$	${}^{S^{\bullet}}_{+}{}^{7}_{5^{\bullet}}_{-}{}^{5^{\bullet}}_{-}{}^{17}_{+}{}^{2}$	$i 1 36 \\ i 1 39 \\ i 1 51 \\ 1 2 23$	Pr Pr	e 2.9  e 3.8 i 4.0
Tinemaha Haiwee Santa Barbara Pasadena Riverside	z. z. z.	$7 \cdot 4 \\ 8 \cdot 1 \\ 8 \cdot 4 \\ 9 \cdot 5 \\ 10 \cdot 0$	$123 \\ 127 \\ 142 \\ 137 \\ 134$	e 2 7 e 2 14 i 2 22	55822 ++++++++++++++++++++++++++++++++++	i <u>3</u> 39 i <u>4</u> 15	8* + 5			
Boulder City Pierce Ferry Salt Lake City Butte Palomar	N. N.	$10.2 \\ 10.7 \\ 10.7 \\ 10.8 \\ 10.8 \\ 10.8$	$     \begin{array}{r}       118 \\       115 \\       88 \\       60 \\       135     \end{array} $	i 2 41 e 2 22 e 2 32	$^{+3}_{+3}_{-16}_{-7}_{+1}$	$\begin{array}{c} \mathbf{i} \ 4 \ \ 20 \\ \mathbf{e} \ 4 \ \ 20 \\ \mathbf{e} \ 4 \ \ 42 \\ 42 \end{array}$	-7 - 19 = 0			e 4.5 e 4.8 i 5.3
Hungry Horse Bozeman Tucson Rapid City Saskatoon	Е.	$11.0 \\ 11.7 \\ 15.1 \\ 17.0 \\ 17.1$	$46 \\ 63 \\ 122 \\ 73 \\ 45$	e 2 45 e 3 40 i 3 55	$-10 \\ - 6 \\ + 4 \\ - 6 \\ - 4$	$egin{array}{cccc} e & 4 & 42 \\ i & 5 & 4 \\ e & 6 & 48 \\ e & 6 & 19 \\ & 7 & 14 \end{array}$	$^{-5}_{0}$ +23 -51 +2	$i \frac{12}{4} 12$	PP PP	e 5.4 i 5.9 e 7.8 e 7.0 8.8
Sitka Chihuahua Lubbock Lincoln College	Е,	$17.3 \\ 20.6 \\ 20.6 \\ 22.1 \\ 26.7$	$344\\122\\101\\81\\340$		$^{-11}_{+9}_{+2}_{-3}_{-4}$	i 7 12 e 8 56 (e 9 12) e 10 24	-4 ss +14 +7	e 9 36		$i 7 \cdot 9$ e 12 \cdot 5 e 9 \cdot 2 e 11 \cdot 7
Little Rock Chicago Manzanillo Tacubaya Mobile		$27 \cdot 2 \\ 28 \cdot 6 \\ 28 \cdot 9 \\ 31 \cdot 6 \\ 32 \cdot 2$	94 75 134 125 97	i 5 50 e 5 59 e 8 37 e 6 43 6 31	$^+$ 3_1 $^+$ $^?_1$ $^+$ 1_1	i 10 37 e 10 43 e 12 55 11 58	$^{+12}_{-5}_{-5}_{-5}_{+13}$	$e \overline{6} \overline{49}$ $e 1\overline{4} 0$	$\frac{\overline{PP}}{\overline{SSS}}$	e 13.8 e 17.8 16.0
Puebla Cleveland Honolulu Columbia Ottawa		$32 \cdot 5 \\ 33 \cdot 1 \\ 33 \cdot 4 \\ 36 \cdot 0 \\ 36 \cdot 3$	${ \begin{array}{c} 124 \\ 75 \\ 243 \\ 87 \\ 66 \end{array} }$	$     \begin{array}{r}       e & 7 & 43 \\       e & 6 & 36 \\       \hline       7 & 3k     \end{array} $	PP - 4 - 4	e 13 56 e 11 53 e 11 55 e 12 43 12 47	SS - 6 - 8 - 1 - 1	$e \frac{7}{8} \frac{41}{22}$	PP 	e 18.5 e 14.6 e 14.0 e 15.0 17.6
Philadelphia Shawinigan Falls City College N.Y. Fordham Seven Falls	N. E.	$38.1 \\ 38.1 \\ 38.7 \\ 38.8 \\ 39.3 \\ 39.3 \\$	$75 \\ 64 \\ 73 \\ 73 \\ 63$	e 7 17 e 7 18 e 7 26 i 7 27 7 28	$   \begin{array}{c}     - 5 \\     - 4 \\     - 1 \\     - 4   \end{array} $	$\begin{array}{cccc} e & 13 & 4 \\ e & 13 & 26 \\ i & 13 & 33 \\ 13 & 37 \end{array}$	$-12 \\ + 1 \\ + 7 \\ + 3$		$\frac{PP}{PP}$	e 16.0 19.1 e 16.4 19.9 21.1
Harvard Weston Halifax Bermuda Ivigtut		$39 \cdot 9 \\ 40 \cdot 2 \\ 44 \cdot 8 \\ 49 \cdot 0 \\ 49 \cdot 3$	70 70 64 80 39	i 7 36 i 7 37 9 59 e 8 57 e 8 53	$-1 \\ -3 \\ PP \\ +7 \\ 0$	e 13 46 e 13 39 14 55 e 16 2 e 15 55	+ 390 + 74	i 9 9 17 59 e 10 48 19 19	$\frac{PP}{SS}$	e 19·1 20·3 22·4 e 22·3 23·1
San Juan Scoresby Sund Bogota Vladivostok Bergen	N.	$55.6 \\ 56.1 \\ 59.0 \\ 70.6 \\ 71.1$	$95 \\ 24 \\ 114 \\ 311 \\ 24$	i 9 42 9 42 i 10 5 e 11 17	+ 2 + 1 + 1 - 2	e 17 19 17 27 i 18 17 i 20 31 e 20 32	-65 - 57 - 72 - 6	e 11 38 21 19 e 11 31 e 21 1 e 28 27	PP SS PP PS SSS	$e 27 \cdot 4$ $28 \cdot 1$ $32 \cdot 1$
Rathfarnham Cas	E. tle N.	$71.2 \\ 72.4 \\ 73.2 \\ 74.8 \\ 76.2 $	$29 \\ 34 \\ 31 \\ 19 \\ 32$	e 11 27 i 11 50	$-\frac{3}{-2}$	i 20 27 20 57 e 21 17 e 21 35	$-\frac{13}{+4}$ $-\frac{3}{-1}$	i 28 15 i 16 12 e 25 55 e 14 45	PPP SS	e 32·0 e 34·1 e 32·1
				Continued	A 44	Care an an an an				

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1949					141			
		Δ	Az.	. Р. m. s.	0 – C. s.	S. 0-C. m. s. s.	Supp. m. s.	L. m.
Irkutsk Copenhagen De Bilt La Paz Paris		$     \begin{array}{c}                                     $	$332 \\ 24 \\ 29 \\ 124 \\ 33$	$\begin{array}{c} e \ 11 \ 56 \\ e \ 12 \ 1 \\ e \ 12 \ 15 \end{array}$	$-\frac{1}{0}$ +11 -3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	e 26 0 SS e 26 39 SS e 26 43 SS i 15 24 PP i 12 33 pP	e 33·1 39·6 e 39·1
Potsdam Jena Collmberg Strasbourg Lisbon	Z. Z.	and the second	$25 \\ 26 \\ 25 \\ 29 \\ 45$	e 12 14 e 12 15 e 12 21	$-24 \\ -4 \\ -3 \\ 0 \\ +24$	$\begin{array}{r} - & - & - \\ e & 22 & 25 & - & 3 \\ e & 22 & 35 & + & 2 \\ 22 & 35 & & 0 \end{array}$	e 30 54 SSS e 27 31 SS e 15 10 PP	e 35·9 e 40·3 38·1 33·6
Cheb Stuttgart Clermont-Ferran Sverdlovsk Basle	d	$82.0 \\ 82.0 \\ 82.1 \\ 82.1 \\ 82.4$	$26 \\ 28 \\ 34 \\ 357 \\ 30$	e 12 35 e 12 21 e 12 25 e 12 20 e 12 28	$^{+12}_{-2}$ $^{+1}_{-4}$ $^{+3}_{+3}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	e 12 41 PeP e 12 47 pP e 15 26 PP	$42 \cdot 1$ $36 \cdot 6$
Prague Moscow Zürich Toledo Tortosa		$82.6 \\ 82.9 \\ 83.0 \\ 83.5 \\ 85.0$	$25 \\ 10 \\ 30 \\ 42 \\ 38$	e 12 26 e 12 28? e 12 27 e 12 22 e 14 46	0 0 1 - 9 ?	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c} - & - \\ - & - \\ 35 & 10 & \mathbf{Q} \\ 15 & 43 & \mathbf{PP} \end{array}$	
Salo Barcelona Malaga Granada Triest	z.	85.2 85.2 85.7 85.8 86.3	$29 \\ 37 \\ 44 \\ 43 \\ 28$	e 12 38 i 12 42k i 12 55k e 13 2	$-\frac{1}{0}$ +13 +17	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	e 34 59 Q i 13 5 pP 28 58 SS e 16 16 PP	e 42.7 42.3 41.3 e 37.1
Alicante Bologna Almeria Florence Rome	N.	$   \begin{array}{r}     86 \cdot 4 \\     86 \cdot 6 \\     87 \cdot 0 \\     89 \cdot 1   \end{array} $	$40\\30\\42\\30\\30$	e 12 46 e 13 12 e 12 52 e 13 7? e 12 57	$^{+1}_{+27}_{+6}_{+19}_{-1}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16 24 PP 16 16 PP e 29 35 SS	e 40.7 44.0
Yalta Tashkent Baku Stalinabad Tamanrasset	z.	$92.8 \\ 96.6 \\ 98.6 \\ 99.4 \\ 102.0$	$\substack{14\\349\\3\\348\\45}$	$\begin{array}{c}e & 13 & 11\\e & 13 & 50\\\hline e & 13 & 43\\e & 18 & 1\end{array}$	$\frac{-5}{+17}$ $-\overline{3}$ PP	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	e 26 6 PS e 18 16 PKP	
Ksara Helwan Biwaniaw		$103.4 \\ 106.2 \\ 106.6$	$     \begin{array}{c}       16 \\       20 \\       220 \\       220 \\       \end{array} $	$\begin{smallmatrix}&18&35\\e&19&1\end{smallmatrix}$	$_{\mathrm{PP}}^{\mathrm{PP}}$	28 13 PPS e 24 55 [-1]	e 27 53 PS	

Riverview 106.6 239 SS e 34 0 e 44 43 Q e 49.7 New Delhi N. 107.2 338 e 23 10 -- 1 e 52·9 Calcutta E. 109.0 326 e 20 38 2 e 25 40 {-18} Hyderabad N. 117.3 333 e 29 51 PS 340 e 18 15 Bombay [-33]117.6 e 26 41 {-17} Pretoria z. 153·4 60 e 20 8 [+16]-Additional readings :---Mineral iE = 59s. Berkeley iE =1m.19s. and 1m.25s., iZ =2m.10s. and 2m.41s., eE =3m.38s. Branner iE = 20s. Reno iZ =1m.25s.k, iN =1m.32s., iE =1m.55s., iZ =1m.59s., iN =2m.4s. Lick eN = 2m.36s., eE = 2m.48s.Salt Lake City e = 3m.18s. Butte eN = 3m.58s. Bozeman e = 3m.59s., i = 4m.14s.Tucson i = 4m.3s. and 4m.24s., e = 5m.4s. and 7m.40s. Rapid City eE = 5m.17s. Saskatoon PPP =4m.19s., SS =7m.48s.College e = 7m.2s. and 7m.6s. Manzanillo e =13m.19s. Tacubaya eSS = 14m.15s. Ottawa SS = 15m.13s. Fordham i = 7m.46s. Seven Falls PPPE =9m.42s., SSE =16m.49s.Bermuda eSS = 19m.32s. Ivigtut 20m.55s. San Juan ePPP = 12m.47s., e = 17m.41s., eSS = 21m.26s.Bogota eSSEN = 22m.22s. Upsala eSN =21m.7s.?, eSSSN =29m.7s., eSSSE =29m.37s.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

# 1949

## 142

Kew ePPPZ = 17m.37s., eSSEN = 26m.25s., eSSS?N = 30m.1s.Copenhagen 29m.55s. De Bilt iP =12m.18s. La Paz iPZ = 12m.28s., iSSN = 27m.19s.Paris iP=12m.9s., ePP=15m.4s., e=17m.39s., eS=22m.11s., eSS=27m.7s.?, eQ= 36·1m. Potsdam eZ = 12m.24s., iZ = 12m.31s.Jena eZ =12m.17s., eN =12m.32s. Collmberg eE = 12m.42s.Strasbourg e = 12m.40s., 12m.44s., and 13m.52s., ePP? = 15m.49s., ePPP = 17m.36s., ePS = 23m.22s., ePPS = 23m.47s., eSS? = 27m.29s., eSS = 27m.42s., eSSS = 31m.25s.,eSSSS? = 35m.42s., e = 36m.9s.Stuttgart ePS = 23m.25s., eSS = 27m.43s., eSSS = 31m.49s., eQ =  $35 \cdot 1m.$ Clermont-Ferrand esP? = 12m.54s., ePP = 15m.54s., ePPS = 23m.52s., eSS = 27m.57s.Sverdlovsk PS = 23m.24s. Tortosa PPP?N = 18m.13s., PSEN = 23m.54s., SS?E = 24m.22s., SSS?E = 31m.58s.Malaga ePPZ = 16m.11s., PPPZ = 18m.19s., isSZ = 24m.5s.Granada SSS = 32m.13s. Triest eSKS = 23m.12s., iPS = 24m.14s., iPPS = 24m.57s., eSS = 29m.44s.Alicante PPP = 18m.7s., S_cS = 22m.55s., PS = 24m.7s., PPS = 27m.37s., SS = 28m.29s., Q = 35m.45s.Almeria PPP = 18m.14s., SKKS = 23m.20s., PS = 24m.26s., SS = 29m.20s., SSS = 29m.20s.32m.56s. Rome e = 13m.12s., eSSS = 33m.1s.Tashkent eSSS = 35m.5s. Calcutta eE = 31m.40s. Long waves were also recorded at Apia, Auckland, Wellington, La Plata, Woodstock,

Reykjavik, Istanbul, Jersey, Neuchatel, and Zagreb.

March 24d. 21h. 40m. 54s. Epicentre 41°·3N. 126°·0W. (as at 20h.).

		Δ	Az.	Р.	O - C.	s.	0-C.	Sur	op.
		•	0	m. s.	8.	m. s.	8.	m. s.	12121
Mineral	E.	3.5	104	i0 56	- 1	i 1 36	- 4		
Berkeley	1.500000	4.5	139	i1 10k	- 1	e 2 6	+ 1		
Branner		4.9	141	i 1 16	- 1	i 2 16	+1		
Reno		5.1	108	e 1 32	+12	i 2 26	+6	e 1 46	$\mathbf{P}_{\mathbf{g}}$
Lick	z.	$5 \cdot 2$	138	i 1 21	0	i 2 23	+ 1	-	-
Tinemaha	z.	7.4	123	i1 58	+ 6	i3 36	+18		
Haiwee	Z.	8.1	127	e 2 1	- ī		·		
Mount Wilson	Z.	9.4	136	1 2 20	$+ \bar{2}$				
Riverside	7.	10.0	134	i 2 28	+1		+		-
Pierce Ferry		10.7	115	i1 1					
Hungry Horse		11.0	46	e 2 32	-10				-
Tucson		15.1	122	e 3 39	+ 3				-

Additional readings :---

Berkeley iZ = 1m.16s, and 2m.2s.

Reno eN = 2m.18s., eE = 2m.21s., iE = 2m.31s., iN = 2m.54s.

Tucson i = 3m.57s.

- March 24d. Readings also at 1h. (Weston and near Istanbul), 2h. (Hungry Horse), 4h. (near Ferndale), 5h. (Boulder City, Shasta Dam, Hungry Horse, and College), 6h. (Andijan, Samarkand, near Stalinabad and Obi-garm), 9h. (Shasta Dam), 11h. (College), 12h. (Samarkand, near Murgab, Obi-garm (3), Stalinabad, and Tashkent), 14h. (Andijan, Obi-garm. and near Stalinabad), 15h. (near Klyuchi), 16h. (near Andijan, Murgab, Obi-garm, Samarkand, and Stalinabad), 17h. (Andijan, Samarkand (2), near Obi-garm (2), Stalinabad (2), Overton, Pierce Ferry, Tucson, Salt Lake City, Mineral, Reno, near Butte, and near Hungry Horse), 18h. (near La Paz), 19h. (La Paz and near Tucson), 21h. (Harvard, Pierce Ferry, and near Mineral), 23h. (Mount Wilson, Riverside, Tinemaha, Tucson, Overton (2), and Hungry Horse).
- March 25d. Readings at 0h. (Boulder City, Butte, Hungry Horse, Overton, Pierce Ferry, Rapid City, Salt Lake City, Tucson, Pasadena, Riverside, Santa Barbara, Tinemaha, Berkeley, Mineral, Branner, Lick, Fresno, San Francisco, and Ottawa), 1h. (near Obi-garm), 2h. (Hungry Horse, Pierce Ferry, Salt Lake City, Tucson, Pasadena, Riverside, Tinemaha, Mineral, Berkeley, Lick, Reno, Triest, Istanbul, Kew, De Bilt, Rome, Salo, Messina, Potsdam, Stuttgart, Strasbourg, Paris, and Clermont-Ferrand), 3h. (De Bilt), 7h. (near Santa Lucia), 10h. (near Andijan, near Obi-garm, and near Mizusawa), 11h. (Samarkand (2), near Stalinabad (2), Obi-garm (2), and near Mizusawa), 12h. (near Balboa Heights), 13h. (near Obi-garm), 16h. (near Murgab, Obi-garm, and Andijan), 17h. (College), 20h. (near Granada, near Irkutsk, near Obi-garm, Andijan, and Stalinabad). 21h. (near Malaga), 22h. (near Granada), 23h. (Boulder City).

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

#### 1949

#### 143

March 26d. 2h. 28m.5s. Epicentre 25°.1N. 109°.7W. (as on 1940, June 3d.).

		$\Delta$	Az.	р.	0 – C.	s.	0 – C.	Su	pp.	L.
		0	•	m. s.	s.	m. s.	s.	m. s.		m.
Tueson		7.1	354	i1 46	- 2	i 3 20	+10	i 2 4	P*	i 3.7
Palomar	N.	10.3	325	e 2 33	+1	· · · · · · · · · · · · · · · · · · ·	1 <u></u>			
Tacubaya		11.3	118	2 47	$+$ $\hat{1}$					i 6.4
Pasadena		11.6	325	e 2 50	Ô			- termina		e 5.6
Pierce Ferry		11.6	342	i 3 49	+59	e 5 25	+24			i 6.0
Boulder City		11.7	339	e 3 51	+60					e 6·4
Overton	Z.	12.1	342	12 58	+ 1			1		i 7.2
Tinemaha	0.5550	14.0	331	e 3 24k	+ 2			i 3 45	PPP	
Fresno	N.	14.5	326	e 3 30	+ 2			2		
Lick	z.	15.9	325	i 3 47	Ō			-		
Berkeley		16.6	323	e 3 59a	+ 3		19 <u>11-11</u>			e 8·4
Logan		16.7	355	e 3 55	$^{+}_{-} \frac{3}{2}$	e 7 12	+ 9	i4 15	$\mathbf{PP}$	e 9·2
Reno		16.7	332	e4 1k	+ 4			i 4 22	PPP	e 9.5
Mineral	Z.	18.2	330	i 4 18	$+ \bar{2}$	( <del>10.000</del> )	-			
Butte	N.	$\hat{2}\hat{1}\cdot\hat{0}$	357	e 4 46	- ī					e 12·1
St. Louis		21.3	46	e 4 49	- 1	e 8 43	0	<u></u>	-	e 11.0
Hungry Horse		23.5	354	i5 8	- 4	- 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997			, <u> </u>	
Ottawa		34.0	45	e 7 44	$\mathbf{PP}$					17.4

Additional readings :---

Tucson i = 2m.16s. and 2m.52s.

Reno iE = 4m.41s.

St. Louis iS = 8m.49s.

Long waves were also recorded at Paris, Kew, Bozeman, Chicago, Lincoln, Philadelphia Weston, Saskatoon, and Seven Falls.

March 26d. Readings also at 0h. (Helwan), 2h. (Istanbul), 3h. (Belgrade). 5h. (Boulder City, Hungry Horse, Pierce Ferry, Shasta Dam, Tucson, Tinemaha, and near Istanbul (2)), 6h. (near Obi-garm), 7h. (Brisbane and College (2)), 8h. (Riverview), 10h. (near Obi-garm), 12h. (Hungry Horse (2), Pierce Ferry, Shasta Dam, and near Klyuchi), 13h. (Boulder City and Pierce Ferry), 14h. (near Istanbul), 15h. (College, Hungry Horse, Pierce Ferry, and near Fort de France), 16h. (Boulder City, College, Hungry Horse, Pierce Ferry, Tucson, Tinemaha (2), Ottawa, near Tacubaya, Oaxaca and Puebla), 17h. (Klyuchi, near College and near Tucson), 19h. (Mount Wilson, Riverside, near Boulder City and near Andijan), 21h. (Samarkand (2),

near Obi-garm (2), and near Stalinabad (2) ).

March 27d. 6h. 34m. 1s. Epicentre 3°.1N. 127°.8E.

Felt at Morotai Epicentre 3°.5N. 127°.5E. (Pasadena).

Quarterly Seismic Bulletin, Batavia, January-March, 1949, p.3.

A = -.6120, B = +.7890, C = +.0538;  $\delta = -4$ ; h = +7; D = +.790, E = +.613; G = -.033, H = +.043, K = -.998.

		$\Delta$	Az.	Р.	0 – C.	s.	0-C.	Sup	р.	L.
		0	0	m. s.	s.	m. s.	s.	m. s.		m.
Batavia		22.9	246	i5 5	- 1	i9 6	- 7			12.3
Zi-ka-wei		28.6	349	e 5 59	- 1	i 10 59	+11	i 6 13	2	
Nanking		30.0	344	e5 4	-68	i 10 6	-64	6 9	PP	1.00
Koti		30.6	9	6 21	+ 3 + 3	11 26	+ 6	the second se	$\mathbf{PPP}$	13.7
Owase		31.8	13	e 6 31	+ 3	10 51	-47	7 37	$\mathbf{PP}$	13.7
Nagoya		33.0	15	e 6 40	+ 1	e 12 11	+14	the second se	PPP	14.2
Tokyo		34.3	18	7 10	+20	12 32	+15	the second se	PPP	
Perth		36.7	197	(7 5)	- 5	(12 44)	-10	the second se	PPP	
Sendai		37.0	18	7 14	+1	13 0	+ 1	17 35	$s_cs$	2007197
Mizusawa		37.9	17	7 20	0	13 20	+ 7			22.0
Brisbane		38.9	144	i7 21	- 8	i 13 13	-15	i9 3	PP	i 22·3
Vladivostok		40.0	5	i7 39	+ 1	i 13 50	+ 6	-		
Sapporo		41.6	15	7 57	+ 6	14 14	+ 6			
Calcutta	E.	42.8	300	18 5a	+ 4	i 14 23	- 3	<ul> <li>A second state of the second stat</li></ul>	$\mathbf{PPP}$	20.3
Riverview		42.8	152	i7 57a	- 4	i 14 15	-11	i 8 10	$\mathbf{pP}$	e 18.6

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1949		144			
	∆ A2	maa	$\begin{array}{ccc} & S. & O-C. \\ & m. & s. & s. \end{array}$	m. s.	L. m.
Melbourne Colombo Kodaikanal Hyderabad Irkutsk	E. $43 \cdot 7$ 16 E. $47 \cdot 9$ 27 E. $50 \cdot 4$ 28 N. $50 \cdot 4$ 29 $52 \cdot 8$ 34	$\begin{array}{cccccccccc} 0 & i & 8 & 10 & + & 2 \\ 6 & & 8 & 41 & - & 1 \\ 1 & i & 8 & 55 & - & 6 \\ 0 & & 9 & 7 & + & 6 \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	i 10 12 PPP 10 52 PP 11 19 PP 11 35? PP	
New Delhi Poona Bombay Auckland Klyuchi	E. $54 \cdot 3$ 30 $54 \cdot 9$ 29 $56 \cdot 0$ 29 N. $59 \cdot 1$ 13 $59 \cdot 2$ 2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	i 21 53 ? i 12 57 PPP 11 58 PP	$25 \cdot 4$ $23 \cdot 0$ $26 \cdot 0$ $26 \cdot 5$
Kaimata Almata Arapuni Murgab Wellington	N.E. $60 \cdot 1$ 14 $60 \cdot 2$ 32 E. $60 \cdot 3$ 13 $60 \cdot 3$ 31 $61 \cdot 4$ 14	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$   \begin{array}{r} 18 & 20? & -5 \\     14 & 29 & ? \\     18 & 23? & -3 \\     18 & 29 & -11   \end{array} $	$(20 29) \qquad \overrightarrow{\frac{1}{12}} \qquad 50 \qquad \overrightarrow{PP}$	$\frac{1}{20\cdot 5}$
Frunse Tuai Semipalatinsk Apia Andijan	N. $\begin{array}{cccc} 61 \cdot 6 & 31 \\ 61 \cdot 7 & 13 \\ 61 \cdot 8 & 32 \\ 62 \cdot 2 & 10 \\ 62 \cdot 3 & 31 \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{r} \mathbf{e} \ 18 \ 417 \ -2 \ 18 \ 46 \ +2 \ 2 \ \mathbf{e} \ 18 \ 59 \ +8 \ \mathbf{e} \ 18 \ 59 \ +8 \ 18 \ 59 \ 18 \ 59 \ 18 \ 59 \ 18 \ 59 \ 18 \ 59 \ 18 \ 59 \ 18 \ 59 \ 18 \ 59 \ 18 \ 59 \ 18 \ 59 \ 18 \ 59 \ 18 \ 59 \ 18 \ 59 \ 18 \ 59 \ 18 \ 59 \ 18 \ 59 \ 18 \ 59 \ 18 \ 59 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 \ 18 $	e 10 21 P e 13 30 PP	e 26-0
Obi-garm Stalinabad Tashkent Tchimkent Samarkand	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	i 13 13 PP	
Ashkabad Honolulu Sverdlovsk Baku Tananarive	$\begin{array}{cccc} 71 \cdot 9 & 30 \\ 74 \cdot 4 & 6 \\ 75 \cdot 1 & 32 \\ 78 \cdot 8 & 31 \\ 81 \cdot 8 & 25 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	e 22 7 PPS i 14 33 PP i 12 34 P _c P	e 34·4 e 39·3
Grozny Erevan Leninakan Piatigorsk College	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	 i 15 35 PP	e 36.5
Sotchi Theodosia Ksara Simferopol Yalta	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} e \ 12 \ 52 \\ \hline \\ \hline \\ \\ \hline \\ \\ \end{array} \begin{array}{c} \mathbf{P_c P} \\ \hline \\ \\ \hline \\ \\ \\ \end{array} \end{array}$	
Sitka Helsinki Helwan Istanbul Bucharest	$\begin{array}{cccc} 91 \cdot 1 & & 32 \\ 93 \cdot 7 & 331 \\ 94 \cdot 0 & 300 \\ 94 \cdot 6 & 311 \\ 96 \cdot 2 & 313 \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	e 17 15 PP 17 14 PP e 17 16 PP e 24 7 SKS	e 41.8 e 42.0 36.0
Upsala Sofia Skalnate Pleso Victoria Raciborzu	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$e 1\overline{3} 29 - \overline{15}$	i 24 56 $-2$ i 24 17 $[-3]$ e 25 21 $+9$ e 24 43 $\{-11\}$ e 25 28 $+7$	i 17 41 PP e 28 23 PPS e 17 39 PP	e 41.0 48.0
Kalossa Ogyalla Copenhagen Potsdam	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{r} e \ 25 \ 22 \ -3 \\ 24 \ 31 \ [-3] \\ e \ 24 \ 47 \ [+9] \end{array}$	e 24 30 SKS e 18 8 PP i 18 16 PP i 18 22 PP	e 51.0 48.0
Prague Ukiah Bergen Collmberg Zagreb	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	e 15 41 $9 + 8$	$\begin{array}{ccccccccc} e & 25 & 53 & +13 \\ e & 27 & 32 & PS \\ & 24 & 39 & [-1] \\ e & 24 & 41 & [+1] \\ e & 24 & 40 & [&0] \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	e 47·3 39·0 e 46·0 e 50·0
Taranto Mineral Cheb Berkeley Jena	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$e 14 5 + 1 \\ 14 19 + 15 \\ e 14 19 + 14$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1829PP1829PP1829PPe1815PPi1821PKPe1831PP	e 46.7 e 45.5

100

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1.00	1000	1.000		
- 68	<i>a</i> 74.	- 68	en.	
	10.00	16 B.		
- <b>R</b>	2010		10 C 10	
	-			
10.000	1.22	10.00	0.000	

1.4

20

145

Georgeber Grand	∆ 102°°	Az. m	. 8.	0 – C. s.	S. m. s.	0 – C. 8.	Sur m. s.	32424	L. m.
Scoresby Sund Santa Clara Lick Z. Triest Reno	$103.8 \\ 104.1 \\ 104.3 \\ 104.3 \\ 105.1$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3 33 4 22 4 21	-1 PP +14 +13 +14	24 50 e 24 39 i 30 16 i 24 43 i 24 31	$\begin{bmatrix} + & 5 \\ - & 7 \end{bmatrix}$ $\begin{bmatrix} - & 7 \end{bmatrix}$ $\begin{bmatrix} - & 4 \end{bmatrix}$ $\begin{bmatrix} -20 \end{bmatrix}$	18 37 e 33 35 i 18 26 e 18 41 e 18 35	PP SSP PP PP PP	e 48.0 e 48.7 e 51.0 e 56.0
Messina Catania Fresno Z. Hungry Horse Padova	$105.4 \\ 105.9 \\ 105.9 \\ 105.9 \\ 105.9 \\ 105.9$	311 e 18 310 e 16 50 e 14 37 e 14 317 e 18	591 24 14	PP P PP	i 24 29 e 28 9	[+11] [-26] PS [+4]	e 18 46 e 18 19	PP PP	e 49·3
Stuttgart Bologna Salo Rome Chur	$106.0 \\ 106.3 \\ 106.4 \\ 106.4 \\ 106.6$	323 e 14 317 e 14 319 e 14 315 e 14 321 e 18	4 29 4 12	P P P [-21]	e 24 48 e 25 6 i 25 4 e 24 53 e 24 59	$\begin{bmatrix} - & 7 \\ + & 10 \end{bmatrix}$ $\begin{bmatrix} + & 7 \\ - & 4 \end{bmatrix}$ $\begin{bmatrix} + & 1 \end{bmatrix}$	e 18 30 e 18 51 e 18 50 e 18 48	PP PP PP PP	55.0 e 52.0 e 50.5 e 52.0 e 39.2
Florence Prato De Bilt Strasbourg Tinemaha z.	$106.6 \\ 106.7 \\ 106.8 \\ 107.0 \\ 107.0$	327 e 14 323 e 14	39 15	P P P P P	i 25 3 i 24 55 i 24 59	[+5] [-4] [-0]	i 18 57 i 17 59 e 18 46 e 18 47 e 18 42	PP PP PP PP	e 49.0 50.0
Zürich Basle Pavia Z. Aberdeen E. Butte N.	100 JUL 100 100	322 e 14 322 e 14 319 e 17 333 e 14 39 e 19	31 593 [ 18	P P -29] P PP	e 24 57 e 25 9 i 25 5 e 37 31	$\begin{bmatrix} - & 2 \\ + & 7 \end{bmatrix}$ $\begin{bmatrix} + & 3 \\ + & 3 \end{bmatrix}$	e 18 7 e 28 6 i 18 52	PKP PS PP	e 47.5 e 51.9
Pasadena Neuchatel Saskatoon Riverside Z. Bozeman	$107.9 \\ 108.1 \\ 108.4 \\ 108.6 \\ 108.9$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	56 [ 43	P [-33] P	e 25 17 e 28 17 e 25 9 e 26 49	[+14] PS [+4] S	e 18 26 e 33 36 e 29 55 1		i 44 · 7 47 · 0 e 45 · 0
Durham Edinburgh Reykjavik Boulder City Paris	$108.9 \\ 108.9 \\ 109.3 \\ 109.9 \\ 109.9 \\ 109.9$	332 e 18 347 - 50 e 14	38 55 32 29	PS P P	i 25 16 24 59 e 25 16 e 28 48 25 14	[ + 8] [ - 9] [ + 7] PS [ + 2]	i 28 34 e 21 13 e 28 19 i 14 56 i 18 23	PS PPP PS pP PKP	e 52·1 e 51·0
Logan Kew Salt Lake City Pierce Ferry Clermont-Ferrand	$110.0 \\ 110.1 \\ 110.4 \\ 110.5 \\ 111.1$	43 e 18 328 e 14 44 e 19 49 e 14 321 e 14	31 5 18		e 28 31 e 26 19 e 26 13 e 28 52 i 22 31	PS {+13} + 5} PS PKS	e 21 14 e 19 8 e 21 29 e 18 48 i 18 50	PPP PPP PKP PP	e 46.8 e 54.0 e 45.2 51.0
Rathfarnham Castle Jersey E. Barcelona Tucson Rapid City E.	1 10 10 10 10 10 10 10 10 10 10 10 10 10	332 e 14 327 e 14 318 e 19 52 i 18 37 e 19	5 19 9 42 8 42 [	PP		$\{+\overline{8}\}$ $\{+\overline{10}\}$ PPS	e 28 593 e 28 593 e 14 59 e 22 12	PP PS PPP	e 52·1 e 47·0
Algiers Tortosa Ivigtut Alicante Tamanrasset Z.	$115.1 \\ 115.1 \\ 115.8 \\ 116.9 \\ 118.1$	313       e       14         318       19         357       e       19         316       19         298       e       18	) 56 ) 49 ) 0 [	P PP +13] - 2]	25 39 29 21 26 51 29 29 1 29 58	[+ 7] PS {+ 5} PS PS	e 29 24 30 32 e 25 44 19 57 i 15 36k	PS PPS SKS PP	e 56.0 e 50.0 e 52.0 e 54.1
Toledo Almeria Granada Malaga Lisbon	118.6119.0119.7120.5122.5	319 e 19 315 i 19 316 i 19 316 e 18 320 19	0 ( 0k ( 59 (	+13] + 9] + 8] + 5] + 7]	e 25 45 25 54 1 25 48 1 25 59 25 54	$\begin{bmatrix} & 0 \\ [+ & 8] \\ [- & 1] \\ [+ & 7] \\ [- & 4] \end{bmatrix}$	i 29 56 i 20 28 19 58k1 i 20 39a 20 40	PS PP PKP PP PP	e 50.9 51.1 i 61.6 71.8 61.1
Chicago St. Louis Shawinigan Falls N. Ottawa Seven Falls E.	127.4	32 e 21 36 e 19 17 e 20 20 19 15 19	) 5k [	PP - 4] +59] - 2] - 1]	e 37 47 1 28 7 26 13 27 54	$SS \\ \{+14\} \\ \overline{\{-9\}} $	e 30 39 i 21 9 32 51 21 7	PS PP PPS PPS	e 53.9 61.5 54.0

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1949						146					
		۵ د	Az.		Р. в.	0 – C. s.	S. m. s.	0 – C. s.	m. 8	supp.	L. m.
Cleveland	N.	128.2	28	i 19	17	[+ 8]			i 21 2	PP 8	
Tacubaya Pennsylvania	Е.	$128.7 \\ 130.4$	62 26	i 19 e 21	27 34	[+17] PP	e 26 14 e 28 31	$\begin{bmatrix} - & 2 \\ + & 9 \end{bmatrix}$	i 21 1 e 33 3	Contraction of the second s	51.8
Harvard		131.3	18	i 19	15	[+1]	e 28 39	{+11}	e 21 3	3 PP	e 66·0
Halifax		131.4	10	22	52	PKS	26 24	[+ 1]	e 39 2	I SSP	
Weston		131.5	18	e 19	.9	[- 6]	i 22 47	PKS	e 21 1		54.0
Fordham Mobile		$132.0 \\ 132.0$	$\frac{21}{42}$	e 19 19	19 19	$[ + 3] \\ [ + 3]$	e 28 40 40 0	{+ 8} SSP	e 21 3 21 5	Contract of the second s	65.0
Philadelphia		132.2	23	e 21	32	'PP	e 26 37	[+12]	i 22 4	PKS	e 54·8
Columbia		134.2	33	e 22	49	PKS	e 33 13	PPS	e 38 4	9 SS	e 56·9
Bermuda		142.8	17	e 19	37	[+ 2]	e 46 59	SSS	e 22 4	PP	e 59·8
Santa Lucia	2010	145.2	152	CONTRACTOR CONTRACTOR	Contraction of the second s	[+17]	-		23 1		10.0
La Plata San Juan	E.	$147.9 \\ 154.6$	$   \begin{array}{r}     171 \\     31   \end{array} $	19 e 19		$\begin{bmatrix} -21 \\ -6 \end{bmatrix}$	e 27 1	[+2]	(19 5 i 24 1	A) PKP, B PP	19·9 e 72·1
Bogota		156.8	70	e 20	5	[+ 8]	e 26 56		i 24 2		86.0
La Paz		159.6	132	i 19	59a	the second se	i 26 59	[-5]	i 24	I PP	74.4
Fort de France		160.2	25	1	-		i 42 29	1	e 53 3	9 9	-
iSSSZ Kodaikana Hyderabad Irkutsk SS Poona ePI	= 5r = 7m. P = 9r = (15) SE = 10r = 18r = 18r = 20r E = 9r	n.14s., j 57s., Ss n.25s., Ss n.25s., s n.39s.), 13m.26s =16m.3s =17m.4 9m.9s., 1.6s., e n.3s., is c = 19m m.23s., n.23s., n.35s.,	$P_{i=12}^{P_{i}}$ $S_{i}=12$ $S_{i}=12$ read $S_{i}=12$ read $S_{i}=12$ $S_{i}=12$ read $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_{i}=12$ $S_$	5m.5 m.50s 4m.3 ings i 9m.12 15m.1 =18m	6s. ncrea s., i) [1s., [.8s.,	ased by PPN = 91 iN = 17 iSSSN = s., iSN =	5 minute n.39s., iP m.30s., i =18m.11s	s. cPZ = 91 Z = 17m	.33s., 15	cSE = 1	7m.51s.,
Bombay S	the second s	n.25s., ( 21m.2s.			the second se			a. 1889			
Auckland ]	PPN	=11m.1	7s., S				SSSN = 23	3m.19s.			
Kaimata il Wellington	and the second se		5 T	-11-	n 96	. 17 -	13m 18a	and 14	mie	DDD 1	m 10a
The first of the first of the first state of the first	and the second	the second se	the second se	The second se	Comparison Comparison Comparison	and the second	e = 221	the second se	the second se		
Tuai $eN = 1$	10m.3	34s.	850 50	a sili			·				
Apia $eN = $	10m.:	39s., eN	Z = 1	1 m.2 s	÷						

Tashkent  $eS_cS = 20m.35s.$ ? Honolulu i = 11m.59s., 12m.38s., e = 17m.11s. and 27m.17s.Sverdlovsk iPcP = 12m.0s., iPPP = 16m.33s.?, iPS = 22m.3s., eSS = 26m.24s., SSS = 29m.47s. Tananarive i = 12m.43s., ipP? = 13m.1s., e = 16m.3s., eS = 22m.22s.,  $iS_cS? = 22m.58s.$ , iPS = 23m.17s., eSS = 27m.33s.College i = 14m.37s., e = 15m.35s.Helsinki ePS = 25m.40s., e = 27m.43s., eSS = 31m.30s.Helwan iZ = 13m.31s., and 18m.14s., SKSEZ = 23m.51s., PSE = 25m.59s., PPSE = 26m.41s., SSE = 31m.11s.Bucharest eSN = 24m.11s., iE = 24m.18s., and 24m.58s., iN = 25m.0s.Upsala iPP?E = 17m.9s., iPPE = 17m.21s., ePPPE = 19m.40s., SKS?E = 23m.54s., eSKS = 24m.8s., ePKKP?N = 29m.59s., eSSE = 31m.59s.?, eN = 34m.35s., eSSSE = 35m.59s.?, eN = 38m.59s.? Raciborzu eEN =14m.1s., eN =18m.51s., eEN =19m.9s. and 22m.7s., eE =22m.46s. and 24m.16s., eN = 24m.32s. Kalossa eEN = 18m.41s. Copenhagen PS = 27m.1s. Potsdam iPPPZ=20m.15s., iPSZ=27m.11s., iPSE=27m.14s., and other readings without phase. Bergen PPN =18m.13s., SKSE =24m.43s., SEN =25m.46s., eE =27m.16s., eEN = 28m.15s., eN = 30m.19s., SSN = 32m.1s.?, eE = 32m.39s.Collmberg eE = 14m.15s., 14m.37s., and 15m.30s., ePPPE = 20m.33s., eSKSE = 24m.33s., eSSE = 33m.4s., eE = 34m.16s., eSSSE = 37m.18s., eN = 39m.17s. Zagreb i = 24m.48s., iS = 25m.57s., eSS = 33m.47s., e = 41m.59s.? Taranto SKKS = 24m.49s., eSS? = 31m.29s., SSS = 38m.11s.Berkeley iPZ = 14m.27s., iPKPZ = 18m.31s., iPPN = 19m.5s., and other readings without phase. Jena ePZ = 14m.17s., ePN = 14m.23s., eN = 14m.30s., ePKP?E = 17m.26s., ePKP?NZ = 17m.35s., eN =19m.4s., eSKS?N =24m.41s., eS?N =25m,59s., ePS?N =27m.19s., ePSIE = 27m.29s.Scoresby Sund PS = 27m.53s., SS = 33m.23s.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

## 1949

۰.

#### 147

Santa Clara eE = 33m.59s., eSSE = 35m.37s.Triest e=17m.50s., iSKKS=25m.24s., iS=26m.5s., iPS=27m.37s., eSS=33m.27s., i = 34m.13s., eSSS = 38m.1s.Reno eE = 14m.45s., eN = 15m.7s., eE = 18m.29s., iE = 19m.6s., iZ = 19m.9s., eQEZ = 49m.5s. Fresno ePN = 15m.26s., iN = 30m.27s.Hungry Horse i = 14m.27s. Stuttgart i =14m.36s.k, e =19m.59s., ePPP =20m.49s., eS =26m.19s., ePS =27m.39s., ePPS = 28m.39s., eSS = 33m.29s., eSSS = 37m.53s., e = 42m.59s., eQ = 50.0m.Bologna eZ = 18m.3s., e = 19m.36s., eSS? = 33m.48s.

```
Salo iSKKSE = 26m.18s., iN = 26m.21s., iE = 26m.28s.
Rome e = 25m.23s. and 28m.25s., eSS = 33m.49s.
Florence eN = 15m.20s.
De Bilt ePKP? = 17m.59s., ePS = 27m.59s.?, eSS = 33m.59s.?
Strasbourg ePKP? =18m.17s., iPP =18m.55s. and 19m.0s., iPPP =21m.14s. and
    21m.19s., iSKP = 22m.7s., eSKS = 25m.19s., eS? = 25m.55s., iS? = 25m.58s., and
    26m.29s., iPS = 28m.1s., iPPS = 28m.47s. and 28m.51s., ePKKS? = 33m.5s., iSS =
    33m.59s. and 34m.11s., iSSS = 37m.28s. and 37m.41s., iSSSS? = 43m.7s. and 43m.39s.
    Many other readings without phase.
Tinemaha iPPZ = 19m.2s., ePKKPZ = 29m.58s.
Zürich eS = 26m.19s.
Basle ePKP = 17m.59s., eS = 26m.31s.
Aberdeen ePPE = 17m.19s., iPPPE = 19m.51s., iPPSE = 28m.15s., iE = 29m.1s. and
    35m.23s., iSSSE = 38m.56s.
Pasadena iPZ = 14m.40s., iPP?Z = 18m.43s., ePPPZ = 21m.8s., iSN = 26m.42s., iPSZ =
    28m.2s., iPPSE = 29m.17s., ePKKPZ = 29m.51s., eSSE = 33m.35s., ePKP, PKPZ =
    37m.49s., eSSSN = 38m.23s.
Saskatoon e = 40m.59s.?
Durham iN = 17m.54s., iEN = 19m.14s.
Edinburgh PS = 28m.14s., PPS = 29m.17s., SS = 34m.3s., e = 35m.40s.
Reykjavik eEN = 29m.48s., eSSN = 34m.51s., eEN = 38m.44s.
Boulder City ePKP = 18m.30s., iPP = 18m.48s., e = 29m.42s.
Paris iP = 14m.43s., iPP = 19m.10s., i = 19m.49s. and 20m.48s., iPPP = 21m.32s., S =
    26m.49s., PS = 28m.27s., PPS = 29m.30s., PKKS? = 33m.44s., SS? = 35m.14s.,
    SSS = 38m.44s.
Logan e = 22m.0s., 27m.0s., 36m.8s., 41m.5s., and 41m.22s.
Kew ePSEZ = 28m.34s., ePPSEZ = 29m.35s., eQE = 50.0m.
Salt Lake City i = 21m.51s., eSP = 28m.19s.
Pierce Ferry e = 14m.34s.
Clermont-Ferrand iPP = 19m.16s., iPPP = 21m.49s., iSKS = 25m.29s., iSP = 28m.42s.,
    iPPS = 30m.0s., iSS = 35m.3s., eSSS = 39m.16s.
Jersey eE = 15m.59s.? and 43m.57s.
Tucson i = 19m.3s., ePP = 19m.35s., iPP = 19m.57s., eSKS? = 25m.25s., e = 25m.39s.,
    ePS = 28m.37s., eSS = 35m.19s., eSSS = 39m.15s.
Rapid City eE = 20m.53s. and 28m.35s., eSSSE = 40m.17s.
Algiers PP = 19m.9s., e = 19m.23s., i = 20m.8s., PKS = 22m.12s., SKS = 25m.9s., SSP = 10m.9s.
```

34m.59s. Tortosa SKPE = 22m.48s., SSE = 35m.32s., SSSE = 40m.2s.Ivigtut S = 27m.47s., PS = 29m.23s., PPS = 30m.53s., SS = 35m.43s., SSS = 40m.17s.Alicante PPP=22m.41s., PKS=25m.41s., SKKS=27m.5s., PPS=30m.55s., SS= 35m.57s., SSS = 39m.41s., Q = 48m.5s.Tamanrasset iPKP?Z = 18m.56s.k, ePPZ = 20m.14s., iPPPZ = 22m.36s.a, iZ = 24m.5s. and 24m.54s. Toledo ePPZ = 20m.56s., eZ = 22m.48s., eN = 35m.56s., iN = 41m.9s.Almeria PKS = 22m.37s., PPP = 23m.0s., SKKS = 27m.22s., PS = 30m.8s., PPS = 31m.38s., SS = 36m.56s., SSS = 41m.16s.Granada sPKP = 20m.10s.a, iPP = 20m.25s., pPP = 20m.58s., sPP = 21m.25s., PPP = 22m.58s., pPPP=23m.25s., SKKS=27m.13s., S=27m.58s., sS=29m.25s., PPS= 30m.25s., iSS = 35m.58s., SSS = 39m.43s., Q = 58.4m.Malaga QZ = 62m.57s.Lisbon PKPEZ = 19m.11s., PP = 20m.50s., PPP? = 23m.24s., E = 27m.37s. and 30m.5s., SPZ = 30m.21s., iPSE = 30m.28s., PPS?E = 32m.4s., PPS?N = 32m.15s., SS?E = 32m.21s.38m.5s., SSS = 41m.29s., Q?E = 47m.53s.Chicago eS? = 29m.4s., e = 32m.4s.St. Louis iSKP = 22m.12s., iSP = 31m.39s., iPPS = 32m.55s., i = 37m.57s.Ottawa e = 20m.59s., PP = 22m.21s., e = 38m.19s., SS = 40m.59s., SSS = 47m.47s.Seven Falls eE = 29m.24s, PSE = 31m.21s, eE = 33m.54s, and 36m.48s, SSE =38m.26s., eE = 41m.10s.Cleveland eN = 21m.54s. Tacubaya i = 22m.14s. and 22m.35s., e = 25m.6s. and 27m.23s., ePS = 31m.47s., iPPS = 32m.50s., 51m.12s. Pennsylvania eE = 22m.46s., iE = 38m.38s.Harvard iPKS = 22m.45s., eSS = 39m.17s., eSeS, SeS? = 41m.9s.Fordham iPKP = 19m.22s., SS = 39m.22s.Mobile PPP = 24m.59s., eS = 30m.15s., SSS = 45m.39s.Philadelphia e = 28m.35s., eSP = 31m.44s., eSS = 30m.15sPhiladelphia e = 28m.35s., eSP = 31m.44s., eSS = 39m.11s.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

#### 1949

# 148

Bermuda eSKS? =26m.11s., e = 30m.4s. and 34m.24s., eSS =41m.29s. 49m.40s. Bogota iPKP, =20m.49s., e = 33m.6s., ePSKS = 34m.59s., eSS = 44m.19s.La Paz iSSN =44m.39s. Long waves were also recorded at Lincoln and Seattle.

March 27d. 11h. 45m. 26s. Epicentre 5°.4S. 151°.3E. (as on 17d.).

$$A = -.8737, B = +.4784, C = -.0878; \delta = -7; h = +7.$$

		Δ	Az.	Р.	<b>0</b> – C.	s.	о-с.		pp.	L.
		0	0	m. s.	8.	m. s.	8.	m. s.	-	m.
Brisbane		22.4	175	i4 54	- 8	i 8 52	-12	i 5 13	$\mathbf{PP}$	i 11·3
Riverview		28.6	180	e 5 56	- 4	e 10 36	-12	2 <del>111</del>		e 14·8
Wellington		41.7	154			e 14 9	- 1	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -		$21 \cdot 1$
Vladivostok		51.1	342	e 9 10	+ 4	i 16 48	+24	e 20 36	SS	
Irkutsk		69.6	331		100	e 20 46	$\mathbf{PS}$			
Bombay		80.8	290	e 12 4	-13	e 22 31	+ 6			
College		82.7	22	e 12 28	$^{+1}_{+3}$			i 12 40	$P_cP$	
Andijan		84.9	312	e 12 41	+ 3	e 23 13	+7	<u> </u>		
Obi-garm		86.6	310	e 12 50	+ 4			v Statilizati		
Stalinabad		87.3	310	i 12 53	+ 3	e 23 17	[+ 1]	23 33	s	<del>201</del> 2
Tashkent		87.3	312	e 12 53	+ 3	e 23 19	[+ 3]	i 23 35	S	<del>1051</del> 2)
Mineral	z.	91.0	49	i13 8	+ 1		- The second	5		
Pasadena	1000	93.2	56	i 13 18	+ 1		·	i 13 34	2	
Tinemaha		93.4	53	i 13 20a						<del></del>
Riverside	z.	93.9	56	i 13 21 a	0		_	i 13 36	?	
Palomar	Z.	94.3	57	e 13 21	- 2			10 ( <u>199</u>	00000	
Sverdlovsk	143.03	94.6	327			e 24 15	{ 0 }			<del></del>
Boulder City		96.1	54	e 13 31	0			i 13 45	?	
Overton	Z.	96.4	54	e 13 33	+ 1				-	
Pierce Ferry		<b>96</b> ·8	54	e 13 32	- 2		-	e 13 48	8	
Hungry Horse		96.9	41	e 13 32	- 2			i 13 36	1	
Tucson		99.3	57	e 13 48	+ 3				_	e 45·8
Ksara		113.9	304	19 45	$\mathbf{PP}$	29 47	$\mathbf{PS}$			
Triest		125.3	324	e 19 10	[+7]	e 31 3	$\mathbf{PS}$	e 21 1	$\mathbf{PP}$	
Stuttgart		$125 \cdot 9$	329	e 19 6	[+ 2]		-	e 21 3	$\mathbf{PP}$	e 63·6
Strasbourg	14	126.7	330	e 19 8	[+ 2]	e 43 341	SSS	e 21 7	$\mathbf{PP}$	60.6
Weston		127.0	38	e 19 7	[+ 1]					e 63·6
Rome		$128 \cdot 2$	321	e 22 30	PKS	e 33 12	PPS			2
La Paz		135.5	120	19 22 i 19 36k	[ 0]					
Tamanrasset	z.	142.6	302	i 19 36k	[+1]	e 23 32	PKS			

Additional readings :---Brisbane iZ = 5m.10s. Riverview iZ = 6m.12s., eZ = 11m.9s., eE = 11m.26s. Tashkent eSeS = 23m.50s., ePS = 24m.48s.Triest ePPS? = 32m.8s.Stuttgart eZ = 23m.40s. Strasbourg ePPP = 23m.41s., e = 28m.34s.? Long waves were also recorded at other European stations and at Arapuni, Auckland, and Berkeley.

March 27d. 20h. 33m. 58s. Epicentre 3°.1N. 127°.8E. (as at 6h.).

		Δ	Az.	P		0-C.	s.	0-C.	Su	pp.	L.
		•	0	m.	s.	s.	m. s.	8.	m. s.	2-32-60-577	m.
Vladivostok		40.0	5	i 7	43	- 5	i 13 52	+ 8	e 17 50	SSS	-
Calcutta	E.	42.8	300	e 8	9	+ 8	e 13 19	-67			
Riverview		42.8	152	e 9	53	PcP	i 17 42	SS			e 24 · 9
Kodaikanal	E.	50.4	281	e 8	19	-42					
Irkutsk		52.8	342	9	20	+ 1	16 51	+ 4	e 11 34	$\mathbf{PP}$	_
Bombay		56.0	291	e 9	25	-18			e 9 33	P	
Obi-garm		63.5	312	i 10	27	- 7	e 19 4	- 3			
Stalinabad		64.1	312	i 10	35	- 3	e 19 16	+ 2			
Tashkent		64.6	315	e 10	39	- 2	23 231	SS	12 53	$\mathbf{PP}$	
Samarkand		65.8	312	e 10	421	- 7					

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1949					149					
		Δ	Az.	Р.	0-с.	1000	0 – C.	Suj	pp.	L.
		0	0	m. s.	8.	m. s.	s.	m. s.		m.
Sverdlovsk		75.1	328	11 42	- 4	e 21 22	- 2	1000		
Baku		78.8	311	e 12 7	+ 1	e 22 91	+ 5			
Grozny		82.1	313	e 12 24	0	e 22 34	- 4	-		
Leninakan		83.4	311	e 12 41	+11	e 22 55	+ 1			
Sotchi		86.5	313	e 12 43	- 3		-			
Moscow		87.6	326	e 12 56	+ 5	e 23 28	- 4			
Ksara		89.9	303	i13 3	+ 1	e 24 4	+10		-	
Yalta		90.4	314	e 13 2	- 2	e 23 38	[+ 3]	nar-S <del>ale</del> ona		
Helwan	z.	94.0	300	13 21	0		75.5 Au <u>15.55</u> 0015	e 17 9	$\mathbf{PP}$	
Triest	1945	104.3	318	e 18 38	$\mathbf{PP}$					
Hungry Horse		105.9	37	e 14 42	Р			e 14 47	$\mathbf{P}$	
Stuttgart		106.0	323	e 18 32?	[+7]	e 26 21	+11	e 18 49	$\mathbf{PP}$	e 57·0
Rome		106.4	315	e 18 44	· PP					
Overton	z.	110.0	49	e 18 56	$\mathbf{PP}$					
Kew	0.777.5	110.1	328			e 29 46	PPS			e 59·0
Bogota		156.8	70	i 20 36	PKP,					
La Paz		159.6	132	20 20	PKP.	10 <del>11-11</del> 1	$\rightarrow$			76.0

Additional readings :--

×.

Riverview eZ =11m.30s., eS?E =17m.49s., eQE =22m.14s.

Irkutsk eSS = 21m.0s.?

Tashkent  $S_cS = 20m.21s.$ ?

Helwan eZ = 13m.43s.

Long waves were also recorded at Wellington, Tucson, Weston, Seven Falls, and at other European stations.

March 27d. Readings also at 1h. (near Bogota), 2h. (College, Boulder City, Overton, Pierce Ferry, Tucson, Pasadena, Riverside, Palomar, Tinemaha, and Stuttgart), 3h. (Kew, near Obi-garm and Stalinabad), 4h. (Ksara, Bombay, Calcutta, Kodaikanal, and New Delhi), 5h. (Overton), 6h. (near Bologna and Florence), 7h. (Ottawa, Stuttgart, near Bologna, Florence, and near Tacubaya), 8h. (Tacubaya, Palomar, Tchimkent, Samarkand, near Obi-garm, Stalinabad, Stuttgart, Padova, Salo, near Bologna (2) and Florence), 9h. (near Bologna (2), and near Tacubaya), 10h. (near Bologna and near Obi-garm), 11h. (near Tacubaya), 16h. (College), 17h. (near Tucson), near Grozny, Erevan, Piatigorsk, Leninakan, and Sotchi), 19h. (Ferndale), 22h. (Hungry Horse and near College), 23h. (Auckland, Tashkent, Obi-garm, Stalinabad, Samarkand, Frunse, and near Andijan).

March 28d. 6h. Undetermined shock.

Tamanrasset Z = 32m.51s. Stuttgart eZ = 33m.54s., 34m.9s., 35m.45s., and 47m.52s., eL = 80m. Strasbourg e = 33m.56s., e? = 34m.45s. and 60m.30s., e = 73m.30s. and 75m.0s., L = 85m. Vladivostok eP = 42m.9s. Andijan eP = 43m.46s. Stalinabad iP = 43m.48s., iS = 51m.8s.Tashkent eP =43m.49s.?, ePcP =44m.57s., ePP =45m.37s., eS =51m.16s.? Obi-garm iP = 43m.53s. Shasta Dam i = 44m.26s. Sverdlovsk eP = 45m.28. Hungry Horse iP = 45m.13s. Samarkand ePP = 45m.41s.College e = 47m.40s.Pierce Ferry iP = 49m.31s. Long waves were also recorded at Clermont-Ferrand, De Bilt, Potsdam, and Rome.

March 28d. 12h. 50m. 33s. Epicentre 13°·3N. 120°·4E. (as on 1944, Aug. 14d.).

A = -.4926, B = +.8397, C = +.2287;  $\delta = +5$ ; h = +6;  $D = + \cdot 863$ ,  $E = + \cdot 506$ ;  $G = - \cdot 116$ ,  $H = + \cdot 197$ ,  $K = - \cdot 974$ .

		$\wedge$	Az.	Р.	0-C.	S.	0 – C.	Supp.	L.
			•	m. s.	s.	m. s.	s.	m. s.	m.
Batavia		23.6	216	i 5 12	- 1	i912	-13		
Vladivostok		31.3	17	e 6 20	- 4				
Calcutta	E.	31.8	291	e 6 44	+16	i 11 40	+ 2	e 7 58 PPP	
Colombo	E.	40.4	265	7 37	- 4	13 47	- 3		21.4
Hyderabad	N.	40.6	281	e748	+ 5	13 54	0	17 2 SS	Country of

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1.1

	1949					150					
	Irkutsk New Delhi Poona Bombay Almata	N. E,	∆ • 41.0 42.9 45.0 45.9 47.7	Az. 345 298 283 283 318	$\begin{array}{c} \mathbf{P.}\\ \mathbf{m. s.}\\7 & 44\\ \mathbf{e} & 8 & 16\\ \mathbf{e} & 8 & 27\\ \mathbf{e} & 8 & 44?\\ \end{array}$	0-C. -2 -3 +1 +4	S. m. s. 13 55 14 14 14 49 1 15 10	0 - C. 8. - 4 - 13 - 9 - 1	m. s. e 9 50 i 17 34	pp. PeP SS	L. m. 18·5 21·6
	Murgab Frunse Andijan Obi-garm Stalinabad		$48.1 \\ 49.2 \\ 50.0 \\ 51.3 \\ 52.0$	$311 \\ 316 \\ 312 \\ 309 \\ 309$	$\begin{array}{r} 8 & 44 \\ e & 9 & 1 \\ 1 \\ 1 & 9 & 3 \\ 1 & 9 & 11 \end{array}$	$+ \frac{1}{9}$ $- \frac{5}{2}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	-3 -4 -6 -4	$e 1\frac{2}{5}$	ScS	
72	Tchimkent Samarkand Riverview Ashkabad Sverdlovsk		$52 \cdot 4 \\ 53 \cdot 6 \\ 55 \cdot 3 \\ 60 \cdot 1 \\ 62 \cdot 6$	$314 \\ 310 \\ 149 \\ 306 \\ 328$	e 9 16e 9 38 ?e 10 11i 10 25	$+\frac{0}{13}$ $-\frac{0}{3}$	16 39? e 17 17 i 18 50	$-\frac{3}{-\frac{4}{-6}}$	e 17 34 e 19 5	$\frac{1}{PS}$	e 24·4
	Grozny Sotchi Moscow Yalta Ksara		$69 \cdot 9 \\ 74 \cdot 2 \\ 75 \cdot 0 \\ 78 \cdot 1 \\ 78 \cdot 2$	$312 \\ 312 \\ 325 \\ 313 \\ 302$	e 11 23 e 11 29 e 11 43 e 12 7 e 11 40	$^{+\ 8}_{-\ 11}$ $^{+\ 2}_{+\ 5}$ $^{-\ 23}$	e 21 10 e 21 16 e 21 57	$\frac{S_cS}{-\frac{7}{0}}$	 i 12 6	= P	
	College Istanbul Helwan Upsala Copenhagen		78.8 82.4 82.7 84.9 88.9	$\begin{array}{r} 26 \\ 310 \\ 299 \\ 330 \\ 328 \end{array}$	e 12 4 e 12 11 e 12 27	$-\frac{2}{-14}$	e 22 33 e 22 41 e 22 52 23 24	$-\frac{8}{-3}$ -14 -20	e 23 25 e 22 55	$ \mathbf{PS}_{\mathbf{S}} $	e 36.5 41.5
	Jena Triest Scoresby Sund Stuttgart Salo		$\begin{array}{r} 91 \cdot 1 \\ 91 \cdot 9 \\ 92 \cdot 5 \\ 93 \cdot 5 \\ 94 \cdot 0 \end{array}$	323 318 349 321 318	e 13 8 e 13 22 20 27 e 13 17 e 13 20	$+11 \\ +11 \\ -2 \\ -1 \\ 1$	i 23 58 { 23 43 [ e 23 45 [ e 23 44 ]	+ 3 - 4] - 8] - 12]	i 23 37 25 33 e 17 5	sks PS PP	e 49·4
	Rome De Bilt Strasbourg Aberdeen Paris	Е.	$\begin{array}{r} 94 \cdot 1 \\ 94 \cdot 5 \\ 94 \cdot 5 \\ 95 \cdot 3 \\ 97 \cdot 4 \end{array}$	$315 \\ 326 \\ 322 \\ 333 \\ 323$	e 13 16 e 13 23 i 13 36	$-\frac{6}{0}$ $-\frac{1}{1}$	i 23 51 [ e 31 273 e 24 32	$\begin{bmatrix} -5\\ SSP\\ -2\\ -\end{bmatrix}$	30 57 e 17 13 e 42 39 i 17 34	SS PP Q PP	e 47·4 44·4 e 50·2 e 51·4
	Clermont-Ferran Kew Pretoria Hungry Horse Granada	d z.	$\begin{array}{r} 97.6\\97.6\\97.6\\102.0\\107.3\end{array}$	$320 \\ 327 \\ 246 \\ 33 \\ 316$	e 13 54 e 13 32 e 13 37 e 13 55	$^{+16}_{-6}$ $^{-1}_{-2}$	e 23 54 [ 	$-\frac{\overline{21}}{\overline{3}}$	e 17 44 e 36 0	sss 	e 50·4 56·7
	Overton Boulder City Pierce Ferry Tucson	z.	$108.4 \\ 108.5 \\ 108.9 \\ 113.3$	44	e 19 4 e 15 6 e 18 52 e 19 24	PP P PP PP			= e 19 48	PP	e 56·0
	Additional read Irkutsk ePP New Delhi il Poona iE =8 Bombay eSN Riverview e8 Sverdlovsk i Helwan eZ = Stuttgart eZ Rome ePiZ Strasbourg 31m.11s Paris i =13m Kew eSSSEN Long waves	=91 M=1 M=1 S?H ScS = 12n =13 =13 e = 1 .498 V=4	n.35s.? 17m.54s 3s. and 5m.7s. c = 21m = 20m.1 1.44s. 3m.35s. m.30s., 3m.29s i = 42.4 i.	9m.0 .46s. 1s. i = 24 ., 13 m.	0m.57s. m.16s., PS m.39s., 22 =44m.36s.	2m.54s.,	and 23m			A UR-10-0040 B	

5

220

1.4

e)

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

## 1949

13

# 151

March 28d. Readings also at 0h. (Batavia, Samarkand, near Obi-garm and Stalinabad), 3h. (Ksara, Grozny, Sverdlovsk, Obi-garm, Stalinabad, and Vladivostek), 5h. (Ksara), 7h. (Kew), 8h. (La Paz), 10h. (College and Tucson), 13h. (Hungry Horse and Pierce Ferry), 15h. (Overton), 16h. (Tucson (2), Boulder City (3), Pierce Ferry (3), Shasta Dam (5), Ukiah, Hungry Horse (3), College, Salt Lake City, and near Obi-garm), 17h. (Shasta Dam and Hungry Horse), 18h. (Tucson, Overton, Pierce Ferry (2), Shasta Dam (2), Salt Lake City, Ukiah, Hungry Horse (2), Jena, and Stuttgart), 19h. (Kew, Riverside, Tucson (4), Boulder City (3), Overton (2), Pierce Ferry (4), Ukiah (2), Fresno, Santa Clara, Shasta Dam (4), Seattle, Victoria, Hungry Horse (4), College (3), Rapid City (3), Bozeman, Butte, Logan, Salt Lake City, Saskatoon,

Lincoln, Ottawa, and Seven Falls), 20h. (Paris, Philadelphia, Chicago, Salt Lake City, Hungry Horse (2), and College), 21h. (near Rome), 22h. (near Andijan), 23h. (Tucson, Boulder City, Pierce Ferry, Shasta Dam, Ukiah, Salt Lake City, Hungry Horse, and near Messina).

March 29d. 2h. 53m. 37s. Epicentre 2°.2N. 126°.9E. (as on 1945, Feb. 6d.).

Doubtful identification.

A = -.6000, B = +.7991, C = +.0382;  $\delta = +2$ ; h = +7; D = +.800, E = +.600; G = -.023, H = +.031, K = -.999.

		Δ	Az.	Р.	O - C.	s.	O - C.	Su	pp.	L.
		0	0	m. s.	s.	m. s.	8.	m. s.		m.
Vladivostok		41.0	6	e 7 45	- 1	i 13 52	- 7		1977 C	
Riverview	E.	42.5	149			e 14 56	+34	e 17 58	SS	e 22·2
Andijan		62.3	316	e 10 25	- 1					
Obi-garm		63.4	313	e 10 36	$+ \hat{2}$					
Stalinabad		64.1	313	e 10 35	- 3		-	i 20 19	$s_cs$	
Samarkand		65.7	313	e 10 33	-15					
Sverdlovsk		75-3	329	11 40	- 7	21 21	- 5		-	
Grozny		82.0	313	e 12 28	+ 5					
Leninakan		83.3	311	e 12 41	+11	-				<del>,</del> .
Moscow		87.8	326	e 12 58	+ 6	e 23 38?	+ 4			
Ksara		89.6	304	e 13 3	+ 2	e 23 59	+ 8			22755
Kew		110.4	328	e 11 6	8	e 23 42	3			e 58·4

Riverview gives also eN = 15m.0s.

Long waves were also recorded at Batavia, Wellington, Potsdam, De Bilt, Paris, and Clermont-Ferrand.

March 29d. Readings also at 0h. (Hungry Horse and Pierce Ferry), 1h. (near Obi-garm), 2h. (Collmberg, Belgrade, and Shawinigan Falls), 3h. (Ksara and Hungry Horse), 6h. (Boulder City), 8h. (near Hungry Horse), 9h. (College, Hungry Horse, and Pierce Ferry), 10h. (Belgrade), 11h. (Belgrade and near Obi-garm), 12h. (Overton, near Stalinabad and Obi-garm), 15h. (Harvard, Hungry Horse, near Berkeley, Branner, Lick, and San Francisco), 18h. (near Obi-garm and Stalinabad), 21h. (College), 22h. (Tucson, Boulder City, Pierce Ferry, Shasta Dam, and Hungry Horse).

March 30d. 14h. 47m. 43s. Epicentre 17°.0S. 177°.0W. (as on 1948, July 24d.).

A = -.9556, B = -.0501, C = -.2906;  $\delta = +13$ ; h = +5; D = -.052, E = +.999; G = +.290, H = +.015, K = -.957.

		$\triangle$	Az.	P. m. s.	0 - C.	S. m. s.	о – С. s.	m. s.	op.	L. m.
Apia Auckland Arapuni Wellington Kaimata	N. E. NE.	$6.0 \\ 21.1 \\ 22.0 \\ 25.2 \\ 27.3 $	$     \begin{array}{r}             60 \\             198 \\             195 \\             195 \\             200 \\         \end{array} $	$     \begin{array}{r}       1 & 24 \\       3 & 57 \\       5 & 38 \\       5 & 52 \\     \end{array} $	$-\frac{8}{-51}$ + 9 + 4	i 8 38 9 29 9 43	$-\frac{1}{+33}$ -9	$i \frac{\overline{5}}{\overline{6}} 0 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\$	P pP	e 3.6 9.7 12.3
Brisbane Riverview Batavia Berkeley Pasadena	Е.	$29.6 \\ 33.1 \\ 75.0 \\ 75.0 \\ 75.6 \\ 75.6 \\ $	$244 \\ 233 \\ 269 \\ 42 \\ 47$	i 6 7 i 11 41 e 11 50	$-\frac{2}{-4}$ + 2	e 10 58 i 12 3 i 21 32 i 22 27	- 6 + 4 + 9 + 4	$i \begin{array}{c} i \begin{array}{c} 7 & 10 \\ 12 & 22 \\ - \\ - \\ - \end{array}$		i 13·1 e 14·9 e 31·0 e 31·0

Continued on next page.

8.1

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1949					152					
Riverside Shasta Dam	z. z.	∆ 76.0 76.1 76.1 76.5 76.8	Az. 324 48 48 39 40	P. m. s. i 11 52 i 11 53 e 11 53 e 11 55 i 11 55 i 10 11	0-C. s. + 12 + 22 + 12 + 12 *	s. e 21 31	0 - C. 8. - 3 	m. s.	pp	
Tinemaha Reno Boulder City Pierce Ferry Tucson	z. z.	$77 \cdot 1$ 77 \cdot 5 78 \cdot 9 79 \cdot 6 80 \cdot 0	$44 \\ 43 \\ 47 \\ 47 \\ 51$	e 11 57 e 12 5 e 11 56 e 12 7 e 12 13	$+ {                                   $	e 23 24		= e 15 38		e 36
Logan College Tacubaya Hungry Horse Irkutsk		83 · 8 84 · 6 85 · 8 96 · 5	$43 \\ 12 \\ 68 \\ 36 \\ 322$	e 12 43 e 12 33 i 12 34 i 12 41 e 13 52	$^{+11}_{-3}_{-2}_{-1}_{+20}$	e 23 47 e 22 30 24 43	$-\frac{\overline{PS}}{-33}$	e 15 10	PP	e 36
St. Louis Calcutta La Paz Colombo Kodaikanal	Е. Е. Е.	and the same states of	$52 \\ 291 \\ 113 \\ 273 \\ 276$	e 13 41 e 18 57 e 13 25 17 173 e 18 54	+ 2 ? -34 PP	e 25 7 e 27 2 27 39	$\frac{+3}{PS}$	e 26 50 18 49	PS PP	48
New Delhi Bombay San Juan Bermuda Stalinabad	N.	$111.6\\114.0\\114.5\\117.5\\119.2$	$294 \\ 284 \\ 77 \\ 62 \\ 305$	e 19 35 e 14 51 e 18 55	PP P [+4]	e 26 54 e 25 46 e 29 47 e 36 42	$\{+38\}\ -16]$ [+16] PS SS	e 45 46 e 29 9 e 20 11	$\frac{Q}{PS}$ PP	e 51 e 51 e 51
Sverdlovsk Ivigtut Scoresby Sund Copenhagen Durham		$121.6\\123.0\\124.4\\140.7\\142.1$	$327 \\ 27 \\ 11 \\ 353 \\ 4$	20 59 22 59 e 23 15	PP PP PKS		ss [-31]  [-38]			5) 6)
Collmberg De Bilt Kew Prague Ksara		$144 \cdot 9 \\ 144 \cdot 9 \\ 145 \cdot 5 \\ 145 \cdot 8 \\ 145 \cdot 1 \\ 146 \cdot 1$	$348 \\ 357 \\ 348 \\ 306$	e 19 38 e 19 42 i 19 41 e 19 42 (i 19 45)	$\begin{bmatrix} - & 1 \\ + & 3 \end{bmatrix}$ $\begin{bmatrix} + & 1 \\ + & 1 \end{bmatrix}$ $\begin{bmatrix} + & 1 \\ + & 4 \end{bmatrix}$	 (36 11)	) PPS	$e_{25}^{-17}$	SSP PPP	e 7 e 6 e 6 e 5
Istanbul Stuttgart Paris Strasbourg Basle		$147.2 \\ 147.9 \\ 148.3 \\ 148.3 \\ 149.3 \\ 149.3$	$322 \\ 353 \\ 2 \\ 354 \\ 355$	i 19 50 e 19 48 e 19 52 e 19 50 e 19 52	[+ 7] [+ 4] [+ 7] [+ 5] [+ 6]	$ \begin{array}{c}$	SSP PKKS	i 23 15 e 68 178 e 26 33 e 42 56	PKS Q PPP SS	e 7 e 6 6
Zagreb Zürich Chur Neuchatel <b>Triest</b>	z.	$149.3 \\ 149.4 \\ 149.8 \\ 149.9 \\ 150.1$	342 354 353 355 346	e 19 53 e 19 53 e 19 51 e 19 55 e 20 3	$[+7] \\ [+7] \\ [+4] \\ [+8] \\ [+15]$	 i 29 21		 e 23 36	PKS	
Salo Helwan Clermont-Ferranc Pavia Padova	ł z.	$150.8 \\ 151.1 \\ 151.3 \\ 151.4 \\ 151.6$	$349\\302\\0\\350\\347$	e 19 55k e 19 57 e 19 54 e 19 57 e 20 53	$[+ 6] \\ [+ 8] \\ [+ 5] \\ [+ 7] \\ [+ 63] \end{bmatrix}$	e 44 2	PSS	e 23 27 e 23 50 e 23 35 e 23 33	PP PP PP	7
Florence Prato Rome Tortosa Toledo		$152.4 \\ 152.4 \\ 153.9 \\ 156.2 \\ 156.4$	$347 \\ 347 \\ 344 \\ 4 \\ 14$	$egin{array}{cccc} { m e} & 20 & 1 \\ { m e} & 19 & 59 \\ { m e} & 20 & 9 \\ 20 & 38 \\ 20 & 7 \end{array}$	[+10] [+ 8] [+16] PKP ₁ [+10]	e 25 44?	PS	$\begin{array}{r} - \\ e & 24 & 17 \\ 24 & 3 \\ e & 24 & 12 \end{array}$	PKS PKS PP	е 6 7
Alicante Granada Almeria Tamanrasset	z.	$158.5 \\ 159.1 \\ 159.7 \\ 173.8 \\$	$     \begin{array}{r}       7 \\       15 \\       12 \\       338 \\     \end{array} $	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{bmatrix} -15 \\ -28 \end{bmatrix} \\ \begin{bmatrix} -28 \\ -28 \end{bmatrix} \\ \begin{bmatrix} +5 \end{bmatrix}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	[- 9] SS SS PKP	24 29 23 38 e 25 39	PP PKS PP	е 7 7 8

12.1 ē.

Additional readings and note :--Apia eZ = 1m.37s. Auckland i = 4m.3s., S?N = 7m.56s. Wellington PPZ = 6m.22s., PcP = 6m.41s., i = 11m.41s. Brisbane i = 6m.25s., iSN = 11m.2s., iSSE = 12m.36s.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

## 1949

158

```
Riverview iSSSN? = 14m.29s.
Berkeley eN = 22m.41s.
Reno eE = 12m.9s.
Pierce Ferry i = 13m.10s.
Tucson e = 12m.17s., 12m.26s., 12m.46s., 13m.24s., 15m.31s., and 19m.0s.
Logan e = 14m.33s.
Tacubaya esS = 23m.28s., e = 27m.4s.
Hungry Horse i =14m.2s.
St. Louis e = 28m.32s., i = 37m.15s.
New Delhi eN = 31m.54s.
San Juan e = 20m.40s.
Collmberg eE = 19m.42s.
Ksara readings reduced by 30m.
Stuttgart iPKPZ = 19m.54s.k, eZ = 20m.8s., 20m.39s., and 21m.54s.
Paris iPKP = 19m.56s., i = 20m.10s., 20m.54s., 21m.54s., and 21m.59s., e = 28m.31s.,
    and 32m.16s.
Strasbourg e = 20m.40s., 21m.35s., 21m.39s., 31m.25s., and 32m.37s., eSSS? = 48m.47s.
Zagreb e = 19m.56s., eE = 20m.3s.
Zürich e = 20m.46s.
Triest ePKP, =20m.43s., ePP =22m.54s., iPS =33m.59s.
Salo eZ = 20m.47s.
Helwan eZ = 20m.11s. and 20m.25s.
Clermont-Ferrand e = 22m.2s., Q = 62 \cdot 3m.
Tortosa pPP?EN =25m.35s., SSSE =50m.26s.
Toledo eZ = 20m.31s.
Granada PKP<sub>2</sub> = 20m.44s.k.
Almeria PKP<sub>1</sub> = 20m.7s., PPP = 27m.18s., PPS = 36m.48s.
Long waves were also recorded at Honolulu, Tananarive, and other American and
    European stations.
```

1

;

March 30d. Readings also at 0h. (Frunse, Samarkand, Tchimkent, near Andijan, Murgab, Obi-garm, Stalinabad, near Basle and Zürich), 1h. (near Tucson), 2h. (near Balboa Heights), 3h. (Collmberg, Stuttgart, Palomar, Pasadena, Riverside, Tinemaha, Tucson, Boulder City, Pierce Ferry, Shasta Dam, Hungry Horse, and College), 5h. (La Paz, Balboa Heights, Bogota, Bermuda, San Juan, Palomar, Tucson, Boulder City (2), Pierce Ferry (2), Hungry Horse, and near Granada), 7h. (Klyuchi), 8h. (Palomar, Tucson, Boulder City, Pierce Ferry, Hungry Horse, College, Almata, Murgab, and Stalinabad), 9h. (Santa Lucia, Mount Wilson, Palomar, Riverside, Tinemaha (2), Tucson, Boulder City, Pierce Ferry, Hungry Horse, and College), 10h. (Hungry Horse), 11h. (near College), 12h. (Ivigtut, Reykjavik, Kew, Paris (2), Messina, Frunse, Tchimkent, near Andijan, Murgab, and Stalinabad), 13h. (De Bilt, Clermont-Ferrand, Scoresby Sund, and College), 14h. (Kew and Paris), 15h. (Hungry Horse and near Zürich), 18h. (Hungry Horse, Strasbourg, and Stuttgart), 19h. (De Bilt, Kew, Paris, Potsdam, and Overton), 20h. (Pretoria, Scoresby Sund, Ottawa, Philadelphia, Bozeman, Butte, Logan, Rapid City, Fresno, Overton, Mineral, Shasta Dam, Reno, Hungry Horse, Saskatoon, Seattle, Victoria, Mount Wilson, Pasadena, Palomar, Riverside, Tinemaha, Tucson, and near Almata), 21h. (Stuttgart, Strasbourg, Kew, New Delhi, Ashkabad, Grozny, near Almata, Andijan, Frunse, Murgab, Obi-garm, Samarkand, Stalinabad, and Tchimkent), 22h. (near Samarkand, Andijan, Obi-garm, and Stalinabad), 23h. (Murgab, Samarkand, near Andijan), Obi-garm, Stalinabad, and near Klyuchi).

March 31d. 21h. 40m. 2s. Epicentre 5°.4S. 151°.3E. (as on 27d.).

		Δ	Az.	Р.	0-C.	s.	0 – C.	Su	pp.	L.
			•	m. s.	8.	m. s.	<b>S</b> .	m. s.		m.
Brisbane		22.4	175	i4 56	- 6	i 8 55	- 9			
Riverview		28.6	180	e 6 13	+13	i 10 40	- 8	e 6 51	$\mathbf{PP}$	e 14·5
Auckland	N.	38.3	149	e 9 58?	4		a ( <del>200</del>			
Arapuni	E.	39.6	149			e 17 58				<del></del>
Andijan		84.9	312	i 12 39	+1	e 22 58	- 8	-		
Stalinabad		87.3	310	i 12 48	- 2	e 23 17	[+ 1]			
Shasta Dam		90.5	49	i 13 34	+29	9 <u></u> 2				
Mineral	Z.	91.0	49	i13 6	- 1					
Reno	z.	92.3	50	e 13 14 a	+ 1				_	
Pasadena		93.2	56	i 13 17	0			i13 38	pP	
Tinemaha		93.4	53	i 13 18	0	( <del></del> )				
Riverside	z.	93.9	56	i 13 20a	- 1			1 13 41	pP	
Palomar		94.3	57	i 13 24	+ 1					
Sverdlovsk		94.6	327	e 13 23	- 1	e 23 42	[-17]	e 17 16	PP	
Boulder City		96·1	54	i 13 30	- 1		—			

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1.40			•
ा	ч	а	ч.
. <b>R</b>	v		Υ.

154

	$\triangle$ Az		s. P.	0-C.	s.	0 – C.	Supp.		L.
	•	0	m. s.	s.	m. s.	8.	m. s.		m.
Overton z.	96.4	54	e 13 31	- 1			i 16 52	$\mathbf{PP}$	
Pierce Ferry	96.8	54	i 13 33	- 1					-
Hungry Horse	96.9	41	i 13 33	- 1					
Tucson	99.3	57	i 13 46	+ 1					e 43·4
Ksara	113.9	304	e 19 31	$\mathbf{PP}$	28 47	$\mathbf{PS}$			_
Scoresby Sund	114.5	357	-		29 34	$\mathbf{PS}$	36 4	SS	56.0
Pretoria z.	116.9	238	i 18 47	[ 0]					
Ottawa z.	122.7	37	e 18 56	(-2)					
Triest	125.3	324	e 19 43	(+40)	e 30 58	PS			172.0
Stuttgart	125.9	329	e 19 4	( Oj		- <u>-</u>	e 21 0	$\mathbf{PP}$	e 65·0
Strasbourg	126.7	330	i 19 7	[+ 1]	e 30 58	PS	i 21 6	$\mathbf{PP}$	e 62·0
Chur	126.9	and the second se	(e 19 7)	1 + 11					
Weston	127.0	38	e 19 5	1- 11					
Salo	$127 \cdot 2$	326	e 19 6	[- i]	Sec. 1	_			
Basle	127.5	329	· · · ·	· _ ·	e 27 58	(- 5)	e 36 54	\$	_
Kew	128.1	337	e 19 2	[- 6]	e 22 24	PKS	e 43 16	SSS	e 64·0
Rome	128.2	321	e 22 24	PKS			e 41 58?	SSS	
Paris	129.0	333	i 19 10	[ 0]	e 22 28	PKS	e 21 23	$\widetilde{\mathbf{PP}}$	e 69·0
Clermont-Ferrand	130.9	331	e 19 17	1 + 31	e 22 45	PKS	e 21 35	$\mathbf{\hat{P}}\mathbf{\hat{P}}$	70.0
La Paz Z.	135.5	120	i 19 14	i - 8i	i 23 12	PKS	_	<u> </u>	
Tamanrasset z.	142.6	302	e 19 34	$\hat{\mathbf{i}} - \hat{\mathbf{i}}\hat{\mathbf{j}}$					
Fort de France	146.7	71	e 19 53	[+11]					

Additional readings :--Brisbane iN =5m.25s., iZ =5m.28s. Riverview iN =8m.20s., iNZ =11m.3s., eQEN =11m.16s. Reno eE = 13m.40s. Sverdlovsk ePS = 25m.30s.?, eSS = 31m.22s. Stuttgart eZ = 19m.16s. and 24m.28s. Strasbourg e = 21m.22s. and 33m.58s. Chur reading has been increased by 8m. Weston e = 19m.19s. Salo e = 20m.5s. Kew eEN =36m.5s., eE = 41m.28s. Long waves were also recorded at Seven Falls, Philadelphia, Bermuda, Wellington, and other European stations.

March 31d. Readings also at 1h. (Granada and near Almeria). 2h. (near Messina), 3h. (near Messina and near Tananarive), 7h. (Samarkand, near Obi-garm and Stalina-

bad), 9h. (Tacubaya, Shasta Dam, and Hungry Horse), 13h. (Florence), 14h. (Durham and near Stalinabad), 16h. (Santa Lucia), 18h. (College, near Andijan, Samarkand, and Stalinabad), 19h. (Logan), 20h. (College), 21h. (Overton, Pierce Ferry, Shasta Dam, Reno, Berkeley, near Branner and Lick), 22h. (Hungry Horse).

1.0.0

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

63

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.





1.1

The scanned images of the bulletins of the International Seismological Summary (ISS) have been obtained as part of a global earthquake relocation project (Villaseñor et al., 1997) initiated with funding from the US National Science Foundation through grant EAR-9725140 and collected by SGA <u>Storia Geofisica Ambiente</u> (Bologna) on behalf of the <u>Istituto</u> <u>Nazionale di Geofisica e Vulcanologia</u> (Rome), in the frame of <u>Euroseismos</u> project.

A digital hypocenter file of the ISS (Villaseñor and Engdahl, 2005) can be obtained from the USGS web site: <u>http://earthquake.usgs.gov/scitech/iss/</u>

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

Villaseñor, A., and E.R. Engdahl, *A digital hypocenter catalog for the International Seismological Summary,* Seism. Res. Lett., vol. 76, no. 5, pp. 554-559, 2005.

Villaseñor, A., E.A. Bergman, T.M. Boyd, E.R. Engdahl, D.W. Frazier, M.M. Harden, J.L. Orth, R.L. Parkes, and K.M. Shedlock, *Toward a comprehensive catalog of global historical seismicity*, Eos Trans. AGU, vol. 78, no. 50, pp. 581, 583, 588, 1997.