These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

The International Feismological Hummary. 1945 Inly, August, Feptember.

INTERNATIONAL GEODETIC AND GEOPHYSICAL UNION.
ASSOCIATION OF SEISMOLOGY.
FORMERLY THE BULLETIN OF
THE BRITISH ASSOCIATION SEISMOLOGY COMMITTEE.

The Director of the I.S.S. wishes to express his thanks to U.N.E.S.C.O. and H.M. Treasury for financial support, which has covered the cost and preparation of this volume.

The third quarter of 1945 contains 96 epicentres, 47 of which are repetitions from previous determinations.

Cases of abnormal focal depth are noted below:-

			0	0	
July	1d.	3h.	38.8N.	0.6W.	Suggested Deep.
	9d.	16h.	1.9N.	76.9W.	0.010
	15d.	5h.	17.8N.	146·3E.	0.015
Aug.	1d.	11h.	9·5S.	70·0W.	0.080
Park 10=10.000 (PC	14d.	8h.	Undeterm	ined shock	Suggested Deep.
	19d.	4h.	36.3N.	142·8E.	"
	21d.	10h.	41.5N.	130·5E.	0.080
	21d.	16h.	10.5S.	74.9W.	0.015
	27d.	7h.	22.5N.	143·5E.	0.005
Sept.	2d.	11h.	84·4N.	28·9E.	0.010
	3d.	19h.	33.0S.	71.5W.	Suggested Deep.
	5d.	21h.	5.2S.	152·4E.	0.005
	6d.	1h.	5.2S.	152·4E.	0.005
	6d.	14h.	5·2S.	152·4E.	0.005
41	7d.	15h.	45.7N.	26·8E.	Base of Superficial Layers.
	9d.	12h.	14.0S.	75.0W.	0.005
	10d.	13h.	38.6N.	69·3E.	Suggested Deep.
		15h.		69·3E.	,, ,,
	1.00	16h.		69·3E.	**

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

208

		Second Second		O	
Sept.	11d.	19h.	22·7S.	179·4E.	0.080
	13d.	11h.	33·8S.	70.5W.	Base of Superficial Layers.
	19d.	12h.	42.5N.	144·4E.	Ô·005
	24d.	12h.	7.2S.	155·8E.	0.020
	29d.	4h.	6.0S.	77.0W.	0.005

Thanks are also due to the Director of the Meteorological Office and the Superintendent of Kew Observatory for hospitality extended to the staff and assistance with administration.

> KEW OBSERVATORY, Richmond,

May, 1954.

SURREY

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1945

209

JULY, AUGUST, SEPTEMBER.

July 1d. 3h. 18m. 2s. Epicentre 38° 8N. 0° 6W.

Intensity VII, at Onteniente; VI at Albaida; V at Villena; IV at Jijona, Gandia, Alberique, and Enguera. Epicentre 38°48'N., 0°34'W. Radius of macroseismic area = 65km. Malaga suggests focal depth 25km.

A. Rey Pastor. Estudio Sismotectónico de la Región Sureste de España, Madrid, 1951, macroseismic chart, figure 2.

$$A = +.7814$$
, $B = -.0082$, $C = +.6240$; $\delta = +3$; $h = -1$; $D = -.010$, $E = -1.000$; $G = +.624$, $H = -.007$, $K = -.781$.

	Δ	Az.	P. m. s.	O – C. s.	s. s.	0 – C. s.	m. s.	p.	L. m.
Alicante Tortosa	0·4 2·2	$\frac{170}{23}$	e 0 11	- 2 - 1	1 7	+ 1	0 44	$\mathbf{P}_{\mathbf{f}}$	=
Almeria Granada Toledo	$2 \cdot 4 \\ 2 \cdot 9 \\ 2 \cdot 9$	$217 \\ 236 \\ 294$	0 44 0 58 i 0 30	P ₈ -18	1 38 1 34	S.			Ξ
Malaga San Fernando E. Coimbra Clermont-Ferrand	3·7 5·0 6·2 7·5	237 244 285 21	e 1 0 e 1 38 e 1 54	+ 3 + 1	i 1 44 e 2 35 e 2 44 i 4 20	- 1 S* - 4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	P* S*	4·7 e 4·9
Uccle	12.5	13		_	e 6 101	$+\tilde{4}7$		-	e 7·1

Additional readings :-Tortosa P.S.N = 0m.58s.

Malaga $iP_{z} = 1m.15s.$, iS = 1m.56s.

Coimbra i = 3m.25s.

Long waves were also recorded at De Bilt.

July 1d. Readings also at 1h. (Kew), 3h. (Collmberg, Prague, Triest, Strasbourg, Zürich, Basle, San Fernando, near Malaga (4), Tortosa (2), Barcelona, and Alicante (4)), 6h. (Balboa Heights), 9h. (Collmberg, Sofia, Bucharest, Ksara, and near Yalta), 10h. (Triest, Bogota, and Balboa Heights), 12h. 14h, and 15h,(2) (near Collmberg and Jena), 18h. (Tucson, La Paz, and La Plata), 20h. (near Andijan), 21h. (near Branner and Lick, and near Bogota), 23h. (St. Louis).

July 2d. 8h. 30m. 37s. Epicentre 18° 2N. 110° 0W.

$$A = -.3251$$
, $B = -.8933$, $C = +.3104$; $\delta = +2$; $h = +5$; $D = -.940$, $E = +.342$; $G = -.106$, $H = -.292$, $K = -.951$.

	92	Δ	Az.	P. m. s.	0 – C.	S. m. s.	O C.	m. s.	pp.	L, m.
Tacubaya	N.	10.3	82	i 2 52?	+20	e 5 59	+35	. 	_	i 5.7
Tucson		14.0	357	i 3 16	- 6	e 5 47	-12	i 3 33	\mathbf{pP}	e 6·4
La Jolla		16.0	337	e 3 45	- 3	-		_		_
Palomar		16.3	339	e 3 49	- 3	_				
Riverside		17.1	339	i 4 5	- 3 + 3	-			-	
Mount Wilson	z.	17.5	339	e 4 7	0	-		_		 8
Pasadena	5555	17.5	339	e 4 6	- 1	e 7 19	- 2	-	1	
Boulder City		18.2	348	1 4 14	- 2	e 7 40	+ 3	-	-	e 9.4
Pierce Ferry		18.2	350	1 4 13	- 3		_		-	_
Santa Barbara	z.	18.4	335	e 4 21	+ 3	-	-	-	1	
Overton		18.7	349	i 4 20	- 2		_	2	_	
Haiwee		19.2	341	e 4 29	+ 1	****	-			
Tinemaha	Z.	20.2	341	i 4 34	- 5		-	-	14.44	
Santa Clara		21.8	334	e 5 4	+ 8	e 9 3	+11	_	-	-
Berkeley		22.4	334	i 5 7	+ 5	i 9 11	+ 7	-		e 11·1

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1945

210

		Δ	Az.	Ρ.	O-C.	s.	0 -C.	Suj	op.	L.
		٥	0	m. s.	s.	m. s.	s.	m. s.	58000	m.
Logan Ukiah		23·5 23·8	357 335	e 4 57 e 5 38	$-15 \\ +23$	e 8 51 (e 9 39)	$-32 \\ +11$	e 9 8	sS	e 11·2 e 9·6
Shasta Dam		24.8	338	e 5 30		(6 0 30)	T 11			6 5 6
Rapid City		26.4	12	5 42	$^{+}_{+}$ $^{5}_{2}$	e 10 8	- 4	-		e 13.3
Florissant	E.	26.7	36	-	-	e 10 3	-14	e 11 44	SS	e 13·2
St. Louis		26.7	36	e 5 41	- 2	e 10 18	+ 1	e 11 14	SS	e 13·2
Bozeman		27.4	358	e 6 31	PP	e 10 9	-19	e 11 51	SS	e 13·0
Butte		27.8	356	-		e 10 31	- 4		_	e 15·4
Chicago		30.3	33	*****		e 11 6	9		-	e 14.7
Philadelphia		37.0	47			e 12 49	-10			e 14·9
Ottawa		39.3	38	-	-	e 11 33	?	-		15.4
San Juan		41.6	82	e 7 58	+ 7	e 13 58	-10	-	-	e 18.9
Honolulu		45.0	282		11	e 17 29	3	1,000	-	e 21.0

Additional readings:—
Tucson i = 3m.53s.
Palomar iZ = 4m.3s, and 4m.10s.
Pasadena iNZ = 4m.17s., i = 4m.24s.
Boulder City i = 4m.57s.
Pierce Ferry i = 4m.55s.
Overton i = 4m.34s., e = 5m.46s.
Logan e = 5m.34s.
Florissant eSN = 10m.16s., eN = 11m.2s.
St. Louis eS?E = 10m.2s.

San Juan e = 8m.56s.

1 Palomar

 \mathbf{II}

Long waves were also recorded at Sitka, Huancayo, La Paz, De Bilt, and Kew.

July 2d. 8h. 51m. 36s. Epicentre 18°·2N. 110°·0W. (as at 18h. 30m.).

		Δ	Az.	P. m. s.	0 – C. s.	S. m. s.	O – C.	L. m.
Tucson		14.0	357	i 3 17	- 5	_		i 6.5
Palomar	Z.	16.3	339	e 3 51	- 1	-	-	
Riverside	Z.	17.1	339	i 4 6	+ 4	_	-	
Mount Wilson	Z.	17.5	339	e 4 12	+ 5	-	1	-
Pasadena		17.5	339	e 4 12	+ 5		-	_
Boulder City		18.2	348	i 4 15	- 1	i 7 27	-10	i 12·4
Pierce Ferry		18.2	350	i 4 13	- 3	i 7 26	-11	
Overton		18.7	349	1 4 21	- 1	e 7 31	-17	e 12.8
Triest	E.	98.6	36		-	e 26 51	\mathbf{PS}	-

Long waves were also recorded at Huancayo and San Juan.

July 2d. Readings also at 3h. (near Bogota), 5h. (San Juan and Tucson), 8h. (Mount Wilson, Palomar, Tucson, and Riverside), 9h. (Mount Wilson, Palomar, Riverside, Tucson, and St. Louis), 11h. (near Tashkent, Andijan, and near Mizusawa), 12h. (near Andijan and Tashkent), 13h. (near Ottawa and Shawinigan Falls), 15h. (near La Paz), 16h. (Collmberg), 17h. (Harvard), 18h. (La Paz and La Plata), 19h. (near Tashkent), 22h. (near Tucson), 23h. (near Berkeley and San Francisco).

324

324

Continued on next page.

+10

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1945

211

		Δ	Az.	Р.	0 - C.	S.	0 – C.	L.
		0	0	m. s.	8.	m. s.	s.	m.
1 Riverside	z.	8.9	325	e 2 14	7 2		_	
11	z.	8.9	325	i 2 13	+ 1	100		
III	z.	8.8	325	i 2 13	+ ř			
I Mount Wilson	ız.	9.5	323	i 2 20	0	· ·		
II	z.	9.5	323	i 2 20	. 0			
m	z.	9.5	323	i 2 22	+ 2			\
I Pasadena		9.5	322	i 2 20	0	-		e 4.3
11		9.5	322	i 2 20	Õ	*****		e 4·8
III		9.5	322	i 2 25	+ 5			e 4 · 6
I Pierce Ferry		9.6	347	i 2 20	- ī	-		· - <u>-</u>
II		9.6	347	i 2 14	- 7	1 4 45	8.	e 5.0
III		9.6	347	î 2 13	- 8		~_	~~~
I Boulder City		9.7	342	i 2 23	+ 1	e 5 3	s•	e 5·5
II		9.7	342	1 2 20	<u>- 2</u>		~	i 5.1
111		9.7	342	i 2 23	+ 1			e 5.2
I Overton		10.1	345	i 2 28	'n ô	_	-	~~=
		10-1	345	i 2 27	_ ĭ			i 5.5
III		10.1	345	î 2 29	+ î	e 5 12	\mathbf{L}	(e 5·2)
11 Santa Barbara	7.	10-6	318	e 2 30	- 6		-	22 23 23 23 2
I Haiwee	N.	10.9	330	e 2 42	+ 2			_
	***	10.9	330	e 2 41	4 î			
11		10.9	330	e 2 43	$+$ $\hat{3}$			
III		10 0	550	C 2 40	T 9	TOTAL V	(1) == 11 i	1.5
1 Tinemaha		11.9	332	i 2 55	+ 1			
2000		11.9	332	1 2 54	î â			Name of
III III		11.9	332	i 2 54	ŏ			-
I Shasta Dam		16.7	329	i 3 58	⊥ ĭ		2.64	
		16.7	329	e 3 57	ō			
11		10.1	328	6001	ಁ	75 75544		=======================================
1 Rapid City		18.4	19			e 7 46	+ 5	e 10·1
I Bozeman		18.8	0	e 4 24	+ 1	e 8 6	+16	e 10·3
1 Butte		19.2	357	e 4 36	+ 8	e 8 12	+13	e 12·0
I Florissant		21.2	50	e 4 45	- 4	e 8 40	- 1	
III	E.	$21 \cdot 2$	50			• e 8 39	- 2	e 11·0
r St. Louis		21.2	50	e 4 45	- 4	e 8 39	- 2	i 10·0
II		21.2	50	e 4 42	- 7	e 8 37	- 4	e 11·0
III		21.2	50	e 4 40	- 9	e 8 41	0	e 11.0
I Chicago		24.5	45		1	e 9 40	0	e 12.8
i Saskatoon		25.5	6			e 10 18	+21	14.5
1 Columbia		26.9	66	(e 9 58	-22	e 13·9
111		26.9	66	7 1 1 1 1		e 10 21	+ 1	e 14·4
1 Ottawa		33.8	47	e 6 51	+ 5	e 14 30?	SSS	17.5

Additional readings:—
Tucson I i = 1m.39s, and 1m.47s., II i = 1m.43s., III i = 1m.42s. and 2m.49s.

Pierce Ferry II i = 2m.20s., III i = 2m.19s.

Overton II i = 2m.41s. and 2m.47s., III i = 2m.34s. Long waves for one or more of these shocks were also recorded at Tacubaya, Honolulu, San Juan, Bermuda, Kew, Uccle, and other American stations.

- July 3d. Readings also at 1h. (near Lick), 11h. (Branner, Sitka, and near College), 13h. (Auckland and Collmberg), 14h. (Mount Wilson, Pasadena, Palomar, Riverside, and near Tucson), 15h. (Kew, Jena, Collmberg, St. Louis, Tucson, Mount Wilson, Riverside, Tashkent, and near Andijan), 16h. (Tashkent and near Stalinabad), 17h. (Arapuni, Christchurch, Wellington, Riverview, New Delhi, Bucharest, Collmberg, De Bilt, Uccle, Kew, La Paz, Pasadena, Tucson, Sverdlovsk, Tashkent, Andijan, and Irkutsk), 20h. (Collmberg, De Bilt, Uccle, Kew, Clermont-Ferrand, near Basle, and Zürich), 21h. (near Tashkent, Andijan, and Stalinabad, near Apia, and near Tucson), 22h. (Collmberg, De Bilt, Uccle, Mount Wilson, Pasadena, Palomar, Tinemaha, Tucson, Boulder City, Pierce Ferry, St. Louis, near Harvard, and near Mizusawa).
- July 4d. Readings at 9h. (St. Louis and Tucson), 10h. (Boulder City, Overton, Pierce Ferry, Haiwee, Mount Wilson, Pasadena, Palomar, Riverside, Tinemaha, Tucson, and St. Louis), 11h. (Mount Wilson, Pasadena, Palomar, Riverside, Tinemaha, Tucson, and Alicante), 12h. (La Paz, near Berkeley, Branner, and Lick), 15h. (Ksara), 16h. (Philadelphia), 18h. (Collmberg and Ksara), 22h. (Collmberg and near Coimbra).

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1945

212

July 5d. 12h. Panama.

Balboa Heights iP = 2m.56s., e = 12m.24s. Bogota iP = 4m.30s., i = 5m.13s., 6m.28s., and 7m.6s. San Juan iP = 6m.33s., i = 6m.47s., eL = 17m.0s. St. Louis eP?N = 9m.0s., eN = 9m.42s., eSN = 13m.46s., eN = 14m.14s. Tucson iP = 9m.33s., i = 9m.45s., ePP = 11m.1s., ePcP = 12m.2s., eL = 17m.35s. Boulder City eP = 10m.14s., e = 10m.24s. Palomar ePEN = 10m.21s. Mount Wilson ePZ = 10m.24s., iZ = 10m.37s. Chicago ePP = 10m.24s., eS = 14m.26s., eL = 16m.32s. Riverside iPZ = 10m.32s. Tinemaha ePZ = 10m.39s. Malaga iPZ = 14m.6s., eLZ = 48m. Collmberg iZ = 15m.7s. Seven Falls e = 16m., L = 23m. Long waves were also recorded at Pasadena, Kew, and Uccle.

- July 5d. Readings also at 2h. (Collmberg and near Mizusawa), 10h. (Ksara), 13h. (Collmberg and Ksara), 15h. (near Bogota), 19h. (Collmberg), 21h. (near Tucson), 22h. (near Berkeley, Branner, and Lick).
- July 6d. Readings at 0h. (De Bilt and near Bucharest), 2h. (Mount Wilson, Pasadena, Palomar, Riverside, Tucson, St. Louis, Boulder City, Balboa Heights, San Juan, Huancayo (2), and La Paz (2)), 5h. (La Paz), 6h. (near Andijan, Tashkent, and Stalinabad), 12h. (Mount Wilson, Palomar, Tucson, and St. Louis), 13h. (near La Paz), 15h. (near Christchurch), 16h. (Tucson), 17h. (near Andijan and near Seven Falls), 20h. (near Ottawa), 21h. (Riverview), 22h. (near La Paz), 23h. (Zürich).
- July 7d. Readings at 0h. (Berkeley, Belgrade, Triest, Collmberg, Bucharest, Sofia, Copenhagen, and near Lick), 4h. (near Andijan), 5h. (Apia), 11h. (Mount Wilson, Pasadena, and Riverside), 14h. (near Johannesburg), 18h. (Berkeley), 20h. (San Juan), 21h. (Columbia and near Tucson), 23h. (Ksara, near Berkeley, Branner, Fresno, and San Francisco).
- July 8d. Readings at 6h. (Auckland), 11h. (near Andijan), 15h. (La Paz), 18h. (Mount Wilson, Pasadena, Palomar, Riverside, Tucson, Boulder City, Shasta Dam, and Collmberg), 19h. (near Tacubaya and near Bogota), 20h. (near Berkeley, Branner, Lick, and San Francisco), 21h. (near Berkeley), 22h. (Columbia).

July 9d. 11h. 56m. 44s. Epicentre 6° 7N. 78° 9W.

$$A = +.1912$$
, $B = -.9745$, $C = +.1176$; $b = +4$; $h = +7$; $D = -.981$, $E = -.193$; $G = +.023$, $H = -.115$. $K = -.993$.

		Δ	Az.	F	٠.	0 -	C.	s.	0-C.	Su	p.	L.
		0	0	m.	8.	s.		m. s.	s.	m. s.		m.
Balboa Heights		$2 \cdot 2$	344	i 0	38		0	i1 9	+ 3			
Bogota		5.3	113	e 1	18	-	4	i 2 48	S*	i 1 41	$\mathbf{P}_{\mathbf{r}}$	_
San Juan		17.0	46	e 4	3	+	2	i 7 19	+ 9			
Huancayo		19.0	170	e 4	24		2	e 8 1	+ 6	1.500	-	e 11·3
La Paz	z.	25.5	156	5	33	+	1				-	15.7
St. Louis	Z.	33.3	344	e 6	38		3					-
Tucson	126 (076-0)	39.0	316	i 7	30		0	-	-	i 7 37	3	e 23·7
Pierce Ferry		43.4	318	i 8	5		1			i 8 17	3	
Boulder City		43.9	317	i 8	9	-	1	-			ne-	-
Palomar		44.0	313	i 8	11		0	-	-			-
Riverside	Z.	44.7	313	e 8	16		0			i 8 26	3	
Mount Wilson	Z.	45.3	313	e 8	22	+	1	-	-	i 8 26	3	
Pasadena	2007-000	45.3	313	i 8	20	-	1	-	-	i 8 27	3	
Tinemaha		46.8	316	i 8	35	+	2					_
Collmberg	Z.	85.9	39	e 12	41	-	2		_	-	·	

Tucson gives also i =8m.4s. Long waves were also recorded at Columbia.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1945

213

July 9d. 16h. 42m. 8s. Epicentre 1°.9N. 76°.9W. Depth of focus 0.010.

Felt at C. Putamayo in Columbia. Intensity approx. IV. Epicentre 0°.8N. 76°.9W. Mapa sismico y tectónico de Colombia (Banco de la República, Bol. gráfico 7, febrero de 1947).

> A = +.2265, B = -.9735, C = +.0330; $\delta = +9$; h = +7; D = -.974, E = -.227; G = +.007, H = -.032, K = -.999.

	A		ъ	0 - C.	s.	o -c.	Su	NTN:	L.
	- 0	Az.	P. m. s.	s.	m. s.	s. ·	m. s.	ν.	m.
Bogota Balboa Heights Huancayo San Juan Fort de France	$3.9 \\ 7.5 \\ 13.9 \\ 19.5 \\ 20.1$	340 174 30 50	i 0 58 i 1 52 i 3 17 i 4 21 i 4 27	- 1 + 4 + 3 - 1	i 3 15 i 5 54 i 7 52 i 8 3	$\begin{array}{r} - & - & - & - & - & - & - & - & - & - $	i 3 32 8 17	pP ss	i 6·4 i 8·5
La Paz Columbia Bermuda Georgetown Cape Girardeau E.	$20.2 \\ 32.2 \\ 32.4 \\ 36.8 \\ 37.1$	$\begin{array}{c} 155 \\ 352 \\ 18 \\ 359 \\ 342 \end{array}$	i 4 28 a e 7 46 i 7 0 e 7 2	- 1 PPP - 0 - 1	8 15 e 11 25 i 12 37 e 12 34	$+\frac{10}{4} + \frac{4}{7}$	5 13 —	PPP	e 13·2 e 15·0
Philadelphia Pittsburgh St. Louis Florissant Fordham	37·9 38·5 38·5 38·7 38·9	355 342 342 343	i 7 10 i 7 14 i 7 13 i 7 14 i 7 17	$\begin{array}{cccc} + & 1 & \\ - & 0 & \\ - & 2 & \\ - & 1 & \end{array}$	e 12 48 i 13 1 e 13 1 i 12 57 e 13 5	- 5 - 1 - 1 - 8 - 3	e 8 37 e 9 38 i 9 25 i 8 51 e 14 1	PP PcP PP 88	e 15·8
Harvard Chicago Ottawa Tucson Shawinigan Falls	40.7 40.9 43.3 43.9 44.6	346 0 316 4	i 7 32 e 7 31 7 54 i 8 0 8 4	$ \begin{array}{r} 0 \\ 3 \\ 0 \\ 1 \\ 0 \end{array} $	e 13 20 14 10 e 14 16 14 30	- 18 - 3 - 6 - 2	e 8 22 17 523 18 10	SSS pP	e 16·5 22·9 e 17·8
Seven Falls Rapid City Pierce Ferry Boulder City La Jolla	45.3 48.3 48.8 48.8	334 319 318 313	8 8 i 8 29 i 8 34 i 8 37 e 8 40	$ \begin{array}{rrr} $	e 15 14 e 15 31	- 6 - 1	e 11 3 i 8 52 i 10 0 i 10 2	PPP pP PcP PcP	e 18·9 E 18·7
Palemar Riverside Mount Wilson Pasadena Haiwee	48.8 49.5 50.1 50.1 51.0	314 314 314 317	i 8 38k i 8 46k i 8 47k i 8 47k i 8 47k	$\begin{array}{cccc} + & 1 \\ + & 4 \\ & 0 \\ - & 5 \end{array}$	e 15 50	=	i 10 1 i 10 6 i 9 0 i 8 59 i 9 14	PeP PeP pP pP	e 19·6
Santa Barbara Tinemaha Fresno N. Berkeley Shasta Dam	51·3 51·7 52·6 54·8 56·3	313 317 317 316 319	i 8 58 i 9 0 e 9 5 i 9 22 i 9 28	+ 2 + 1 - 1 - 0 - 5	e 16 56	+ 2	i 10 10 i 9 21 e 9 27 i 10 12 i 9 51	PeP pP PeP PP	e 27·9
Grand Coulee Sitka Granada Kew z. Clermont-Ferrand	58.5 71.9 75.6 80.2 81.7	328 331 52 38 44	e 9 45 e 11 8 11 53a i 12 10k i 12 9	- 3 - 6 pP + 9	e 20 4 i 21 7 e 22 61	- 22 - 1 + 9	i 10 32 e 21 22 i 12 39 i 12 48	PcP PPS pP	e 25·4 e 42·0 e 36·9
De Bilt Basle Zürich Chur Jena Copenhagen Collmberg	83.6 84.9 85.5 86.2 87.6 88.1 88.5	37 42 43 39 33	i 12 20k e 12 24 e 12 28k e 12 31k e 12 23 i 12 40 e 12 42	+ 1 - 1 - 1 - 15 - 1	i 22 29 e 22 45 i 23 13 e 23 13	- 2 [+ 4] - 2 - 5	e 13 2 e 13 20	pP PS pP	

Additional readings :-Huancayo iPP = 3m.52s., i = 4m.40s., 5m.5s., and 6m.7s.

San Juan e =5m.6s. and 6m.2s.

Fort de France SSS = 8m.23s. Philadelphia e = 11m.55s.

St. Louis $eS_cPE = 13m.39s.$, iSSSIE = 16m.1s.Florissant iPZ = 7m.17s., iZ = 8m.3s., eZ = 9m.18s., iZ = 9m.34s., eN = 13m.14s. and 13m.57s., iN = 16m.11s., eE = 17m.13s., and 18m.12s.Ottawa eE = 15m.6s.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1945

214

```
Tucson iPP = 9m.43s., e = 10m.30s. Rapid City e = 9m.21s. Pierce Ferry e = 9m.45s. and 9m.58s. Boulder City i = 9m.21s. Palomar iZ = 9m.13s. and 10m.38s. Riverside iZ = 9m.36s. Mount Wilson iNZ = 10m.5s. Pasadena iZ = 9m.19s., iEZ = 9m.37s., iPcPZ = 10m.5s., iZ = 16m.5s. Haiwee iZ = 10m.8s. Tinemaha i = 10m.11s. Shasta Dam iPcP = 10m.11s. Sitka e = 12m.2s., eScS = 22m.0s. Kew ePPZ = 15m.4s., ePSZ = 22m.36s.? Copenhagen 22m.58s. Collmberg i = 12m.45s., e = 16m.10s., eS? = 22m.56s.
```

July 9d. 20h. 22m. 34s. Epicentre 37°·9N. 121°·7W. (as on 1941 September 18d.). Epicentre 37°56'N. 121°47'W. (Berkeley).

$$A = -.4157$$
, $B = -.6731$, $C = +.6117$; $\delta = +5$; $h = -1$; $D = -.851$, $E = +.526$; $G = -.321$, $H = -.520$, $K = -.791$.

		\triangle Az.		Р.	$\mathbf{O} - \mathbf{C}$.	s.	$\mathbf{O} - \mathbf{C}$.	Supp.	
294.0 46 28		0	o	m. s.	8.	m. s.	8.	m. s.	
Berkeley		0.5	266	i 0 19	+ 5	e 0 33	+10	e 0 32	3
Branner		0.6	218	e 0 13	- 2	-		i 0 18	S.
Lick		0.6	176	e 0 8	- 7	i 0 14	-12	(
San Francisco		0.6	258	e 0 18	+ 3	e 0 32	+ 6	(******* **	2
Santa Clara		0.6	203	e 0 10	- 5	i 0 17	- 9		-
Fresno	N.	1.9	127	e 0 42	+ 8	i 0 51	- 8	e 2 31	3

July 9d. Readings also at 1h. (near Lick, Branner, San Francisco, and Berkeley), 10h. (near Collmberg, Jena, and near Tacubaya), 13h. (Tucson, near Pierce Ferry, and Boulder City), 17h. (Collmberg), 19h. (near Malaga, Toledo, and Almeria), 20h. (Collmberg and near Mizusawa), 21h. (near Tucson), 23h. (Clermont-Ferrand, Paris, near Barcelona, and Tortosa).

July 10d. Readings at 3h. (Riverview), 7h. (Balboa Heights and near Mizusawa), 8h. (Balboa Heights), 12h. (near Tananarive), 16h. (La Paz), 19h. (near Mizusawa), 20h. (San Juan and Columbia).

July 11d. 0h. 30m. 34s. Epicentre 59° 2N. 152° 4W.

$$A = -.4560$$
, $B = -.2384$, $C = +.8574$; $\delta = -9$; $h = -9$; $D = -.463$, $E = +.886$; $G = -.760$, $H = -.397$, $K = -.515$.

		Δ	Az.	P.	O - C.	S.	O-C.	Su	pp.	L.
		o	٥	m. s.	8.	m. s.	8.	m. s.	2000	m.
College		6.1	19	i 1 35	+ 1	i 2 56	+11		-	i 3.0
Sitka		9.1	88	i 2 14	0	i 3 52	- 8	i 2 22	\mathbf{pP}	e 4·3
Victoria		20.0	108	4 37	0	8 31	+14			-
Grand Coulee		22-6	104	i 5 3	0	e 8 46	-21			
Saskatoon		26.3	85	6 267	+47	11 267	+75	-		16.4
Shasta Dam		26.4	120	1 5 40	0	e 10 10	- 2	_		i 16.5
Butte		27.1	99	e 6 0	+14	e 10 10	-14	(1111) (V	72.000	e 16·1
Bozeman		28.1	99	e 6 2	+ 7	e 10 8	-32	e 6 40	\mathbf{PP}	e 14·0
Berkeley		28.8	123	e 6 1	- 1	e 10 47	- 4	i 6 15	\mathbf{pP}	
Santa Clara		29.4	123	e 6 2	- 5	e 10 41	-20		-	_
Logan		30.5	105	e 6 13	- 4	e 11 47	+29	_		e 15·6
Fresno	N.	30.8	120	e 5 38	-42	e 10 38	-45	_		
Salt Lake City		31.2	106	e 6 38	+15	22 1 1 1 2 2 1 V			-22	e 15.6
Tinemaha		31.2	119	6 24	+ 1	e 11 31	+ 2	i 9 41	$\mathbf{P_{c}P}$	-
Haiwee		$32 \cdot 1$	119	i 6 30	- 1	•	_	i 9 36	$P_{c}P$	-
Santa Barbara	Z.	32.8	123	i 6 37	0				_	
Rapid City		$33 \cdot 2$	94	e 6 42	+ 2	e 12 6	+ 6	-		e 18·2
Overton		33.4	114	i 6 42	0				-	
Boulder City		33.7	115	i 6 44	- 1	e 12 4	- 4	i 6 58	\mathbf{pP}	e 14·7
Mount Wilson		33.7	121	i 6 44	- 1	e 12 6	- 2		-	****

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

215

1945

	Δ	Az.	Р.	0 -C.	14 A T T T T T T T T T T T T T T T T T T	0 – C. s.	m. s.	p.	L. m.
Pasadena Pierce Ferry Riverside Palomar La Jolla	$33.7 \\ 33.9 \\ 34.2 \\ 35.0 \\ 35.2$	$\begin{array}{c} 121 \\ 114 \\ 121 \\ 120 \\ 122 \end{array}$	m. s. i 6 44 i 6 47 i 6 47 i 6 55 i 6 37	8. - 1 - 2 - 1 - 21	e 12 4 e 12 37 e 12 23	$-\frac{4}{21} - \frac{5}{5}$	i 9 40 e 7 47	PcP PP	e 14·7
Honolulu Tucson Chicago Florissant St. Louis	38·1 38·6 42·9 43·6 43·8	187 115 84 88 88	i 7 27 e 8 14 e 8 6 e 8 8	$\begin{array}{c} + & 1 \\ + & 12 \\ - & 2 \\ - & 1 \end{array}$	e 13 11 e 13 21 e 14 20 e 14 31 e 14 33	- 5 - 2 - 7 - 7 - 7	i 7 42 e 9 47 i 8 20 i 8 22	pP PP pP	i 18·6 e 18·1 e 23·6 e 22·6 e 22·6
Cape Girardeau E. Ottawa Cincinnati Shawinigan Falls Seven Falls	45.2 46.2 46.4 46.8 47.3	89 71 83 67 66	e 8 33 8 28 1 8 43 8 32 8 49	$^{+13}_{-13} \\ ^{-11}_{+12}$	e 18 35 15 8 e 15 11 15 23 15 51	SS - 7 - 7 - 1 + 20	e 10 19 10 26 1 10 36 19 16	PP PP SSS	e 21·8 23·4 23·4
Pittsburgh Harvard Fordham Philadelphia Weston	47·7 50·4 50·5 50·5 50·6	78 71 74 75 71	1839 e99 e90 i916 i92	$ \begin{array}{r} - & 1 \\ + & 8 \\ - & 2 \\ + & 14 \\ 0 \end{array} $	e 15 42 e 16 14 e 15 54 e 16 36	$+6 \\ -2 \\ -22 \\ +19$	e 10 46 e 11 12 i 9 17	PP PP pP	e 25·3 e 25·4 e 23·1
Columbia Halifax Irkutsk Bergen Upsala N.	52·6 52·6 52·9 59·5 61·0		9 19 e 10 22 e 10 32	$-\frac{1}{+15}$	e 16 32 e 15 47 e 16 35 e 18 16 e 18 28	$ \begin{array}{r} -6 \\ -57 \\ -13 \\ 0 \\ -7 \end{array} $	e 11 36	PP =	e 27·6 27·4 ————————————————————————————————————
Sverdlovsk Bermuda Copenhagen Moscow Kew	61 · 4 61 · 7 64 · 8 65 · 1 67 · 4	73 6 9 6 353 6	i 10 19 e 10 36 e 10 45 e 10 43 e 11 15 a	$ \begin{array}{r} -1 \\ +14 \\ +2 \\ -2 \\ +16 \end{array} $	i 18 35 e 18 36 i 19 22 19 24 e 19 51	- 5 - 8 - 1 - 3 - 4	e 14 28 e 10 59 e 13 43?	PPP PP	e 25·7
De Bilt Uccle Collmberg Jena Prague	67 ·6 68 ·7 69 ·2 69 ·5 70 ·6	16 9 10	e 11 6 e 11 4 e 11 10 e 10 57 e 11 42)	$^{+\ 5}_{-\ 3}^{0}_{-15}^{15}$	i 19 57 e 20 10 e 20 11 (e 20 33)	- 5 - 0	e 13 36 e 13 18 (e 14 26)	PP PP	e 32·4 e 34·4 e 39·2
Strasbourg Basle San Juan Zürich Neuchatel	71·4 72·4 72·5 72·7 72·8	13 83 13	e 11 41 e 11 30 e 11 51 e 11 33 e 11 34	$^{+17}_{0}\\ ^{+21}_{+1}\\ ^{+2}$	e 20 42 e 21 4	+ 10 —	e 14 26	PP 	i 29·9
Clermont-Ferrand Andijan Tashkent Triest E. Yalta	73·5 73·7 74·1 74·9 76·5	325 328 10	e 11 397 e 11 40 e 11 26 e 12 5 e 12 6	$^{+\ 3}_{+\ 2} \ ^{-14}_{+21} \ ^{+12}$	e 21 10 e 21 16	- 2 - 6	e 14 26 ? e 21 28 e 26 8	PP PS SS	e 39·4
Toledo Tortosa E. Granada Malaga Z.	77·8 77·8 80·5 80·8	20 25	e 12 1 i 12 5k i 12 20 a		22 20 e 22 48 i 21 53 e 22 26	${f PS} \\ -29 \\ + 1$		pP	37.3

```
Additional readings and notes :-
  College i = 1m.47s., 2m.32s., and 2m.44s.
  Sitka e = 2m.38s.
  Grand Coulee i = 5m.16s, and 6m.23s.
  Shasta Dam i = 5m.54s., e = 10m.26s.
  Butte e = 7m.51s.
  Bozeman i = 6m.11s., e = 10m.39s., i = 11m.2s.
  Berkeley eZ = 12m.16s., iSSEN = 12m.31s.
  Logan i = 6m.26s.
  Fresno eN = 8m.17s.
  Tinemaha iZ = 6m.39s, and 6m.45s.
  Haiwee i = 6m.45s.
  Santa Barbara i = 7m.13s.
  Rapid City i = 6m.55s.
  Overton i = 6m.47s, and 6m.56s.
  Mount Wilson iZ =6m.57s.
  Pasadena iZ = 6m.51s., i = 6m.58s., iLZ = 7m.4s., iNZ = 8m.8s.
```

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1945

216

```
Pierce Ferry i = 7m.1s. and 7m.8s.
Riverside i = 7m.2s., iEZ = 7m.8s.
Palomar iEZ = 7m.9s., iZ = 7m.16s.
La Jolla i = 7m.11s, and 7m.19s.
Tucson iPP =9m.0s., e = 9m.11s.
Chicago eS_cS = 17m.33s.
Florissant iZ = 8m.28s., ePPZ = 10m.2s., eSSN = 17m.48s., isSSN = 18m.8s.
St. Louis iZ = 8m.30s., iPPZ = 10m.5s., iZ = 10m.9s., ipPPZ = 10m.17s., iPPP?Z =
     10\text{m.}35\text{s.}, \text{eN} = 14\text{m.}44\text{s.}, \text{esSN} = 15\text{m.}18\text{.}, \text{eN} = 15\text{m.}10\text{s.}, \text{eSSE} = 17\text{m.}52\text{s.}, \text{isSSN} = 10\text{m.}35\text{s.}
     18m.12s.
Ottawa SS = 18m.26s.
Cincinnati e = 9m.31s, and 18m.50s.
Pittsburgh eSS = 18m.58s.
Fordham i = 9m.16s, and 16m.38s.
Philadelphia eS_eS = 18m.45s., eSS = 20m.21s.
Copenhagen i = 10m.58s, and 20m.26s.
Moscow esS = 19m.54s.
Kew eP_cS?Z = 15m.43s.?, eZ = 19m.35s., ePPS?EN = 20m.12s., eZ = 20m.31s., eSS = 20m.31s.
     23m.53s.?
Collmberg e = 11m.21s., i = 11m.26s., 11m.29s., 11m.32s., and 11m.41s., e = 12m.6s. and
     14m.4s., eZ = 16m.37s., e = 20m.38s., 21m.29s., 22m.38s., and 23m.47s.
Jena eEN = 11m.12s.
Prague ePKP = 7m.50s., eSS? = 26m.26s.; phases are wrongly identified, P is given as
     PP, PP as PPP, and S as PS.
Basle e = 11m.47s.
San Juan iS =21m.13s.
Clermont-Ferrand e = 11m.51s.?
Tortosa S_cSE = 23m.19s.
Malaga ePPZ = 15m.40s.
```

July 11d. 15h. Asia Minor.

```
Ksara eP = 13m.7s., eS? = 14m.32s.

Yalta eP = 13m.13s.

Sofia eP?EN = 13m.24s., iSgEN = 15m.10s.

Helwan eE = 13m.40s. and 14m.55s.

Bucharest eEN = 13m.54s., eE = 14m.21s., eN = 14m.29s., LEN = 15m.25s.

Collmberg eZ = 15m.36s., e = 16m.48s.

Moscow eP = 15m.47s., S = 19m.22s.

Copenhagen iP = 16m.16s., iS = 20m.13s., L = 21.8m.

Belgrade e = 16m.32s., 17m.0s., 17m.23s., and 19m.15s.

Tashkent eP = 17m.18s., eS = 22m.22s.

Triest eP?E = 18m.3s., eS?N = 19m.4s., eQ?N = 19m.51s.

Prague e = 18m.23s., 20m.26s., and 20m.48s.

Upsala eE = 21m. and 27m.

Kew eNZ = 21m.36s.?, eLNZ = 25m.30s.

Long waves were also recorded at De Bilt and Uccle.
```

July 11d. 16h. 12m. 54s. Epicentre 35° 7N. 121° 2W.

A = -.4217, B = -.6962, C = +.5810;

Suggested by Berkeley.

```
D = -.855, E = +.518; G = -.301, H = -.497, K = -.814.
                                                  O-C.
                                 Az.
                                                                      O-C.
                                                                                       Supp.
                                         m. s.
                                                              m. s.
                                                                                  m. s.
Fresno
                                        e 0 31
Lick
                                 348
                                        e 0 30
                                                             e 0 48
                                                                       -6 + 2
Santa Clara
                           1.7
                                 340
                                        e 0 33
                                                                 56
                                                             0 0
                           1.9
                                 335
Branner
                                        e 0 32
                           2 \cdot 3
                                 338
                                        e 0 36
Berkeley
                                                             \begin{array}{cccc} c & 1 & 9 \\ i & 2 & 0 \\ i & 2 & 18 \end{array}
San Francisco
                                 334
                                        e 0 41
                    E.
                           5.2
                                        e 1 26
e 1 50
                                  85
Boulder City
                           5.5
                                  79
Overton
                                  84
                           5.9
                                        e 1 35
Pierce Ferry
                                  35
                         84.6
Clermont-Ferrand
                                                                                  28 25?
```

 $\delta = +9$;

Additional readings:—
Fresno iN = 34s., eN = 2m.40s, and 3m.17s.
Berkeley eZ = 39s.
Overton e = 1m.57s.
Pierce Ferry i = 2m.8s.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1945

217

July 11d. Readings also at 1h. (Mount Wilson, Pasadena, Palomar, Riverside, and Shasta Dam), 2h. (La Paz and near Lick), 3h. (Collmberg, De Bilt, and Kew), 6h. (Ksara and Sverdlovsk), 7h. (Riverview), 12h. (Lick and near Berkeley), 13h. (Basle, Collmberg, Jena, Clermont-Ferrand, Boulder City, Overton, Pierce Ferry, Shasta Dam, Mount Wilson, Pasadena, Palomar, Riverside, Santa Barbara, and Tinemaha), 17h. (Copenhagen), 19h. (Collmberg and Copenhagen), 21h. (near Mizusawa), 23h. (Moscow, Yalta, Bucharest, Sofia, Collmberg (2), Triest, and De Bilt).

July 12d. 9h. 11m. 54s. Epicentre 7°.2S. 74°.0W.

$$A = + \cdot 2735$$
, $B = - \cdot 9538$, $C = - \cdot 1245$; $\delta = + 4$; $h = + 7$; $D = - \cdot 961$, $E = - \cdot 276$; $G = - \cdot 034$, $H = + \cdot 120$, $K = - \cdot 992$.

		Δ	Az.	Ρ.		O-C.	S.	O-C.	Su	pp.	L.
		•	0	m.	s.	s.	m. s.	8.	m. s.	-9-2-20	m.
Unanonro		5.0	196		7	- 1	i 1 53	-25	i 1 35	$\mathbf{P}_{\mathbf{z}}$	i 2.0
Huancayo La Paz		10.9	149		ò	ñ	4 36	- 8	177 (177 (177 (177 (177 (177 (177 (177		5.8
Balboa Heights		17.0	342	7.000	5	+14					
Dailous Heighte		48.0	343		4	· 16	<u> </u>			1	
St. Louis Tucson	Z.	52.6	320	The second of th	9	+ 1	-			87.00	5777
La Jolla		57.2	316	i 9 5	1	0	-	-		-	-
Pierce Ferry		57.2	322		1	0	100	-		-	_
Palomar		57.3	317		2 k	0	_			-	-
Boulder City		57.6	321	1.77 (1.17 (3	~ 1				(C)	
Overton		57.7	322	2000 0000 0000	5	0	_		N-1112-		
Riverside		58.0	317	i 9 5	6	- 1		7	-		_
Mount Wilson	Z.	58.6	317	i 10	0	1				555 8	
Pasadena	63.00	58.6	317	i 10	1	0	V (-		-	_
Haiwee	Z.	59.7	319	i 10	7	2	(
Tinemaha	777.54	60.4	320	i 10 1	3	0	-	1			
Berkeley	E.	63.5	318	e 10 3	33	- 1	3.55		53,573		_
Shasta Dam	22.0	65.2	321	i 10 4	12	- 3	-	_			
Malaga	Z.	78.2	50	i 12	3k	0		7-2	i 12 41	\mathbf{pP}	=
Toledo	77.7	79.5	47		0	0	23 11	\mathbf{PS}		-	-
Tortosa		83.1	48		35	+ 6	e 22 32	-16	12 45	P_cP	1
Collmberg	z.	93.7	39		18	- 2				-	

Additional readings:—
St. Louis e=8m.55s.
Tucson e=9m.47s.
Pierce Ferry i=10m.24s.
Palomar iZ=10m.6s.
Riverside iZ=10m.31s.
Mount Wilson iZ=10m.35s.
Pasadena iZ=10m.12s., 10m.38s., and 10m.41s.
Tinemaha iZ=10m.48s.
Shasta Dam i=11m.18s.
Malaga eZ=14m.5s., iZ=14m.21s.
Tortosa $S_cSN=22m.56s$., PSE?=24m.14s., SSN?=28m.34s.
Long waves were also recorded at Jena.

- July 12d. Readings also at 0h. (near Balboa Heights), 1h. (Riverview), 2h. (St. Louis), 4h. (near Bogota), 9h. (Bogota and Collmberg), 10h. (Boulder City, Overton, Pierce Ferry, and near Collmberg (3)), 11h. (Kew and Collmberg), 13h. (near Andijan), 14h. (near Mizusawa), 18h. (near San Juan and near Tucson), 20h. (St. Louis), 23h. (La Plata).
- July 13d. Readings at 1h. (near College), 2h. (Boulder City, Tucson, Palomar, and Oaxaca), 7h. (Bucharest and near Sofia), 9h. (La Paz), 10h. (Triest and Kew), 15h. (Haiwee, Mount Wilson, Pasadena, Palomar, Riverside, Tucson, and Shasta Dam), 16h. (Boulder City and Tucson), 18h. (Kew and near Tucson), 19h. (Kew, Balboa Heights and near Ottawa), 20h. (Mount Wilson, Pasadena, Palomar, Riverside, Tinemaha, Tucson, Boulder City, Pierce Ferry, Overton, Shasta Dam, Bermuda, near San Juan, and Fort de France), 21h. (Riverside, near Pasadena, Palomar, and Tucson (2)), 22h. (near Tucson).
- July 14d. Readings at 6h. (near Berkeley, Branner, and Lick), 2h. (Boulder City, Overton, Pierce Ferry, near Berkeley, Branner, Lick, and Fresno), 6h. (Triest), 16h. (Jena and near Collmberg), 13h. (Almeria and Toledo), 14h. (La Paz), 17h. (near Mizusawa), 23h. (Palomar and Tucson).

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1945

218

July 15d. 5h. 35m. 14s. Epicentre 17°·8N. 146°·3E. Depth of focus 0·015. A = -.7927, B = +.5286, C = +.3038; $\delta = +9$; $\hbar = +5$; D = +.555, E = +.832; G = -.253, H = +.169, K = -.953.

	D - T	300, 1	<u> </u>	002,	u =	200, n = 4	10a' ·	K =953	•	
- T. ### T.S 1000 (10 + 3		Δ	Az.	P. m. s	0 - C.	. S. m. s.	O – C. s.	m. s.	ipp.	L. m.
Mera Owase Yokohama Tokyo Kôti	**	18.5 18.5 18.7 19.4	$344 \\ 333 \\ 344 \\ 344 \\ 326$	$\begin{pmatrix} 4 & 7 \\ 4 & 15 \\ 4 & 11 \end{pmatrix}$	- 2 + 6 0	7 17 7 24 (7 25) 7 37 7 50	+ 1 - 3 - 2 + 6 + 4	=		=
Hukusima Hukuoka Mizusawa Morioka Mori	E.	$20.5 \\ 21.2 \\ 21.7 \\ 22.3 \\ 24.7$	$348 \\ 321 \\ 350 \\ 350 \\ 351$	i 4 24 4 41 i 4 43 e 4 50 5 3	+ 4 + 1 + 3	8 4 9 7 8 32 9 3 9 12	- 3 + 4 *8 - 8			11 <u>·1</u>
Sapporo Pehpei Brisbane Irkutsk Riverview	N.	$25.5 \\ 38.2 \\ 45.5 \\ 47.6 \\ 51.5$	353 296 172 327 175	7 7	- 2 + 4 - 4	9 41 12 46 1 14 39 1 15 4 1 16 4	$^{+}_{-}^{8}_{0}^{-}_{5}^{5}$	e 7 56 i 7 46 i 18 17 i 9 25	pP SS pP	
Honolulu Calcutta Perth Auckland New Delhi	N.	52·5 54·3 57·4 60·7 63·7	$\begin{array}{r} 76 \\ 285 \\ 210 \\ 154 \\ 294 \end{array}$	i 9 5 e 9 20 i 9 44 10 56 i 10 22	+ 5 pP pP	i 16 25 i 16 40 i 17 26 18 11 i 18 36	+ 8 - 1 sS + 6 - 6	e 9 28 i 17 46 i 24 34 i 19 13 19 33	sS sS	e 22·2
College Hyderabad Wellington Colombo Christchurch	E.	63·8 64·3 64·4 65·5 65·6	$25 \\ 281 \\ 157 \\ 269 \\ 159$	e 10 19 10 19 10 25 10 35 10 32	- 5 0 + 3	e 18 42 18 49 18 51 19 9 19 6	- 2 - 1 + 5 0	e 19 42 10 55 — 11 24	PcP PcP	e 26·3 30·9 — 30·4
Andijan Sitka Bombay Sverdlovsk Victoria	E.	$66.6 \\ 68.9 \\ 69.3 \\ 72.9 \\ 77.1$	307 35 284 325 43	e 10 36 e 10 53 i 10 53 i 11 13 11 48		e 19 16 i 19 49 i 19 52 i 20 23? 21 22	- 2 + 4 + 2 - 8 + 4	i 11 30 i 13 29 i 21 5	PP SS	e 27·4 30·8 26·8
Ukiah Shasta Dam Grand Coulee Berkeley Santa Clara		79.4 79.6 80.1 80.4 80.8	53 51 43 54 54	e 12 18 i 11 56 i 11 58 e 12 0 e 12 5	PP + 2 + 1 + 1 + 4	i 21 46 i 21 45 i 21 48 21 55 e 22 1	+ 4 + 1 - 1 + 2 + 4	e 22 18 i 12 35 i 12 34 e 12 42	sS pP pP	
Fresno Santa Barbara Tinemaha Haiwee Pasadena	N.	82·6 83·3 83·7 84·2 84·6	54 56 53 54 56	e 12 16 i 12 16 e 12 19 i 12 21 i 12 22	+ 6 + 2 + 3 + 3 + 2	(e 22 20) i 22 21 e 22 29 e 22 31 i 22 27	$\begin{array}{c} + & 5 \\ - & 1 \\ + & 3 \\ [-1] \end{array}$	e 12 52 i 12 51 i 12 58 i 12 52	pP pP pP	e 22·3 = e 34·7
Mount Wilson Butte Riverside Moscow La Jolla		84·7 84·9 85·3 85·5 85·8	56 43 56 328 57	i 12 23 12 24 i 12 25 i 12 22 i 12 27	$^{+}$ 2 $^{+}$ 1 $^{-}$ 3 $^{+}$ 1	i 22 31 e 22 30 e 22 36 i 22 31 e 22 38	[+ 2] [- 1] [+ 3] [- 4] [+ 1]	i 12 57 e 13 0 i 13 3 i 12 56 i 13 2	pP pP pP pP	e 31·2
Palomar Bozeman Saskatoon Boulder City Overton		85.9 86.0 86.2 86.6 86.8	56 54 37 53 53	i 12 29 e 12 28 12 31 i 12 32 i 12 33	+ 2 + 1 + 3 + 2 + 2	i 22 41 i 22 38 22 40 i 22 44 i 29 13	[+ 4] [0] [+ 1] [+ 2] SS	i 13 4 e 13 6 i 13 8 i 13 7	pP pP pP	e 35·3 37·8
Logan Pierce Ferry Salt Lake City Tucson Rapid City		$86.9 \\ 87.2 \\ 87.2 \\ 91.1 \\ 91.7$	47 53 48 56 43	i 12 32 i 12 35 e 12 41 i 12 55 e 12 56	$^{+}_{+}$ $^{1}_{2}$ $^{+}_{+}$ $^{8}_{+}$ $^{+}_{2}$	i 22 44 i 22 49 i 22 53 i 23 43 i 23 38	[+1] [+4] [+8] +8 -3	i 13 9 i 13 3 e 13 18 i 13 30 e 17 6	PP PP PP PPP	e 35.8 i 38.3 e 37.0 e 36.9 e 38.6
Upsala Bergen Ksara Copenhagen Bucharest		92·2 96·0 96·2 97·1 97·6	$336 \\ 341 \\ 307 \\ 335 \\ 321$	e 12 45 13 14 e 13 18 i 13 15 14 46	+ 3 - 4	e 23 9 24 13 e 24 20 24 22	[- 6] - 5 + 1 - 5	e 16 15 e 16 46? 17 2	PP PP	41.8

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1945

219

	△ A	z. P.	0 - C.	S. 0-C.	Supp.	L.
Collmberg Prague Aberdeen Jena Helwan E.	$ \begin{array}{cccc} 100 \cdot 0 & 3 \\ 100 \cdot 2 & 3 \\ 100 \cdot 8 & 3 \\ 100 \cdot 9 & 3 \end{array} $	o m. s. 32 e 13 28 30 e 15 4 42 i 17 34 31 e 13 18 66 e 13 40	s. - 4 PP -18 + 1	m. s. s. e 24 52 + 1 e 27 10 PS i 25 0 + 2 	m. s. e 14 20 pP e 32 40 SS i 26 53 PS e 17 32 PP e 17 52 PP	e 45·8 e 45·5
Chicago De Bilt Florissant St. Louis Tananarive	102.6 102.6 102.7 102.9	38 e 14 55 36 e 13 43a 42 e 13 41 42 e 13 44	- 3 - 1	e 25 10 - 3 e 24 12 [+ 3] e 25 12 - 2 i 25 14 - 2 e 24 20 [+ 6]	e 17 54 PP e 17 56 PP i 14 21 pP e 14 33 pP 27 5 PS	e 42·1 e 48·8
Triest Uccle Cape Girardeau E. Strasbourg Chur	104·0 3: 104·1 104·3 3:	27 e 17 11 36 e 18 3k 43 e 18 39 32 e 18 10 30 e 18 14	PP pPP PP	i 24 14 [0] e 25 5 -20 e 24 14 [- 2] e 26 57 SP	e 27 59 PPS e 18 55 pPP e 18 27 pPP	e 47·8 e 51·8
Zürich Kew Basle Cincinnati Paris	$105 \cdot 1$ 3: $105 \cdot 2$ 3: $106 \cdot 1$	31 e 17 19 38 e 13 51 a 32 e 13 53 38 e 13 58 35 e 18 16	- 3 - 1 PP	e 25 33? - 1 i 24 24 [- 1] e 25 46? S	e 18 10 PP e 18 7 PP i 27 24 SP e 29 46?	e 47·8 — e 51·8
Ottawa Shawinigan Falls Seven Falls Pittsburgh Clermont-Ferrand	106·9 107·3 107·8	29 14 10 26 e 18 28 25 e 17 58 35 e 19 5 33 i 18 43?	P PP PKP pPP	24 25 [- 2] e 24 26 [- 3] e 24 27 [- 4] i 24 34 [+ 1] i 26 7 S	18 14 PP e 33 23 SS i 29 7 PPS	48·8 45·8 e 49·8
Georgetown Fordham Philadelphia Halifax Tortosa	110·7 110·8 111·7	34 e 14 5 31 e 14 20 32 e 17 2 22 - 2 31 e 19 2	P P PP	e 24 49 [+ 5] i 24 50 [+ 5] i 24 45 [0] 24 46? [- 3] 26 5 SKKS	e 25 47 8SKS e 18 12 PKP e 34 7 SS 21 31 PPP	52·8 e 40·8
Toledo Coimbra Granada Malaga San Fernando E.	$ \begin{array}{ccccccccccccccccccccccccccccccccc$	34 i 18 32 37 e 19 44 32 e 18 45 32 e 19 4 34 e 20 5	[+ 3] PP [+12] pPKP PP	e 29 26 PS e 29 24 PS 29 33 PS e 28 58	36 6 SS i 19 55 pPKP i 19 58 PP	47·8 50·1 57·5 44·8 59·8
Bermuda Balboa Heights San Juan Bogota Huancayo La Paz La Plata	127.5 131.9 134.4 139.4 147.1	30 e 20 52 63 e 18 46 42 e 19 3 65 e 18 56 88 e 19 27 93 19 34 33 19 40	PPP [- 4] [+ 5] [- 7] [+15] [+ 8] [+ 6]	e 25 32 [+ 5] e 26 14 [+19] e 28 30 SKKS i 29 38 SKKS 29 58 SKKS	e 29 47 SP i 22 12 pPP e 22 22 pPP e 22 37 pPP 20 44 pPKP 20 40 pPKP	# 100 E 0 E 100 E
Honolulu iPP = Calcutta iN = 1: Auckland i = 19 New Delhi Pc sSS = 23m. College e = 10m Hyderabad PP Christchurch SS Sitka isS = 20m Bombay iSN = Shasta Dam i = Grand Coulee e Berkeley iPZ = Fresno ePPN = Pasadena iZ = 1 ePKP.PKI	ings increased = 9m.47s., E = 21m.54s., i = 25m.46s., i =	iPcPEN = 9r 48. e = 12m.54s. d 20m.49s. 78., i = 17m.5 = 25m.13s., SS .0s., and 22m 8s., PSE = 19r 8. 2m.9s. iEN = 20m.52s 12m.43s., and 5s. PSEZ = 22m.5 pP given as 1 id 13m.15s., 10s. eSKP.PE	n.598., i and 13n ss., iN = SS = 26n .56s. n.228., S n.228., S PP, PP iPPZ = 1	ScSE = 19m.44s., S	.40s., e = 21m.21 .9m.23s., SS = 23 .ssE = 23m.9s. en as L. m.50s., iSPZ = 23 KP.PKPZ = 58m	8m.43s.,

58m.2s.

Butte is S = 23m. 30s.

Riverside iPPZ = 15m.47s. Moscow sS = 23m.23s.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1945

220

```
Palomar iPPZ = 15m.53s., eZ = 31m.52s., ePKP,PKPZ = 38m.40s., iZ = 39m.9s.,
    PKP,PKP,PKPZ = 59m.22s.
Bozeman e=12m.38s., ePP=16m.12s., e=16m.53s. and 23m.38s., I=23m.43s., e=
    25m.32s., eSS = 28m.31s.
Boulder City isP=13m.25s., i=35m.10s., iPKP,PKP=38m.24s., i=38m.39s., ePKP,
    PKP_{\bullet}PKP = 59m.15s.
Overton i = 12m.38s.
Logan e = 12m.39s. and 14m.48s., i = 23m.44s., eSS = 28m.33s.
Pierce Ferry i = 12m.47s, and 23m.0s.
Salt Lake City e = 13m.58s., i = 23m.13s., e = 27m.16s.
Tucson iPP = 16m.30s., iSKS = 23m.15s., esS = 24m.17s., e = 28m.13s., eSS = 29m.58s.,
    iPKKP = 30m.59s., eSSS = 33m.26s., ePKP,PKP = 38m.12s., ePKP,PKP,PKP =
    59m.9s.
Rapid City i = 13m.3s., iSKS = 23m.12s., i = 24m.43s.
Bergen SSN = 30m.48s., eE = 31m.16s.
Copenhagen 17m.16s, and 18m.6s., SKS = 23m.39s., 26m.46s., and 31m.58s.
Collmberg iPP = 17m.29s., ePPP = 19m.46s., eSKS = 23m.53s., ePS = 26m.18s., ePPS =
    27m.15s., ePKKP = 29m.50s., eSS = 31m.53s., and numerous other readings without
    phase.
Prague ePP? =17m.40s.
Aberdeen iE = 31m.51s.
Jena eN = 16m.21s, and 17m.24s, e = 18m.4s, eN = 20m.4s.
Chicago e = 18m.26s., iSKS = 24m.10s., e = 26m.3s., iPS = 27m.2s., eSS = 32m.22s.,
    eSSS = 36m.11s.
De Bilt eZ = 18m.46s., ePPP = 20m.10s.
Florissant iSKSN = 24m.10s., esSN = 26m.16s.
St. Louis eZ = 17m.22s. and 18m.3s., iPPZ = 18m.37s., ipPPZ = 19m.6s., iSKSN =
    24m.11s., iN = 24m.16s., eSKKSE = 24m.49s., isSN = 26m.16s., iE = 26m.54s. and
    28m.14s., iN = 32m.28s.
Tananarive PSEN = 26m.8s., eN = 29m.45s., SSN = 31m.20s., eE = 38m.32s.
Triest eSS?E = 38m.2s., eSSS?E = 42m.20s.
Uccle ePPN = 18m.59s., eSN = 26m.24s., eE = 32m.39s.
Strasbourg i = 21 \text{m.} 27 \text{s.}, iPPS = 28 \text{m.} 15 \text{s.}, iSS = 33 \text{m.} 33 \text{s.}
Zürich e = 21m.32s.
Kew iPP?EZ = 18m.11s., i = 19m.6s.. ePPPZ = 20m.3s.?, ePSZ = 27m.11s., ePPS =
    27m.59s., eSSN = 32m.43s.?
Cincinnati e = 16m.52s. and 17m.50s., iS = 25m.15s., i = 28m.39s.
Ottawa SKKS = 25m.10s., SS = 33m.10s.
Seven Falls e = 25m.57s.
Fordham i = 19m.7s., 28m.11s., and 34m.20s.
Philadelphia eSKKS = 25m.31s., eS = 26m.21s., e = 26m.48s. and 27m.22s.
Tortosa iPPN = 19m.14s., PPSE = 30m.0s., SSE = 34m.54s.
Coimbra S = 31m, 36s.
Malaga i = 21m.4s.
Bermuda e = 27 \text{m.7s.}, eSS = 36 \text{m.55s.}
San Juan i = 23m.21s., iSKKS = 27m.42s., e = 31m.8s., ePPPS = 33m.1s., iSS = 38m.46s.,
    e = 40m.58s.
Bogota i = 19m.4s, and 19m.10s, e = 23m.6s.
Huancayo e = 33m.11s., eSS = 40m.50s.
La Paz iPKP, =19m.54s., iE =21m.21s., sPKPE =21m.44s., SKPE =23m.13s., PP =
    23m.35s., PSKS = 33m.1s., SSE = 42m.19s.
La Plata Z = 19m.45s., N = 20m.46s., E = 20m.52s., N = 20m.58s. and 25m.16s., N = 20m.58s.
    30m.58s., L?E = 32m.40s.
Long waves were also recorded at Columbia and Seattle.
```

July 15d. 19h. Undetermined shock.

Irkutsk P=25m.56s., S=33m.57s.Andijan eP=26m.47s., iS=35m.39s.Tashkent eP=26m.54s.Sverdlovsk iP=28m.3s., iS=38m.1s.Riverview eE=30m.18s.Tucson ePKP?=34m.29s., i=35m.40s.Mount Wilson iZ=34m.43s.Riverside iZ=34m.58s.Palomar eZ=35m.2s.Palomar eZ=35m.2s.Florissant iPZ=37m.58s.St. Louis iPZ=37m.59s.Moscow eS=39m.22s.Long waves were recorded at De Bilt.

July 15d. Readings also at 6h. (Toledo), 10h. (near Harvard, Seven Falls, Shawinigan Falls, and Ottawa), 12h. (near Triest), 15h. (Kew and near Triest), 17h. 20h. and 21h. (Collmberg), 22h. (Palomar, Tucson, Riverside, and Mount Wilson).

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1945

July 16d. Readings at 6h. (Berkeley), 4h. (Irkutsk, Toledo, Mount Wilson, Pasadena, Riverside, Tucson, St. Louis, San Juan, Bogota, Huancayo, and near La Paz, these readings and those at 5h. appear to appertain to several shocks none of which is widely recorded), 5h. (Haiwee, Mount Wilson, Pasadena, Palomar, Riverside, Tucson, Boulder City, Shasta Dam, Florissant, St. Louis, Arapuni, Wellington, Riverview, and Triest), 6h. (Copenhagen and La Plata), 8h. (near Tananarive), 10h. (Collmberg and Jena), 11h. (Tananarive), 12h. (Bogota, Huancayo, La Paz (2), San Juan, Tucson, Mount Wilson, Palomar, Riverside, Collmberg (2), and near Ksara), 16h. (Collmberg), 18h. (Auckland, Christchurch, Brisbane, Riverview, and Tashkent), 20h. (Collmberg (2)), 23h. (Mount Wilson, Pasadena, Palomar, Riverside, Tucson, and near Balboa Heights).

221

July 17d. 6h. 47m. 10s. Epicentre 14°.4N. 93°.7W. (as on 1941, July 23d.).

$$A = -.0625$$
, $B = -.9670$, $C = +.2471$; $\delta = +.5$; $h = +.6$; $D = -.998$, $E = +.065$; $G = -.016$, $H = -.247$, $K = -.969$.

		Δ	Az.	P.	O - C.	s.	O-C.	Su	pp.	L.
			0	m. s.	s.	m. s.	8,	m. s.		m.
Oaxaca	E.	3.9	312	(e 1 2)	0		-			
Tacubaya	:202	7.2	314	e 1 56	+ 7	-		i 2 6	P*	e 3.8
Bogota		21.6	114	i 4 51	- 3		_			
Columbia		22.6	27	e 5 4	+ 1	e 9 10	+ 3			e 14·4
Tucson		23.7	322	i 5 15	+ 1	e 9 42	+15	i 6 2	\mathbf{PP}	e 14·2
St. Louis		24.3	7	e 5 23	+ 3	i 9 53	+16	_	-	e 13·1
Florissant		24.5	7	e 5 17	- 5	e 9 47	+ 7			
San Juan		26.7	76	e 5 54	+11	e 10 55	+38		·	e 16.2
Palomar	Z.	28.2	316	i 5 56	0					
Pierce Ferry	-57.0%	28.2	324	e 5 56	0		-	_	-	
Boulder City		28.6	323	e 5 59	- 1	erese.		Notice.	-	_
Riverside	Z.	29.0	316	e 6 0	- 4				-	· ·
Mount Wilson	Z.	29.6	316	e 6 9	0	-	-		-	-
Pasadena	Z.	29.6	316	e 6 32	+23	-	-			
Philadelphia		30.2	29	e 7 8	PP	e 11 12	- 1			e 16:6
Kew		81.0	39	e 12 15	- 3	0739007 32007/			-	e 36.8
Copenhagen		87.1	33			23 25	- 3	1200		

Additional readings and note :-

Oaxaca iN = (1m.5s.); readings being increased by 6m.

Tucson i = 6m.8s., e = 12m.36s.

St. Louis iPZ = 5m.26s. Palomar iZ = 6m.16s.

Long waves were also recorded at Salt Lake City, Weston, and Bermuda.

- July 17d. Readings also at 1h. (near Mizusawa), 9h. (near Andijan), 10h. (near Barcelona and near College), 11h. (Haiwee, Mount Wilson, Pasadena, Palomar, Riverside, Tucson, and St. Louis), 15h. (near San Juan), 16h. (Alicante), 17h. (near Tucson), 19h. (Branner), 21h. (near Tucson).
- July 18d. Readings at 1h. (Andijan), 6h. (Bogota and near La Paz), 13h. (Tananarive), 19h. (La Paz).
- July 19d. Readings at 0h. (near Mizusawa), 1h. (Upsala), 4h. (Mount Wilson, Pasadena, and Riverside), 5h. (Tucson), 8h. (Collmberg (2), and Moscow), 10h. (Collmberg (2)), 11h. (Collmberg and Jena), 12h. (Collmberg), 14h. (Apia, Auckland, Christchurch, Honolulu, Mount Wilson (2), Pasadena (2), Palomar (2), Tucson (2), Florissant, St. Louis (2), San Juan, and Collmberg), 15h. (Collmberg and near Andijan), 16h. (near Andijan (2) and Tashkent (2)), 20h. and 23h. (Tananarive).
- July 20d. Readings at 5h. (near Tananarive), 9h. (near Tashkent), 20h. (Granada and near Ottawa), 22h. (Bogota),

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1945

July 21d. 1h. 33m. 21s. Epicentre 37°.5N. 45°.0E.

Rough.	A = + ·	5624.	B = +	-5624	. с	= + .606	2:	+7:	h = -1:	6	
	$\mathbf{D} = +$								=795.		
		Δ	Az.	P	·.	$\mathbf{O} - \mathbf{C}$.	s.	0-C.	Su	pp.	L.
		0	•	m.	8.	s.	m. s.	8.	m. s.		m.
Erevan		2.7	352	e 0	49	+ 4	1 24	S*	-	-	53000
Leninakan		3.4	344	0	56	+ 1	1 35	- 2		-	-
Ksara		8.3	246	e 2	10	+ 6	e 3 44	+ 4	4 38	S_{g}	-
Bucharest		15.8	302	3	39	- 6		-		-	-
Sofia		17.3	295	e 4	2	- 2	-	—			e 8·6
Moscow		18.9	348	4	20	- 4	7 41	-12	-	-	
Triest		24.6	300	e 4	28	-55	e 9 34	- 8		_	
Collmberg		26.5	311	e 5	39	- 2	e 7 45	3	-	-	-
New Delhi	N.	28.3	99			-	i 12 6	Q		-	i 18·5
Upsala	3431344.	28.4	330	e 6	11	+13	e 10 33	-12			e 12·6
Copenhagen	(3)	28.4	321	e 5	59	+ 1	10 36	- 9		-	
Zürich		28.4	302	e 5	54	4				1	

Long waves also recorded at De Bilt and Kew.

July 21d. Readings also at 0h. (Tucson, Palomar, and near Berkeley), 1h. (Leninakan and near Erevan), 2h. (Branner, Ksara, Leninakan, and near Erevan), 3h. (Sverdlovsk), 5h. (near Andijan), 7h. (near Berkeley and near Tananarive), 12h. (Triest), 13h. (Riverview and Tashkent), 14h. (Mount Wilson (2), Pasadena, Palomar (2), Riverside, Tinemaha, Tucson (2), and Kew), 15h. (Kew and Auckland), 18h. (Ksara (2), near Erevan, and Leninakan), 22h. (Arapuni, Auckland, Christchurch, Wellington, Brisbane, Riverview, Haiwee, Mount Wilson, Pasadena, Palomar, Riverside, Santa Barbara, Tucson, Santa Clara, Boulder City, Overton, Pierce Ferry, Shasta Dam, Victoria, Salt Lake City, St. Louis (2), Chicago, Philadelphia, San Juan, and Collmberg), 23h. (De Bilt, Uccle, Clermont-Ferrand, and Granada).

July 22d. 10h. 39m. 52s. Epicentre 4°.5N. 95°.5E.

$$A = -.0956$$
, $B = +.9924$, $C = +.0779$; $\delta = +7$; $h = +7$; $D = +.995$, $E = +.096$; $G = -.007$, $H = +078$, $K = -.997$.

Colombo Calcutta Hyderabad Bombay	E. N. E.	∆ 15.7 19.2 21.1 26.4	Az. 279 340 310 305	P. m. 8. i 3 47 e 3 21 4 50 e 5 40	O-C. s. + 3 -67 + 2	S. m. s. 9 43 e 8 3 8 40 i 10 34	O-C. s. L + 4 + 1 + 22	m. s. i 9 15 9 15		L. m. (9·7) e 10·9
New Delhi		29.6	327	e 6 17	+ 8	i 10 56	- 8	i 11 19	SS	13.7
Dehra Dun Andijan Tashkent Irkutsk Ksara	N.	30·5 41·7 43·5 48·2 62·4	330 333 332 7 306	e 7 51 i 7 54 e 10 29	$-13 \\ +1 \\ +2$	e 11 50 14 8 i 14 329 15 43 e 18 57	+ 32 - 2 - 4 + 4	<u>-</u>		i 15·7 — —
Helwan Moscow Bucharest Upsala Prague	E.	65.4 68.6 72.2 80.0 80.8	301 330 316 330 320	e 10 44 11 1 e 11 32 e 12 17	- 3 - 6 + 3	19 28 i 19 59 e 20 42 e 22 79 e 24 49	10			34·1 e 38·1 e 45·1
Triest Collmberg Copenhagen Strasbourg De Bilt		81.8 82.4 85.2 86.7	316 321 326 319 322	e 12 21 e 12 20 e 12 30 e 13 24 e 12 51	$\begin{array}{c} + & 3 \\ - & 2 \\ + & 5 \\ + & 4 \end{array}$	e 22 28 e 22 30 e 22 35 e 23 15 e 23 33	+ 1 - 5 - 6 + 6 + 9	e 23 55 e 15 36 15 18	PPS PP -	56·1 — e 42·1
Uccle Clermont-Ferra Kew Aberdeen	nd E. N.	87·3 88·1 90·1 90·4 90·4	321 316 322 327 327	e 12 53 e 12 53? e 13 7?	+ 3 + 4 -	e 23 28 e 23 48	[- 7]		=	e 46·1 e 50·1 e 50·1 e 47·6 e 42·5
Toledo Granada Malaga College Colmbra		94·4 94·5 95·3 96·9 97·7	311 308 308 23 312	e 13 21 e 14 4a e 14 24 e 13 6	$-{2\atop +41\atop +57\atop -32}$	e 23 37 e 23 58 e 27 8	[-21] [-5] PPS	e 31 22		59·3 e 38·8 e 53·1

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1945

223

		Δ	Az.	Р.	OC.	s.	0 - C.	Su	pp.	L.
The second of th		0	0	m. s.	8.	m. s.	8.	m. s.		m.
Sitka		105.9	26		322	e 29 0	PPS		-	e 47·3
Tinemaha	Z.	128.0	35	e 19 4	[-4]					
Haiwee	z.	128.9	35	i 19 11	[+ 1]				-	
Mount Wilson	Z.	130-1	37	e 19 12	i oi	****	-			
Pasadena	011564	130.1	37	1 19 12	î oi			-		e 60·8
Overton		130.5	32	e 19 11	[- 2]		-	-	-	<u>ja. E</u> 6
Boulder City		130.7	33	e 19 13	10 1	-	-	-	-	_
Riverside	Z.	130.7	37	i 19 12	[-1]		_			_
Pierce Ferry	699996	131.1	32	e 19 16	[+2]	2102				-
Palomar	z.	131.5	37	e 19 20	[+5]	0.55	*****	(200 -00)	-	1 = 5 ts
Harvard		131.8	347	e 22 36	\mathbf{PP}	_		_	-	-
Philadelphia		134.9	350	e 22 32	$\hat{P}\hat{P}$	e 44 46	SSS	-		e 54.7
Tucson		135.7	33	i 19 26	[+3]			e 22 48	\mathbf{PP}	e 66·5
Fort de France		150.0	309	e 19 47	i oi					
San Juan		150.9	322	e 20 23	[+34]	-	-	e 42 51	SS	e 72.6
La Paz	Z.	160.0	311	20 21	[+20]	-	-			81.1
Huancayo	(0-75)	168.2	230		-			e 45 39	SS	e 84·0

Additional readings and notes :—

Bombay iSN = 10m.39s. Bucharest eN = 11m.40s.

Triest eS = 22m.55s. (?PS), eSS = 28m.55s.; true S is recorded as eSKS.

Collmberg i = 12m.48s., 13m.6s., 13m.16s., and 13m.28s., e = 15m.19s., 17m.12s., 17m.38s., 22m.44s., and 23m.10s., ePPS = 23m.49s., e = 24m.38s. and 25m.26s.Copenhagen 23m.30s.

Philadelphia e = 35m.14s.

Long waves were also recorded at Brisbane, Riverview, Arapuni, Auckland, Christchurch, Wellington, San Fernando, Bozeman, Salt Lake City, and Chicago.

July 22d. Readings also at 0h. (Auckland and near Balboa Heights), 1h. (near Tacubaya), 3h. (near San Juan), 6h. (Puebla, Haiwee, Mount Wilson, Palomar, Riverside, Tucson, Boulder City, Overton, Pierce Ferry, Shasta Dam, and near Tananarive). 7h. (Bucharest and Wellington), 8h. (Alicante), 11h. (Riverview, Huancayo, and near Andijan), 12h. (Haiwee, Mount Wilson, Palomar, Riverside, Tinemaha, Tucson, Boulder City, Overton, Pierce Ferry, and near Tacubaya), 14h. (Kew), 16h. (Zürich and near Neuchatel), 18h. (near Erevan), 20h. (Huancayo, La Paz, Boulder City, Shasta Dam, Pasadena, Tucson, Mount Wilson, Palomar, Riverside, and Tinemaha), 21h. (near Erevan and Leninakan), 22h. (Ksara).

July 23d. 3h. 54m. 53s. Epicentre 4°.5N. 95°.5E. (as on 22d.).

		Δ	Az.	_P.	0 - C.	_ S.	0 - C.	Su	pp.	L.
Colombo Calcutta Hyderabad Bombay Pehpei	E. N. E.	15.7 19.2 21.1 26.4 27.2	279 340 310 305 22	m. s. 3 47 i 4 20 4 45 i 5 45 e 7 7	8. + 3 - 8 - 3 + 5 PPP	m. s. 7 11 i 7 55 8 41 i 10 13 12 37	+ 32 - 4 + 2 + 1 SSS	m. s. - 4 55 -	PP	m. 9·4
New Delhi Perth Andijan Stalinabad Tashkent		29.6 41.1 41.7 41.7 43.5	327 153 333 329 332	i 6 24 i 7 52 e 7 48 e 7 48 i 8 3	+15 + 5 - 4 - 4	i 10 20 14 21 e 14 1 e 14 0	$ \begin{array}{r} -44 \\ +20 \\ -9 \\ -10 \\ \end{array} $	i 10 7 7 =	PP PPP —	12·2 —
Irkutsk Vladivostok Tananarive Mizusawa Erevan	N.	48·2 50·2 52·6 53·8 57·9	$35 \\ 243 \\ 44 \\ 316$	e 8 40 e 9 9 13 7? e 9 55	- 4 + 9 PPP - 1	15 19 e 16 2 16 58 16 55 e 18 2	$^{'}-24\\ -9\\ +14\\ -6\\ +7$	18 42 —	<u>ss</u>	e 22·1
Ksara Brisbane Riverview Helwan Yalta	N.	62·4 63·9 64·8 65·4 66·6	306 124 131 301 317	e 10 29 e 11 33 e 10 45 e 10 43 e 10 52	$^{+}_{+56}^{2}$ $^{+}_{-4}^{2}$ $^{-}_{2}$	e 19 2 i 19 8 i 19 25 i 19 25 e 19 34	+ 9 - 4 + 2 - 5 -11	i 22 53 i 11 12 e 12 31	SS PeP PP	i 28·8 e 30·0
Moscow Bucharest Sofia Upsala Prague	E.	68.6 72.2 73.9 80.0 80.8	330 316 313 330 320	i 11 5 e 11 29 e 11 36 e 12 41?	$-{2\atop 0\atop -{3\atop 3\atop +{24\atop }}}$	i 19 55 e 20 42 e 21 2 e 22 14 e 22 29	-14 - 9 - 8 - 3 + 4	- e 23 17	PPS	33·1 e 35·1 e 40·8 e 41·1

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1945

224

		Δ	Az.		0 - C.	s. 0-C		pp.	L.
Triest Collmberg Copenhagen Jena		81.8 81.8 82.4 82.7	316 321 326 321	m. s. e 12 17 e 12 19 e 12 29 e 12 14	$ \begin{array}{ccc} & & & & & & & & & & & & & & & & & & &$	m. s. s. e 22 24 - 3 e 22 37 + 2 e 22 33 - 8 e 22 36 - 8	m. s. e 22 42 i 15 37	SKS PP	m. e 50·1
Christchurch		83.8	135	12 33	+ 1	22 55 0	28 49	SS	39.2
Auckland Zürich Wellington Arapuni Strasbourg		84·6 84·9 85·0 85·2	128 317 132 129 319	e 12 35 12 22 i 18 49 e 12 42	$-\frac{1}{16} + \frac{1}{3}$	$egin{array}{cccccccccccccccccccccccccccccccccccc$	28 37 37 7 ? 35 7 ?		37·1 41·1 42·1 e 43·1
Basle Neuchatel Bergen De Bilt Uccle	E.	85·3 85·8 86·2 86·7 87·3	317 317 331 322 321	e 12 40 e 12 41 e 17 14 i 12 49 e 12 51	- 1 PP + 2 + 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	e 24 55 e 30 4	PS SS	33·9 e 40·1 e 45·1
Clermont-Ferran Paris Kew Aberdeen Tortosa	d E.	88·1 88·6 90·1 90·4 90·9	316 319 322 327 311	e 12 48 e 13 7? e 13 2 e 13 7 e 13 10	$^{-6}_{+11} \\ ^{-1}_{+3} \\ ^{+3}$	e 23 7? [-14 e 22 7? ? e 23 27 [-6 i 24 1 + 3 23 59 - 4		PS PP PP	e 45·1 e 39·1 e 45·1 41·4 e 42·1
Edinburgh Toledo Granada Malaga College		91·2 94·4 94·5 95·3 96·9	326 311 308 308 23	i 13 24 e 13 43 e 12 49	$\begin{array}{r} + \overline{1} \\ + 20 \\ - 38 \end{array}$	$egin{array}{cccccccccccccccccccccccccccccccccccc$	e 16 23	PS — PP PP	45·1 e 50·6 e 51·1 e 46·3
Coimbra Lisbon Sitka Victoria Shasta Dam		97·7 98·6 105·9 117·2 123·2	312 310 26 28 34	e 13 53 e 19 17 e 21 1 e 18 56	+15 PP [-3]	e 24 3 [-12 32 56 SS e 24 54 [-1 e 29 1 FS		PPP SS	e 54.6 44.0 e 46.7 51.1
Butte Bozeman Seven Falls Tinemaha Salt Lake City		$\substack{123.9\\124.7\\127.2\\128.0\\128.5}$	23 23 347 35 27	e 20 13 e 20 47 e 21 31 i 19 7 e 22 31	PP PP [-1] PP	e 31 37 PS e 28 52 ? e 37 55 SS e 38 27 SS	e 37 31 e 37 40 —	ss =	e 60·4 e 60·6 52·1 e 56·6
Santa Barbara Ottawa Mount Wilson Pasadena Overton	z. z.	129.0 129.7 130.1 130.1 130.5	38 352 37 37 32	e 19 6 e 19 10 i 19 13 i 19 12 e 19 14	[-4] $[-1]$ $[+1]$ $[+1]$	e 28 15 { - 3 e 38 55 SS	e 38 37 ? i 22 45 e 24 43	SS PKS PPP	49·1 e 54·4
Boulder City Riverside Pierce Ferry Palomar Harvard	z. z.	130·7 130·7 131·1 131·5 131·8	33 37 32 37 347	e 19 13 i 19 16 e 19 15 e 19 16 e 19 13	[+ 3] $[+ 1]$ $[+ 1]$ $[- 2]$		e 22 28 i 22 37 e 21 36	PKS PKS PP	
Chicago Fordham Philadelphia Pitteburgh Tucson		133.8 133.8 134.9 135.1 135.7	349 350 355 33	e 22 44 e 19 24 e 21 37 e 22 52 e 19 21	PKS [+ 5] PP PKS [- 2]	e 29 25 {+35} e 40 7 SS	e 24 24 e 22 48 e 22 43 i 22 51	PPP PKS PKS	e 58·2 e 53·6 e 56·1
Cincinnati Florissant St. Louis Bermuda Columbia		136.6 136.8 138.8 141.6	0 7 7 334 355	e 19 23 e 19 27 e 19 23	[- 1] [+ 3] [- 2]	i 23 3 PKS e 34 9 PPS e 31 39 PS e 42 17 SSP e 43 43 SSP	e 22 23 e 22 0 e 22 49	PP PP PKS	e 71·3 e 66·4
Fort de France San Juan La Paz Bogota Huancayo		150.0 150.9 160.0 166.2 168.2	309 322 232 311 230	e 19 50 e 19 52 i 20 7 e 20 6 e 26 9	[+ 3] $[+ 3]$ $[+ 6]$ $[- 1]$	e 42 28 SS 27 2 [-3] e 44 44 SS	e 36 54 25 0 e 29 37	PPS PP PPP	e 60·5 78·1 e 71·5

Additional readings:—
Hyderabad $P_cPE = 8m.30s.$, SSE = 9m.10s.Bombay iE = 10m.31s.New Delhi SS = 11m.1s.Riverview eQE = 27m.55s.Helwan eN = 20m.43s.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1945

225

Triest iPS = 23m.49s., eSSS = 32m.10s.Collmberg ePPP? = 17m.21s., ePS = 23m.13s., ePPS = 23m.50s., eSS = 28m.13s., and many other unidentified phases. Copenhagen 14m.39s. and 22m.41s. Jena eN = 12m.17s. Christchurch $S_cS = 23m.24s$. Auckland S? = 23m.43s. Wellington iZ = 13m.39s. Uccle eSKS?N = 23m.17s., iSKKS?N = 23m.26s.Aberdeen iE = 23m.23s, and 31m.13s, iN = 36m.42s, iE = 37m.1s. Tortosa $S_cSE = 23m.32s.$, PSE = 25m.18s., SS?E = 29m.23s.Malaga ePS = 23m.51s. College e = 25 m. 24 s., ePS = 27 m. 23 s.Coimbra eP = 12m.3s., SS = 32m.37s.Sitka e = 28m.578. Ottawa e = 22m.7s. Boulder City e = 19m.53s. Pierce Ferry e = 19m.21s, and 19m.50s. Chicago e = 23m.19s., eSS? = 41m.7s., e = 42m.17s.Philadelphia eSS = 39m.36s., eSSS = 44m.25s.Tucson e = 23m.50s., ePPP = 24m.36s., eSSS = 44m.53s.Florissant ePPPS?N = 35m.36s. St. Louis iZ = 19m.28s., 22m.54s., and 23m.2s., ePSKS?E = 33m.37s., ePPP?E = 34m.17s.San Juan i = 20m.27s., e = 30m.35s.La Paz iZ = 30m.30s., iPSKS = 36m.1s., PSS? = 43m.16s.Huancayo e = 36m.7s, and 46m.15s. Long waves were also recorded at Ukiah.

July 23d. Readings also at 1h. (Collmberg), 2h. (Ksara), 4h. (Boulder City and Tucson), 9h. (Balboa Heights), 10h. (Collmberg and near La Paz), 15h. (Auckland), 17h. (Berkeley, near Branner, Lick, and near Andijan).

July 24d. Readings at 1h. (near Ottawa), 6h. (Brisbane and Tucson), 9h. (near Florissant, St. Louis, and Cape Girardeau), 11h. (near Mizusawa), 13h. (Berkeley (2) and near Andijan), 16h. (Balboa Heights), 23h. (Lick (2)).

July 25d. Readings at 0h. (near Fresno), 5h. (Kew), 6h. (Tinemaha, Tucson, Riverside, Palomar, Haiwee, Mount Wilson, Pasadena, Christchurch, Wellington, and Riverview), 7h. (Pasadena, Mount Wilson, Palomar, Riverside, Haiwee, Tinemaha, Shasta Dam, and Tucson), 10h. (Collmberg), 11h. (De Bilt and Kew), 12h. (Wellington and Riverview), 15h. (near Ottawa), 18h. (Collmberg), 20h. (near Tucson).

July 26d. 10h. 32m. 15s. Epicentre 34°·3N. 81°·4W. (as given by U.S.C.G.S.).

Intensity IV at Abbeville, Charleston, Columbia, Greenville, Ashville, and Charlottesville; III at Lancaster, Langley, and Summerville.

Macroseismic area 25,000 square miles.

United States Earthquakes, 1945.

U.S. Coast and Geodetic Survey, Washington, 1947, p. 6.

A = +.1238, B = -.8185, C = +.5609; $\delta = -12$; h = 0; D = -.989, E = -.150; G = +.084, H = -.555, K = -.828.

		Δ	Az.	P.	0-C.	s.	0 - C.	Su	pp.	L.
		0		m. s.	8.	m. s.	8.	m. s.	2.20	m.
Columbia		0.4	135	i0 8	- 5	i 0 14	- 7	- COMP COMP		
Cincinnati		5.5	334			e 2 36	+ 6	i3 4	Sr	i 3·1
Georgetown		5.8	36		1	2 34	- 4		~	e 3.6
Pittsburgh		6.3	12	i 2 1	$\mathbf{P}_{\mathbf{z}}$	i 3 28	S.	3	-	
Mobile		6.7	240			i 3 26	8.	-	1	-
Cape Girardeau	E.	7.3	297		-	e 3 33	+18	e 3 47	8*	· 6 4.4
Philadelphia	Same C	7.5	40	1000	1000	e 3 31	+11	e 3 48	s*	i 4.0
St. Louis	E.	8-4	304	e 2 6	0	e 3 38	- 5	e 4 27	ã.	·
Fordham		8.9	40	1 2 13	+ 1	1 3 54	- ĭ	1 4 40	š•	
Harvard		11.3	41	e 2 46	Ö	i 4 42	$-1\tilde{2}$	i 3 12	PPP	i 6.2
Ottawa		11.9	19	2 59	+ 5	3 22	PPP			
Tucson		24.7	274	i 5 24	Ö	3 -1			125	0 14.2

Additional readings :-

Philadelphia e = 3m.40s, and 3m.57s.

Fordham iS = 4m.9s. Harvard i = 4m.16s.

Long waves were also recorded at Rapid City.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1945

July 26d. Readings also at 2h. (La Paz, Bogota, and Fort de France), 3h. (near Tashkent), 14h. (Collmberg), 15h. (La Paz and near Huancayo), 18h. (Riverview and Brisbane), 20h. (near Ottawa), 21h. (Collmberg and near La Paz), 22h. (Collmberg (2), La Paz, and near Mizusawa).

226

July 27d. Readings at 1h. (Collmberg), 4h. (near Granada), 6h. (Palomar, Riverside, Tinemaha, Pasadena, Mount Wilson, and near Apia), 9h. and 12h. (Collmberg), 14h. (Palomar and Tucson), 17h. (Pierce Ferry, Overton, Boulder City, Tinemaha, Haiwee, Santa Barbara, Mount Wilson, Pasadena, Riverside, Palomar, Tucson, and near Andijan), 18h. (Copenhagen, Collmberg, New Delhi, near Andijan, and Stalinabad), 20h. (Brisbane, Riverview, and Christchurch), 21h. (Tucson, Palomar, Riverside, Mount Wilson, Tinemaha, and Kew).

July 28d. Readings at 0h. (Auckland), 1h. (Granada), 2h. (Paris, Uccle, and Huancayo), 4h. (La Paz), 8h. (Collmberg), 10h. (near Mizusawa), 11h. (Paris and Balboa Heights) 13h. (Balboa Heights and near Irkutsk), 14h. (Collmberg), 15h. (Paris), 23h. (Fresno).

July 29d. 0h. Local shock.

Berkeley iPNZ = 37m.15s., eSEN = 37m.24s.
San Francisco eN = 37m.20s., eSN = 37m.30s.
Branner ePEN = 37m.23s., iSEN = 37m.38s.
Lick ePEN = 37m.29s., eSEN = 37m.41s.
Palomar eZ = 37m.58s., iNZ = 38m.15s.
Fresno eN = 38m.0s.
Mount Wilson eZ = 38m.6s.
Riverside eZ = 38m.8s.
Tucson iP = 38m.32s.
St. Louis ePZ = 39m.42s.

July 29d. 8h. 56m. 49s. Epicentre 38° · 0N. 43° · 0E. (as on 1940 March 17d.). Rough.

$$A = +.5778$$
, $B = +.5388$, $C = +.6131$; $\delta = +5$; $h = -1$; $D = +.682$, $E = -.731$; $G = +.448$, $H = +.418$, $K = -.790$.

Δ	Az,	Ρ.	0-C.	S.	0 - C.	Suj	pp.
6	•	m. s.	8.	m. s.	8.	m. s.	
2.9	13	e 0 43	- 5	1 51	S.	T	-
7-1		e 2 3	P*	4 22	Se	-	-
18.1	351	e 4 8	- 6	e 7 29	- 6		
20.5	73	e 4 40	- 2	e 8 21	- 6		
22.8	75	e 5 13	+ 8	12/01/ 2000	- 111 7	2000	
23.0	300	i 5 12	+ 5	e 9 27	+13	i 5 35	\mathbf{PP}
24.9	311	e 5 26	0			511 5	-
	7·1 18·1 20·5 22·8 23·0	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2·9 13 e 0 43 7·1 237 e 2 3 18·1 351 e 4 8 20·5 73 e 4 40 22·8 75 e 5 13 23·0 300 i 5 12	2·9 13 e 0 43 - 5 7·1 237 e 2 3 P* 18·1 351 e 4 8 - 6 20·5 73 e 4 40 - 2 22·8 75 e 5 13 + 8 23·0 300 i 5 12 + 5	2.9 13 e 0 43 - 5 1 51 7.1 237 e 2 3 P* 4 22 18.1 351 e 4 8 - 6 e 7 29 20.5 73 e 4 40 - 2 e 8 21 22.8 75 e 5 13 + 8 23.0 300 i 5 12 + 5 e 9 27	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.9 13 e 0 43 - 5 1 51 S _g - 7.1 237 e 2 3 P* 4 22 S _g - 18.1 351 e 4 8 - 6 e 7 29 - 6 - 20.5 73 e 4 40 - 2 e 8 21 - 6 - 22.8 75 e 5 13 + 8 - 6 e 9 27 + 13 i 5 35

July 29d. 18h. Off West Coast of Mexico?

```
Tucson iP = 49m.8s., i = 49m.29s. and 50m.8s., iS = 50m.38s., i = 50m.44s., iL = 50m.46s. Palomar ePZ = 49m.51s., eSN = 52m.8s. Riverside ePZ = 50m.3s., eS = 52m.39s. Mount Wilson iPZ = 50m.10s., eSZ = 53m.6s. Pasadena iPZ = 50m.10s., iSE = 53m.8s. Boulder City iP = 50m.13s., eL = 53m.3s. Overton iP = 50m.20s., i = 50m.30s. and 50m.43s. Haiwee eP = 50m.31s. Santa Barbara ePZ = 50m.31s. Santa Barbara ePZ = 50m.43s. St. Louis ePZ = 52m.35s., eSE = 56m.28s., eLN = 58m.49s. Florissant eSE = 56m.34s., eLE = 58m.54s. Chicago e = 60m.8s., eL = 61m.6s. Long waves were also recorded at Cape Girardeau and Philadelphia.
```

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1945

227

July 29d. Readings also at 3h. and 6h. (Collmberg), 7h. (near Andijan), 8h. (Mount Wilson, Palomar (2), Riverside (2), Tucson, St. Louis, Collmberg, and near Mizusawa), 9h. (Mount Wilson, Pasadena, Palomar, Riverside, Tinemaha, Tucson), 13h. (near Berkeley, Branner, Lick, and San Francisco), 17h. (near Erevan), 18h. (Calcutta), 20h. (near Basle and Zürich), 21h. (Edinburgh, La Paz, Tashkent, and near Andijan).

July 30d. 15h. 15m. 42s. Epicentre 23°.5S. 71°.0W.

$$A = + \cdot 2989$$
, $B = - \cdot 8680$, $C = - \cdot 3965$; $\delta = -2$; $h = +4$; $D = - \cdot 946$, $E = - \cdot 326$; $G = - \cdot 129$, $H = + \cdot 375$, $K = - \cdot 918$.

		Δ	Az.	Ρ.	O-C.	s.	0 – C.	Su	pp.	L.
REPORT OF THE PROPERTY OF THE		0	0	m. s.	s.	m. s.	s.	m. s.		m.
Montezuma.		2.2	66	e 0 39?	+ 1	i 1 7 ?	+ 1	-		e 1.4
La Paz	Z.	7.5	22	e 1 54	+ 1	1 3 22	+ 2	i 1 58	3	4.5
San Juan	357.5	41.9	7			e 13 33	-40		1.50	e 17.0
Tucson		67 .1	324	i 10 57	0			i 11 17	$P_{\mathbf{c}}P$	·
La Jolla		71.3	320	e 11 22	- 1	5	-	-		
Palomar		71.5	320	i 11 24	0	25-24 ()		e 11 38	P_cP	_
Riverside	Z.	72.2	320	i 11 28	- ĭ	· · · · · ·		0 11 00	* 6*	
Mount Wilson		72.8	320	i 11 31	- 1	_	-		_	
Pasadena		72.8	320	i 11 32	0			i 12 17	2	
Santa Barbara	Z.	73.9	319	i 11 38	- 1	- Bernet			-	
Haiwee	(2008)	74.1	322	i 11 40	0	-				
Tinemaha		74.9	323	i 11 44	Ű	3-3		-	-	-

Tucson gives also i = 12m.8s. and 12m.33s.

July 30d. Readings also at 0h. (Riverview), 1h. (Riverview and Kew), 6h. (Tucson, Overton, Boulder City, Branner, Berkeley, Lick, and near Fresno), 5h. (Palomar and Tucson), 8h. (Ksara), 12h. (Reykjavik), 16h. (Palomar, Mount Wilson, Tucson, and La Paz), 18h. (near Tananarive).

July 31d. 4h. Far South Atlantic.

La Paz iPZ = 57m.50s., iSZ = 65m.47s., LZ = 75m.0s.Bogota eP = 60m.11s., e = 62m.39s.Fort de France eP? = 60m.38s. San Juan e = 61 m. 32 s. and 70 m. 28 s., eL = 89 m. 45 s.Tucson iP = 67m.17s., e = 72m.37s., eL = 107m.10s. Riverside iPZ = 67 m. 25 s.La Jolla ePNZ = 67m.26s.Palomar iPNZ = 67m.26s. Pasadena iPNZ = 67m.27s. Boulder City eP = 67m.27s. Mount Wilson iP = 67m.28s. Haiwee iPZ = 67m.31s. Santa Barbara iPZ = 67m.31s. Tinemaha iPZ = 67 m. 34 s.Berkeley ePZ = 67m.37s., eSZ = 68m.38s.Shasta Dam iP = 67m.40s. St. Louis ePZ = 67m.44s., eN = 73m.40s. and 77m.1s.Grand Coulee eP = 67m.50s. Helwan eN = 74m.12s. Paris e = 77m., eL = 101m.Kew eL = 77m. (not L, see Paris). The American readings are all PKP for a distant shock. Long waves were also recorded at Huancayo, Riverview, and other European and New Zealand stations.

July 31d. Readings also at 2h. (Mizusawa), 3h. (Branner), 6h. (near Mizusawa), 18h. (Mount Wilson, Pasadena, Palomar, Riverside, Tinemaha, Tucson, Boulder City, Shasta Dam, Sitka, and St. Louis), 23h. (Sverdlovsk).

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1945

228

Aug. 1d. 11h. 47m. 25s. Epicentre 9°.5S. 70°.0W. Depth of focus 0.080.

A = +.3374, B = -.9270, C = -.1640; $\delta = +6$; h = +7; D = -.940, E = -.342; G = -.056, H = +.154, K = -.986.

		Δ	Az.	P.	0-0	c.	s.	0 - C.	Su	pp.	L.
			0_	0.050000000	8. 8.		m. s.	8.	m. s.	NE:	m.
Huancayo		5.8	243		38 +	1	i 2 49	- 5			e 3·3
La Paz	$\mathbf{z}.$	1 Table 1 1 (1994)	165			õ	i 3 12	- 6		_	3.6
Bogota		14.6	344		9 +1	100		_	i 5 28	\mathbf{pP}	e 8.6
St. Louis		51.5	340		18 +	1	i 14 55	- 2	i 9 19	pP	6 6 6
	**				All the second s	à				PP	
Florissant	z.	51.7	340	i 8 2	21 +	2	i 14 58	- 2	e 9 21	\mathbf{pP}	3
Tucson		56.9	319	i 8 5	i4 —	1	e 16 3	- 5	i 10 54	\mathbf{pP}	-
La Jolla	Z.	61.6	316		35 —	2			e 11 28	pP	_
Palomar		61.7	317		7 k	ñ			i 11 28	$\hat{\mathbf{p}}\hat{\mathbf{P}}$	
Boulder City		61.9	320	Control of the Contro	NO.	ĭ	e 17 8	- 2	i 11 29	n D	
						÷	e 17 8		1 11 20	\mathbf{pP}	
Overton		62.0	321	i 9 3	30 +			****		-	-
Riverside	z.	62.4	317	i 9 3	30 -	2			e 11 33	pP	-
Mount Wilson	z.	63.0	317		34k -	$\tilde{2}$	-	-	i 11 37	pP	-
Pasadena		63.0	317	The Control of the Co	4 -	<u> </u>	i 17 20	- 4	i 11 36	$\hat{\mathbf{p}}\hat{\mathbf{P}}$	
Haiwee		64.0	319	194	100	ĩ	i 17 35	î	1 11 00	***	
	-		316	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 -	2	111 00	2.7	i-i		
Santa Barbara	z,	$64 \cdot 2$	310	1 9 4	1 -	4	700				
Tinemaha		64.7	319	i 9 4	5	1	e 17 42	- 2	i 11 49	\mathbf{pP}	-
Shasta Dam		69.4	320		3 -	2		- 14 A A A A A A A A A A A A A A A A A A	- Transcription	•	
Grand Coulee		71.7	328	1 Fig. 1887 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8	1	i 19 3	- 2	i 12 35	\mathbf{pP}	-
Tashkent		$132 \cdot 2$	42	e 18 1	3 f +	î ı	e 23 0	5		P.~	_

Additional readings :-Huancayo i = 2m.37s.

La Paz iZ = 2m.12s.

St. Louis eZ = 14m.48s., esS?N = 17m.2s.

Tucson e = 9m.28s., $iP_cP = 9m.39s.$, e = 10m.38s.

La Jolla eZ = 9m.59s.

Palomar iZ = 9m.59s.

Overton i = 9m.43s., e = 9m.51s.

Riverside iZ = 10m.0s, and 12m.17s.

Mount Wilson iZ = 9m.55s.

Pasadena iZ = 9m.55s., i = 10m.3s., iZ = 12m.19s., iEN = 18m.23s.Haiwee iZ = 10m.8s., eZ = 10m.23s.

Santa Barbara eZ = 10m.7s.

Tinemaha iZ = 10m.6s.

Aug. 1d. 22h. 23m. 15s. Epicentre 23°.9N. 121°.7E. (as on 1942 Sept. 24d.).

A = -.4809, B = +.7787, C = +.4029; $\delta = -3$; h = +4; D = +.851, E = +.525; G = -.212, H = +.343, K = -.915.

		Δ	Az,	Ρ.	O-C.	s.	0-C.	Suj	pp.	L.
		0	•	m. s.	8.	m. s.	8.	m. s.	2.50	m.
Pehpei		14.9	297	c 3 2	-32	i 6 33	+13			8.6
Mizusawa	E.	22.4	42	c 5 3	+ 1	9 43	+39	-		14.1
	N.	22.4	42	4 44	18	9 40	+36	•	-	13.9
Calcutta	N.	30.7	275	e 6 26	+ 7	e 11 34	+13	i 13 6	SS	15.2
Irkutsk	9202.0	31.3	340	6 21	- 3	11 32	+ 1		_	
New Delhi		40.0	287	e 7 39	+ 1	i 13 44	0	16 43	SS	18.8
Hyderabad	N.	40.9	270	7 44	- 2	e 13 54	- 4	17 18	SS	
Colombo	E.	43.5	255	8 10	+ 3	14 40	+ 4	-	-	24.8
Kodaikanal	E.	44.2	261	i 9 22	+70	i 15 52	+66	10 52	$\mathbf{P}\mathbf{P}$	22.0
Andijan		44.4	305	e 8 16	+ 2			-	_	
Bombay		45.6	274	i 8 22	- 2	e 15 2	- 4			24.3
Tashkent		46.7	306	i 8 32	0	i 15 27	+ 5			-
Riverview	Z.	63.9	153	1 10 42	+ 5		10		-	
Erevan		65.5	305	e 10 54	+ 7					
Leninakan		65.9	307	e 10 51	+ 1	-	2			
Moscow		67 -3	323	e 10 54	- 5	19 43	-11		-	-
College		68.8	27	e 11 8	0	e 20 15	+ 4	e 21 31	S_cS	e 33·5
Yalta		72.0	312	e 11 23	- 5	ASTENDATA ASTE	-	28 34	SSS	14700017707
Honolulu		73.3	73	e 11 40	+ 5	e 21 17	+13	e 21 47	PS	e 35.4
Ksara		73.8	300	e 11 40	+ 2	e 21 23	+14	www.cee	-	

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1945

229

		Δ	Az.		0 - C.	1374 077677 m d	0 - C.		pp.	L.
Upsala Sitka Bucharest Auckland Helwan		76·4 77·0 77·5 78·5 78·8	331 333 313 139 298	m. s. e 19 29 e 11 54 e 12 2 12 53 e 12 6	s. - 2 + 3 + 1	m. s. e 21 36 e 21 49 e 21 58 22 30 22 11	s. - 2 + 4 + 8 PS + 7	e 14 52 e 27 33	PP SS	m. e 37·4 e 34·3 34·8
Sofia Arapuni Copenhagen Belgrade Wellington		79·6 79·8 80·7 81·0 81·4	312 140 328 315 143	e 12 14 e 10 45? i 12 15 e 12 27 a 12 20	+ 4 - 1 + 9	e 22 26 22 45? 22 22 e 23 5 22 45?	+14 PS - 3 PS +14	- e 15 16 e 15 28 15 39	PP PP PP	e 39·8 e 40·8 e 40·8
Bergen Christchurch Prague Jena Tananarive	z,	81·5 81·8 82·1 83·5 83·9	334 146 322 323 247	e 12 17 12 23 e 12 25 e 12 26 e 12 2	-4 + 1 + 1 - 5 - 31	e 22 22 22 33 e 23 1 	$-10 \\ -8 \\ -8 \\ -41$	e 15 38 27 51 e 15 3	PP SS PP	38.8 40.8 e 42.8
Triest De Bilt Aberdeen Chur Strasbourg		84·9 86·3 86·5 86·7	318 327 333 322 323	i 12 34 i 12 44a i 12 52 e 12 46 e 12 48	- 4 - 1 + 6 - 1	e 23 24 e 23 25 i 23 20 e 23 24 e 23 48	$^{+18}_{+5}_{-20}$	i 12 52 i 16 5 i 15 56 16 19	PP PP PP	e 46·8 e 47·5 e 45·8
Zürich Uccle Edinburgh Neuchatel Kew		$87.4 \\ 87.8 \\ 88.2 \\ 89.4$	322 327 333 322 328	e 12 47 i 12 49 a i 12 41 i 12 59 a	$ \begin{array}{r} $	e 23 32 e 23 26 e 23 15 e 23 577	+ 4 - 4 [- 4] + 8	e 16 13 i 16 13 i 16 28	PP PP	e 45·8
Paris Grand Coulee Clermont-Ferrar Shasta Dam Tinemaha	ıd	89.6 90.2 91.2 92.4 97.2	325 37 322 43 44	i 12 59 i 13 4 e 13 9 i 13 13 i 13 36	- 2 0 + 1 - 1 0	e 24 54 e 23 48	PS - 8 - =	i 16 29 e 24 18 e 16 43 16 6	PP ScS PP PP	e 53·8 e 49·8
Toledo Mount Wilson Pasadena Riverside Overton	Z. Z. Z.	98·9 99·0 99·6 99·9	320 47 47 47 47	e 16 30 e 13 43 e 13 45 e 13 49 e 13 57	PP - 1 + 1 + 3 + 9	e 26_40 	PS =	i 17 20	PP =	46·2 e 46·2
Boulder City Palomar Granada Rapid City Coimbra	z.	$100.0 \\ 100.3 \\ 100.4 \\ 100.8 \\ 101.1$	$^{43}_{42}_{319}_{31}_{323}$	e 13 50 e 13 51 e 15 43a e 19 53	+ 2 + 1 PPP	26 21 e 25 47 29 40	PS +20	e 17 46 e 17 35 36 30 32 13	$\frac{PP}{SSS}$	i 54·8 e 56·9 e 53·1
Malaga San Fernando Tucson Seven Falls Ottawa	Z. E.	$101 \cdot 2$ $102 \cdot 4$ $104 \cdot 9$ $108 \cdot 4$ $109 \cdot 2$	$319 \\ 320 \\ 44 \\ 9 \\ 13$	i 17 57 a e 17 10 e 14 13	PP + 3 -	e 28 18 e 27 51 e 26 39 e 25 45	PPS PS 8 {-14}	e 18 20	PP	55.0 56.8 e 50.5 51.8 56.8
St. Louis Cincinnati Fordham Philadelphia Columbia		111·0 112·7 114·0 114·6 118·5	$\frac{26}{21}$ $\frac{13}{14}$ $\frac{22}{22}$	e 19 8 e 19 20 e 19 40 e 19 34 e 19 17	PP PP PP PP [+27]	e 28 51 e 29 7 e 29 10 e 25 53 e 29 41	PS PS PS [+23] PS	e 35 11 e 30 5 e 28 56 e 37 18	$\begin{array}{c} \mathbf{ss} \\ \mathbf{pps} \\ \mathbf{rs} \\ \mathbf{ss} \end{array}$	e 51·4 e 60·8 e 47·1 e 60·9
Bermuda San Juan Bogota La Paz	z.	123.7 137.3 147.7 168.2	6 11 29 53	e 20 41 e 22 6 e 19 45 i 20 12	PP PP [+ 1] [+ 4]	i 29 45	PPP			e 62·0 e 62·4

```
Additional readings :—
Pehpei eP = 3m.29s., i = 7m.10s., 7m.25s., and 7m.40s., S = 8m.2s., i = 8m.5s.
Calcutta ?N = 9m.39s.
New Delhi SSSN = 17m.24s.
Hyderabad SN = 14m.4s.
Kodaikanal PePE = 11m.52s., SSE = 18m.32s., SeSE = 20m.17s.
Upsala eS?N = 21m.41s., eE = 26m.27s. and 30m.33s., eN = 30m.45s.?
Sitka iP = 11m.57s., ePPS = 22m.33s., eSS? = 27m.9s.
Auckland PS? = 23m.45s.
```

Helwan eN = 22m.3s.

Continued on next page.

Copenhagen i = 12m.22s., 22m.34s., 23m.0s., 24m.8s., 27m.30s., 31m.57s., and 37m.15s.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1945

230

Wellington iZ = 12m.45s., PSZ = 23m.33s.Christchurch QEN = 34m.10s.Tananarive SKSE = 21m.49s., iPPPZ = 17m.48s., eSKS = 22m.47s.Aberdeen iPPE = 16m.5s., iEN = 34m.10s.Kew ePPPZ = 18m.27s.?, ePSZ = 25m.19s., eSSE = 30m.11s.?, eSSSEN = 33m.45s., eQ = 38m.45s.Grand Coulee i = 13m.19s.Coimbra S = 31m.9s., ? = 40m.9s.Malaga eSZ = 29m.12s.Tucson ePKP? = 17m.50s.St. Louis eN = 30m.37s.Columbia eSSS? = 41m.28s., e = 43m.0s.Long waves were also recorded at Barcelona, Lisbon, Tortosa, and Ivigtut.

Aug. 1d. Readings also at 3h. (Branner, near Berkeley (2), Lick (2), and San Francisco), 5h. (near Berkeley, Branner, and Lick), 7h. (Haiwee, La Jolla, Mount Wilson, Pasadena, Palomar, Riverside, Tinemaha, Tucson, Kew, Paris, De Bilt, and Uccle), 11h. (Auckland, Christchurch, Wellington, and Brisbane), 12h. (near Erevan), 13h. (Tashkent, near Belgrade, Campulung, Bucharest, and Sofia), 14h. (Bucharest, Belgrade, and near Sofia), 17h. (near Tucson), 18h. (near Tananarive), 23h. (La Paz).

Aug. 2d. 17h. 52m. 7s. Epicentre 20°-4N. 120°-4E.

A = -.4747, B = +.8090, C = +.3465; $\delta = -12$; h = +5; D = +.863, E = +.506; G = -.175, H = +.299, K = -.938.

		Δ	Az.	P. m. s.	O – C. s.	S. m. s.	O – C. s.	m. s.	p.	L. m.
Pehpei Hukuoka Tokyo Sendai Mizusawa		15.8 15.9 22.8 25.1 25.8	309 32 45 42 40	(i 3 35) 3 54 e 5 21 e 5 33 e 5 33	-10 + 7 +16 + 5 - 1	7 3 8 29 9 53 e 10 7	$ \begin{array}{r} $	(i 3 55) — — e 5 36	PP = = ?	
Calcutta Irkutak Hyderabad New Delhi Colombo	N. N. E.	29·9 34·2 39·7 40·0 41·5	280 343 273 291 257	e 6 23 6 52 i 9 26 e 7 39 7 48	+11 + 3 PP + 1 - 3	i 11 7 12 25 e 13 42 e 13 30 14 6	$ \begin{array}{c} - & 2 \\ + & 9 \\ + & 2 \\ - & 1 \\ - & 1 \end{array} $	<u>-</u> 9 41	P _c P	e 15·1
Kodaikanal Bombay Andijan Tashkent Erevan	E.	42·5 44·7 45·4 47·8 66·6	264 277 307 308 306	(e 8 23) i 8 14 e 8 26 i 8 44 e 10 56	$^{+24}_{-2} \\ ^{+2}_{+3} \\ ^{+2}$	(e 14 48) 1 15 2 15 15 1 15 48	$^{+ 26}_{+ 8}_{+ 11}_{+ 10}$	(9 54) = =	PP =	(20·7) 21·7
Moscow College Ksara Upsala Bucharest	E. N.	69·4 72·5 74·5 78·8 79·0 79·0	324 27 300 330 314 314	e 11 11 e 11 28 e 11 45 e 12 10 e 12 14	$-\frac{1}{2} + \frac{3}{7}$	20 17 e 20 54 e 21 34 e 22 5 e 22 12 e 22 22	$ \begin{array}{r} $			e 30·6 e 40·9 37·9
Helwan Sitka Copenhagen Bergen Prague		79·3 80·4 83·0 84·1 84·3	$298 \\ 33 \\ 328 \\ 334 \\ 322$	e 12 10 e 12 11 e 12 28 12 32 e 11 40	$^{+}_{-}\overset{1}{\overset{4}{\overset{0}{\overset{0}{\overset{0}{\overset{0}{\overset{0}{\overset{0}{0$	$\begin{array}{c} 22 & 23 \\ e & 22 & 21 \\ 22 & 50 \\ 23 & 23 \\ e & 22 & 11 \\ \end{array}$	$^{+14}_{00} \\ ^{+3}_{+25} \\ ^{-49}$	e 27 41 i 12 43	ss PeP	e 35·1 e 41·3 e 41·9
Triest De Bilt Chur Strasbourg Zürich		86·7 88·5 88·7 88·9 89·0	$318 \\ 327 \\ 321 \\ 323 \\ 321$	i 12 45 e 12 57 e 12 55 e 12 56 e 13 6	- 2 + 1 - 2 - 2 + 8	e 23 17 e 23 17 e 23 42	[- 7] - 1	i 13 10 e 16 28 e 14 33	PP PP	e 45-9
Aberdeen Basle Uccle Kew Paris		89·5 89·6 91·7 91·7	333 322 325 328 324	i 16 31 e 12 58 i 12 59 e 13 91 i 13 10	PP - 2 - 2 - 1 0	i 24 0 e 23 56 e 23 43 e 24 59 e 25 26	+14 + 6 - 8 - 5 PS	i 16 35 i 16 49 e 16 51	PP PP PP	e 48·2 e 45·9 e 39·9 e 50·9

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1945

		Δ	Az.	Р.	O-C.	s.	O – C.	Suj	op.	L.
		0	0	m. s.	s.	m, s.	s.	m. s.	vunain :	m.
Clermont-Ferra	nd	93.1	321	e 13 8	- 9			e 17 6	\mathbf{PP}	e 52.9
Grand Coulce		93.7	35	e 13 15	- 5	-	-	e 13 19	$P_{c}P$	() () ()
Shasta Dam		95.8	43	1 13 29	Ō		-	e 17 1	\mathbf{PP}	3 ====
Saskatoon		97.0	27			e 24 59	+ 4			$54 \cdot 9$
Tortosa	E.	97.4	318	e 16 40	8					e 53·9
Tinemaha	z.	100.5	44	e 13 50	- 1		-	- 	-	* *
Toledo		100.8	319	17 3	7	-	_	33 38	3	
Granada		102.1	317	e 16 26	3	24 50	[+13]	e 28 53	3	
Pasadena	Z.	102.2	46	e 13 56	- 2				-	e 47·3
Mount Wilson	z.	102.3	46	e 13 59	0	-	-		_	-
Riverside	z.	102.9	46	e 13 59	- 2		-	- -		
Coimbra		103.2	322	e 18 13	\mathbf{PP}	28 14	PPS	e 22 8	PKS	55.4
Palomar	Z.	103.6	46	i 14 9	+ 5	-			****	_
Tucson		108.3	44	e 14 30	P			e 18 34	PKP	_
Florissant	Z.	114.4	26		\mathbf{PP}	e 28 43	PS	-		-
St. Louis		114.6	26	e 18 10	[-32]	e 26 32	$\{-5\}$	e 19 41	\mathbf{PP}	-
Fordham		117.6	12	e 20 4	PP	e 29 43	PS	-		12.7
San Juan		140.9	9	e 20 9	[+37]	e 29 51	$\{+25\}$	e 23 10	\mathbf{PP}	e 54·1

Additional readings:—
Pehpei i=(8m.36s.) and (8m.44s), readings increased by 4m.Kodaikanal $P_cPE=(10m.44s.)$, SSE=(17m.19s.), readings increased by 2m.Triest ePPE=16m.11s., esSE=23m.59s., eSSE=29m.5s.De Bilt ePS?=24m.23s.Uccle ePPP=18m.30s., ePS?N=24m.4s.

Kew ePPPZ = 18m.508., iPSNZ = 25m.208., eSSSN = 30m.258.?, eQE = 37.9m.St. Louis eSE = 27m.268., ePSE = 29m.108., eSSE = 35m.378.Long waves were also recorded at Belgrade and Malaga.

Aug. 2d. 20h. 44m. 49s. Epicentre 53°.9N. 132°.1W.

A = -.3968, B = -.4391, C = +.8061; $\delta = +6$; h = -7; D = -.742, E = +.670; G = -.540, H = -.598, K = -.592.

		Δ	Az,	P. m. s.	O – C. s.	s. m. s.	O – C.	m. s.	p.	L. m.
Sitka Victoria Seattle Ground Conlee College		4·1 7·7 8·8 10·2 13·5	334 131 131 121 330	m. 8. i 0 44 2 0 e 2 27 i 2 31 e 3 4	$-21 \\ + 4 \\ + 16 \\ -11$	i 1 20 3 41 e 3 37 i 4 6 e 5 42	$ \begin{array}{r} -35 \\ +16 \\ -16 \\ -21 \\ -5 \end{array} $	e 4 50	sss	i 1·7 5·2 e 4·2 e 5·3 e 7·0
Ferndale Shasta Dam Butte Saskatoon Bozeman	N.	14·3 14·7 14·8 15·4 15·8	155 150 114 86 113	e 3 29 i 3 36 3 42 e 3 45	$-\frac{2}{4} + \frac{4}{2}$	e 6 41 e 6 41 6 45	$+35 \\ +11 \\ +9 \\ +3$	- e 4 59	=	e 7·7 i 7·7 e 7·6
Ukiah Berkeley Branner Santa Clara Lick	N. E.	15.9 17.4 17.8 18.0 18.1	154 153 153 153 153	e 3 47 e 4 4 e 4 15 i 4 14 e 4 16	$ \begin{array}{c} & 0 \\ & 2 \\ & + & 4 \\ & + & 1 \\ & + & 2 \end{array} $	e 6 59 e 7 28 e 7 59 e 7 51 e 7 46	$^{+15}_{+9}$ $^{+19}_{+11}$	e 4 39 i 7 41 —	ss =	e 8.6 e 10.9 e 11.7 e 11.9
Logan Salt Lake City Fresno Tinemaha Haiwee	N.	18·2 18·9 19·2 19·3 20·3	123 125 148 145 145	e 4 21 e 4 28 e 4 29 i 4 28 i 4 37	+ 5 + 4 + 1 - 1 - 3	e 7 53 e 8 7 e 8 30 e 8 48	$^{+16}_{+14}_{+31}_{-25}$	e 5 11 i 4 31 i 5 3	PP'	e 9·5 e 8·9
Overton Rapid City Santa Barbara Boulder City Mount Wilson	z.	$21 \cdot 2$ $21 \cdot 3$ $21 \cdot 6$ $22 \cdot 0$	137 105 149 138 147	e 5 20 i 4 49 i 4 50 e 4 51 i 4 55	PPP 0 - 3 - 3	i 9 2 e 9 7	$+\frac{1}{18}$	e 5 32 i 5 13	PP	e 11 <u>·0</u>
Pasadena Riverside Palomar La Jolla Tucson	z.	$22.1 \\ 22.5 \\ 23.2 \\ 23.5 \\ 26.4$	147 147 145 146 136	i 4 55k i 5 0 i 5 7 i 5 14 i 5 37	- 4 - 2 - 2 + 2 - 3	i 9 11 e 9 21 — e 10 29	$+\frac{13}{+6} + \frac{17}{17}$	i 5 26 i 5 20 i 5 59 e 6 30	pP pP PPP	e 10·0 — e 13·1

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

232

1945

		Δ	Az.	P. m. s.	O - C. s.	s.	O – C.	Suj	pp.	L.
Chicago Florissant St. Louis Cape Girardeau Cincinnati	Е.	$31.7 \\ 32.0 \\ 32.2 \\ 33.5 \\ 35.2$	94 101 101 102 94	e 6 29 e 6 30 e 6 29	+ 2 0 - 3 PP - 2	e 11 40 i 11 52 e 11 48 e 15 3	s. + 3 + 10 + 3 SS	e 7 26 e 7 34 i 7 38 e 8 11	PP PP PP	m. e 12·9 i 15·6 i 15·7 e 16·0 i 17·7
Ottawa Shawinigan Falls Honolulu Pennsylvania Seven Falls		$36.6 \\ 37.7 \\ 38.0 \\ 38.1 \\ 38.5$	79 75 221 87 74	$\begin{array}{c} 7 & 9 \\ 7 & 22 \\ 7 & 23 \\ \hline 7 & 27 \end{array}$	$-1 \\ +3 \\ +2 \\ +1$	$\begin{array}{c} 12 & 59 \\ \hline e & 13 & 18 \\ e & 16 & 13 \\ 13 & 32 \\ \end{array}$	$^{+\ 6}_{+\ 4}_{\mathrm{SSS}}_{+\ 10}$	e = 37	PP	18·2 18·2 e 15·4 19·2
Georgetown Philadelphia Fordham Columbia Harvard		39.7 40.2 40.4 40.7 40.7	88 86 84 98 80	e 7 33 e 7 52 e 7 45 e 9 27 e 7 44	$^{-3}_{+12} \ ^{+4}_{ ext{PP}}$	e 13 47 e 13 48 i 14 1 e 14 2	+ 7 + 11 + 7	e 16 43 e 9 15 e 17 5 e 20 51	SSS PP SSS	e 19.6 e 17.0 i 21.3 e 16.8 e 21.2
Ivigtut Bermuda Bergen San Juan Irkutsk		42.6 51.5 61.1 61.2 64.2	$^{46}_{86}$ $^{23}_{98}$ 326	e 10 11	- - - 28	e 16 40 e 18 40 e 19 5	SS + 11 + 2 -11	e 20 46 e 29 45	Q 3	e 21·2 e 21·5 e 32·1 e 29·3
Copenhagen Kew De Bilt Uccle Moscow		67·5 68·5 69·5 70·4	21 31 27 29 6	i 10 58k e 11 7 e 11 10 e 11 11	$ \begin{array}{r} $	i 19 54 e 20 1 e 20 11 e 20 21 20 27	$\begin{array}{c} + & 4 \\ + & 5 \\ + & 3 \\ + & 1 \\ - & 3 \end{array}$	e 24 11 e 24 13? e 24 41	ss ss	e 29·2 e 29·7 e 33·2 31·2
Paris Strasbourg Zürich Coimbra Toledo		70·7 72·4 73·7 74·5 76·5	$\frac{30}{27}$ $\frac{27}{41}$ $\frac{39}{39}$	e 11 18 e 14 29 e 11 13 e 8 31 e 11 49	- 2 PP - 25 - 3	e 21 23 - 21 1 e 21 38	$ \begin{array}{r} $	e 24 31	=	e 34·2
Tashkent La Paz	z.	76·7 79·0 79·1 83·4 88·8	$24 \\ 40 \\ 41 \\ 344 \\ 121$	i 11 55 e 12 11a i 12 10 e 11 47 e 12 18	$^{+}_{+}^{0}_{4}$ $^{+}_{-}^{2}_{3}$ $^{-}^{39}$	e 21 39 e 22 8 22 43 e 22 48 e 24 50	- 2 + 2 + 36 - 3 PS	i 12 12 i 12 32 e 16 32	pP pP PP	$ \begin{array}{r} $
New Delhi	N.	94.0	335	e 13 56	+35		~~		<u> </u>	e 53·2

Additional readings :-Grand Coulee i = 3m.5s. Berkeley iP = 4m.7s. Fresno eN =5m.25s. and 6m.58s. Pasadena i = 5m.0s., isP?EZ = 5m.47s. eZ = 8m.57s. Tucson i = 5m.42s. Florissant iE = 12m.33s., eSSN = 13m.36s. St. Louis iSN = 11m.59s., iSSE = 13m.44s.Honolulu e = 14m.0s. Bergen eE = 27m.19s. Copenhagen e = 27m.41s. Kew esse = 27m.11s.? Triest esSE = 22m.5s. Malaga ePPZ = 15m.48s., iPPPZ = 17m.39s.La Paz PZ = 13m.22s., PPP = 18m.30s., SS = 29m.48s. New Delhi iN =15m.28s.

Long waves were also recorded at Vera Cruz, Tacubaya, and at other European stations.

August 2d. Readings also at 2h. (New Delhi, Tashkent, and Pehpei). 3h. (Kew and De Bilt), 4h. (near Sofia), 7h. (Bogota), 8h. (Pehpei, Tashkent, Moscow, Mount Wilson (2), Pasadena (2), Riverside (2), Palomar (2), Shasta Dam, Boulder City, Overton, Tucson (2), and Bogota), 9h. (Pasadena, Mount Wilson, Riverside, Palomar, Tucson, St. Louis, Bogota, La Paz, and Huancayo), 10h. (La Plata), 12h. (Mount Wilson, Riverside, Tucson, Palomar, and near Andijan), 13h. (Tucson, Tinemaha, Berkeley, near Shasta Dam, and near Andijan), 15h. (Tucson and Auckland), 16h. (near Tucson), 18m. (Coimbra and near Zürich), 20h. (Tucson).

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

Aug. 3d. 4h. 11m. 30s. Epicentre 5° 9N, 82° 2W.	1945				2	233					
D991, E138; G -+ 014, H 101, K =-995.								+6:	h = +7:		
Balboa Heights	11 12 12			=-:	136; G	= + .01	14, H = -	·101, K	=995.	p.	L.
Tacubaya Fort de France La Paz Fort de Franc	Bogota Oaxaca Vera Cruz		18·0 19·0	40 98 313 317	m. s. i 1 4 i 1 48 e 4 19 i 4 10 i 4 28	8. 0 -15 + 6 -16	m. s. i 1 54 —	+_2	m. s. = i 4 43	_ _ PP	e 9·1 i 9·7
Capic Girardeau E. 32-0 349 66 26 -4 -	San Juan Tacubaya Fort de France La Paz		$21.3 \\ 22.5 \\ 26.2$	$\frac{312}{66} \\ 147$	e 4 48? i 5 2 i 5 39a	- 2 + 1	e 9 97 e 9 15 i 10 17	$^{+26}_{+10}_{+8}$		_	13·4 e 12·0
Philadelphia 34.5 11 i 6 51 - 1 e 12 27 + 7 e 8 5 PP e 15.4	Cape Girardeau Cincinnati Georgetown	Ε.	$32.0 \\ 33.2 \\ 33.2$	349 357 8	e 6 26 i 6 39 i 6 39	- 1	e 12 5	+ 5	=	= = PP	16.5
Ottawa 39.7 38 7 35 -1 13 41 +1 9 8 PP 19-5 La Jolla 42.2 315 17 56a 0 —	Philadelphia Pennsylvania Fordham		34·5 35·6	11 7 12	i 6 51 e 6 59 i 7 1	- Î + 3 0	e 12 27 e 12 40 i 12 41	$^{+}_{+12}^{7}_{+3}$	e 8 5 e 8 46	PP PP	e 14·5
Rapid City	Ottawa La Jolla Palomar		$39.7 \\ 42.2 \\ 42.2$	315 316	7 35 i 7 55 i 7 56a	- i	13 41	$-10 \\ + 1 \\ - 7$	The second secon	PP PP	19·5 —
Salt Lake City 43.7 328 e 8 13 + 5 c 14 48 + 9 — e 21.9 Logan 44.4 329 e 8 16 + 2 e 14 49 0 e 8 56 PP e 18.6 Haiwee 44.5 319 c 7 53 -22 — <	Rapid City Overton Riverside		42·3 42·4 42·9	338 321 316	i 7 55 e 7 58 i 8 1 a	1000 a . 👼	e 14 19	<u>0</u>	i 9 36	PP =	e 18·6
Bozeman	Salt Lake City Logan Haiwee	z.	43·7 44·4 44·5	$\frac{328}{329}$ $\frac{319}{319}$	e 8 13 e 8 16 e 7 53	$^{+2}_{-22}$	e 14 48	+ 1 + 9 -	e = 56	PP	e 21·9 e 18·6
Grand Coulee 52 3 330 c 9 13 - 2	Bozeman Berkeley Ukiah	N.	46.9 48.3 49.6	333 317 318	e 8 44	- <u>î</u>	e 15 30 e 15 44	- 0			e 21·6 e 22·0 e 22·7
College	Grand Coulee Victoria Ivigtut		52·3 55·0 60·8	$\frac{330}{328}$ $\frac{19}{19}$	e 9 13 9 37 i 10 15	$\begin{array}{cccc} - & 2 \\ + & 2 \\ - & 1 \end{array}$	17 24	+_7		<u>_</u>	26·5 25·5
Paris Clermont-Ferrand S2·1 42 e 12 23? - 1 e 22 30? - 8 - e 36·5 Clermont-Ferrand Uccle S3·3 40 e 12 31k + 1 e 22 52 + 2 e 28 26 SS e 38·5 De Bilt Neuchatel S5·2 43 e 12 39 0 - e 28 38 SS e 38·5 Neuchatel Basle Strasbourg Strasbourg Strasbourg Strasbourg S8·6 42 e 12 51 + 10	College Honolulu Malaga		74·5 74·5 76·7	337 291 54	e 13 15 e 11 46	- 9	e 21 12 e 21 32 e 21 52	$-5 \\ +15 \\ +11$	=	PP = =	e 32·5 e 31·8 36·5
Neuchatel 85.2 43 e 12 39 0 — — — — — — — — — — — — — — — — — —	Kew Paris Clermont-Ferra	and	$80.4 \\ 82.1 \\ 82.5$	39 42 45	i 12 17k e 12 23? e 12 28	$^{+}_{-}^{2}_{1}$	e 22 24 9 e 22 30 9 e 22 30 9	$-8 \\ -12$		=	e 36·5
フェルタ・アンス 野 東京 シェアス (株式 アー・ア・ア・ア・ア・ア・ア・ア・ア・ア・ア・ア・ア・ア・ア・ア・ア・ア・ア・	Neuchatel Basle Strasbourg		85·2 85·6 85·6	43 43 42	e 12 39 e 12 40 e 12 51 e 12 44	$-{1\atop 1}\atop +{10\atop 0}$	=	+ <u>1</u> =	and the second second	ss 	-

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1945

234

```
Az.
                                           O-C.
                                                                          Supp.
                                                                                        L.
                                   m. s.
                                             s.
                                                                      m. s.
                                                                                       m.
Copenhagen
                             34
Triest
                      90.0
                             44
                                 i 13
                                                                               pP
                                                                     i 13
Christchurch
                     105.0
                            227
                                                                    e 45 10
                                                                                       49.0
Helwan
                 N. 107·1
                             57
                                                   e 26 30
Riverview
                     123 \cdot 4
                            233
                                                                               SS
                                                                                     e 58.6
  Additional readings :--
    Vera Cruz iE = 5m.14s.
    San Juan iP = 4m.41s.
    Tacubaya eSN = 9m.12s.?
    La Paz iPPP = 6m.31s., iSS = 11m.21s.
    Philadelphia i = 7m.8s., ePPP = 8m.27s.
    Chicago e = 8m.56s.
    Ottawa SSS = 16m.30s.?
    Palomar iZ = 8m.1s. and 8m.16s., eZ = 9m.38s. and 13m.43s.
    Rapid City i = 8m.15s.
    Overton iP = 8m.4s.
    Pasadena iZ = 8m.11s. and 8m.25s., eZ = 14m.12s.
    La Plata E = 15m.24s. and 19m.0s.
    Sitka eS_{\alpha}S = 20m.43s.
    Kew ePPS?E = 23m.22s.?, eQ = 33m.30s.?.
    Uccle ePSE = 23m.49s.
    Triest esS?E = 24m.1s.
    Long waves were also recorded at San Fernando, Arapuni, Wellington, and Tananarive.
```

Aug. 3d. 6h. 34m. 40s. 1 } Epicentre 5°.9N. 82°.2W. 6h. 43m. 55s. 11 } (as at 4h).

		٨	Az.	Р.	0 - C.		0 0	61	raco.	D. 199.255
		Δ		m. s.	8.	S. m. s.	O – C.	Sup	.	L.
I Balboa Height II Bogota I Vera Cruz I Huancayo	s	4·0 4·0 8·2 19·0 19·1 19·1	40 40 98 317 159 159	e 1 4 e 1 7 i 2 4 e 4 32 i 4 26 i 4 24	+ 3 + 1 + 6 - 1 - 3	i 1 55 i 1 58 i 7 53 e 7 55	+ 3 + 6 - 4 - 2	i 5 0	- - PP	e 10·2 e 8·2 e 9·4
I San Juan II I Tacubaya I La Paz II Columbia	N.	$20.0 \\ 20.0 \\ 21.3 \\ 26.2 \\ 26.2 \\ 28.0$	49 49 312 147 147	e 4 38 i 4 41 4 48 i 5 39 i 5 38	+ 1 + 4 - 2 + 1 0	i 8 31 e 8 29 e 8 56 10 14 11 26 e 10 27	+14 +12 +13 + 5 SS -11	i 6 13	PP	e 10·1 e 9·8 14·6 14·1 e 14·1
I Bermuda II I Cincinnati I St. Louis I Florissant I Philadelphia		$31.0 \\ 31.0 \\ 33.2 \\ 33.4 \\ 33.6 \\ 34.5$	$\begin{array}{r} 30 \\ 30 \\ 357 \\ 349 \\ 349 \\ 11 \end{array}$	i 6 41 i 6 39 c 6 41 c 6 50	$\begin{array}{r} - \\ - \\ - \\ 3 \\ - \\ 2 \end{array}$	e 11 32 e 11 36 e 12 3 e 12 2 e 12 3 i 12 25	$^{+}_{+} \begin{array}{l} 6 \\ + 10 \\ + 3 \\ - 1 \\ - 3 \\ + 5 \end{array}$	(e 13 21)	ss	e 13·4 e 12·6
I Fordham I Chicago I Tucson II I Ottawa I La Jolla	z.	35.6 36.1 37.4 37.4 39.7 42.2 42.2	$ \begin{array}{r} 12 \\ 353 \\ 319 \\ 319 \\ 8 \\ 315 \\ 315 \\ \end{array} $	e 7 2 e 7 7 i 7 17 e 7 13 e 7 37 e 7 50 e 7 55	+ 1 + 2 + 1 - 3 + 6 - 1	i 12 44 e 12 38 13 42	$+\frac{6}{-\frac{27}{2}} + \frac{2}{-\frac{2}{2}}$	e 8 20 e 8 42 9 10	PP PP PP	e 15·2 e 16·6 19·3
I Palomar II I Seven Falls I Boulder City II I Rapid City II	z. z.	42.2 42.2 42.3 42.3 42.3 42.3	$316 \\ 316 \\ 320 \\ 320 \\ 338 \\ 338$	i 7 58 i 7 58 e 7 51 i 7 58 e 7 58 e 7 58	$ \begin{array}{r} + 2 \\ + 2 \\ \hline - 6 \\ + 1 \\ + 2 \\ + 2 \end{array} $	e 14 22 e 14 22	+ 5 + 3			22·3 e 17·2 e 17·4
I Overton I Riverside II I Mount Wilson II I Pasadena II	Z. Z. Z.	42.9 42.9 43.5 43.5 43.6 43.6	$321 \\ 316 \\ 316 \\ 316 \\ 316 \\ 316 \\ 316$	e 8 9 e 8 2 i 8 2 e 8 6 e 8 6 e 8 6 i 8 8	$+11 \\ 0 \\ -1 \\ -1 \\ -2 \\ 0$					e 21·4 e 20·9

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1945

		\wedge	Az.	Р.	O - C.	s.	O-C.	Sup	p.	L.
		0	- 49	m. s.	s.	m. s.	s.	m. s.	A.50.0	m.
I Salt Lake City	86	43.7	328	e 9 44	PP	e 14 50	+11	-	-	e 24·1
11 La Plata		46.6	152			15 17	- 4		-	21.2
I Victoria		55.0	328	9.0000	-	e 17 20	+ 3	e 26 41	3	$32 \cdot 3$
ı Sitka		65.9	332	e 11 4	+14	e 19 26	-11			e 28.6
II College		74.5	337		19920	e 21 57	\mathbf{PS}	-	1	e 30·6
1 Kew		80.4	39	e 12 22?	+ 7			e 31 37?	SSS	e 36·3
1 Paris		82.1	42	e 12 203	- 4	-			-	e 38·3
II Copenhagen		87.8	34	-		23 40	+ 6	-		-
II Prague		89.8	40	e 17 41	\mathbf{PP}	e 30 23	SS	-		e 42·1
I Triest	E.	90.0	44	-		e 24 0	? + 6	*****	****	
II	E.	90.0	44			e 23 37	[+4]		-	

Additional readings:—
Vera Cruz I ePE =4m.36s.
San Juan I iP =4m.41s.
La Paz II iPPP =6m.28s.
Chicago I ePPP =8m.49s.
Tucson I i =7m.38s.

Boulder City I e = 7m.55s. and 16m.52s. Long waves were also recorded at Oaxaca, Ukiah, Bozeman, Logan, De Bilt, and Uccle.

Aug. 3d. Readings also at 1h. (near Stalinabad), 2h. (near Oaxaca, Tacubaya, and Vera Cruz), 3h. (Bombay, Colombo, Hyderabad, Kodaikanal, near Oaxaca, Tacubaya (2), and Vera Cruz), 4h. (New Delhi, Tucson, and near Mizusawa), 6h. (Balboa Heights), 7h. (Tucson, Palomar, and near Granada), 9h. (Balboa Heights), 10h. (Balboa Heights, Mount Wilson, Palomar (2), and Tucson (2)), 19h. (Collmberg).

Aug. 4d. 14h. 48m. 23s. Epicentre 37.2N. 16°.4E.

Felt in Malta. Annales de l'Institut de Physique du Globe de Strasbourg, 2e partie, Séismologie, tome X, 1951, p.13. Epicentre as adopted.

$$A = +.7660$$
, $B = +.2254$, $C = +.6020$; $\delta = -3$; $h = -1$; $D = +.282$, $E = -.959$; $G = +.577$, $H = +.170$, $K = -.798$.

		Δ	Az.	Ρ.	O-C.	s.	0 - C.	Su	pp.	L.
		0	0	m. s.	s.	m. s.	s.	m. s.		m.
Sofia		7.6	42	e 1 57	+ 2	e 3 16	- 7	-		
Belgrade		8.2	21	e 2 4a	+ 1	i 4 12	S*	e 2 34	Pg	
Triest		8.7	348	i 2 7	- 3	i 3 47	- 3	i 2 14	\mathbf{PP}	i 5.2
Bucharest		10.3	43	e 2 31	- 1	e 4 28	- 2			5.1
Campulung		10.3	36	1 37 9	9	-	_		· —	
Chur		10.9	334	e 2 43k	+ 3	-	" 	8==		_
Zürich		11.7	333	e 2 52	+ 1	e 5 17	+13	8 ==	-	
Neuchatel		12.0	327	e 2 57	+ 2	- T. T. (1900)			-	
Basle		12.2	330	e 2 59	+ 1	e 5 28	+12	-	== 3	
Prague		12.9	354	e 2 56?	-11	e 5 1	-32			e 7·1
Tortosa		12.9	291	e 3 4	- 3	i 5 46	+13	3 34	PPP	6.2
Strasbourg	ra.	13.0	334	e 3 10	+ 1	e 5 43	+ 8		-	8.6
Clermont-Ferrar	ıd	13.1	315	i 3 12	+ 2	i 5 51	+13	1000 8	-	e 6.8 e 8.4
Jena		14.2	347	e 3 18 e 3 26	- 6	e 6 43	+39		777	6 8.4
Collmberg		14.3	351	e 3 26	0	i 6 22	+16	i 3 47	\mathbf{PP}	i 8.9
Helwan	E.	14.4	116	3 18	- 9	3 51	3		-	-
Yalta		15.3	56	3 13	-26				77	
Paris		15.4	323	i 3 41	+ 1	i 6 37	+ 5 + 6	i 4 33	\mathbf{PP}	e 7.6
Granada		15.9	276	3 55	+ 8	6 50	400		~~	9.2
Uccle		16.1	331	i 3 49k	. 0	e 6 49	0	i 7 16	SS	. e 8·0
Ksara		16.2	96	e 3 45?		e 7 1	+10			_
Toledo		16.2	286	i 3 52	+ 2	16 57	+ 6	 /		~_
Malaga		16.6	275	e 3 59	+ 3	17 4	+ 4	-		9.1
De Bllt		16.9	335	i 4 31	: +4	e 7 23	+16		00	e 8.6
San Fernando	E.	18.1	275	e 4 9	- 5	i 7 41	+ 6	8 45	SS	

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1945

236

		Δ	Az.	Ρ.	0 - C.	s.	0 -C.	Su	pp.	L.
SUBSECTION .		0	0	m. s.	8.	m. s.	s.	m. s.		m.
Kew Copenhagen		$18.6 \\ 18.7$	327 354	i 4 18k e 4 19	- 3 - 3	1 7 52 7 53	+ 6 + 5	i 5 15	PP	e 9.6 9.2
Coimbra		19.6	288	4 32	0	i 8 21	+13	i 4 56	\mathbf{PP}	10.9
Lisbon		20.2	284	4 44 k	+ 5	i 8 23	+ 2	4 51	PP	8.8
Erevan		22.1	74	e 4 59	0					
Upsala		22.7	2	e 5 2	- 2	i 9 10	+ 1	9 37	SS	e 13·2
Edinburgh		22.9	332	e 5 0	- Ē	9 7	$-\hat{6}$	e 5 30	$\widetilde{\mathbf{PP}}$	C 13 2
Aberdeen		23.5	335	i 5 59	+47	i 9 23	ő	-		i 12.7
Moscow		23.5	32	i 5 12	- 0	i 9 23	Ō			
Bergen		$24 \cdot 3$	348	e 6 12	+52	e 9 40	+ 3			e 14·4
Tashkent		40.6	68	i 7 43	0					140 000000
New Delhi	N.	51.0	81			i 16 19	- 3			
Bombay	0.015	52.3	95	e 9 16	+ 1	e 16 38	2			
Hyderabad	N.	57.6	93	e 13 31	\mathbf{PPP}	17 46	- 5			_
Irkutsk	9635331	60.5		e 10 13	- 1				-	200
Ottawa		66.0	310	e 10 48	- 2	e 19 37	- 1			00.0
San Juan		73.3	282	- 10 10		e 20 48	-16			29.6
Florissant		78.7	311	e 12 6	0	e 22 0	- 3	e 22 21	SKS	e 33·3
St. Louis		78.7	311	i 12 4	- ž	e 22 0	- 3	e 22 20	SKS	
Grand Coulee		86.4	333	i 12 45	õ					_
Victoria		87.5	335	e 12 55	45.70	89 40				
Tucson		95.1	318	i 13 27	+ 4 + 1	e 26 31	+ 9	. 20 4	CC	44.6
La Paz	Z.	95.6	254	e 12 52	-36	e 26 31	PPS	e 32 4	SS	e 46.2
Riverside	Z.	97.1	324	i 13 35	- 30					51.3
Palomar	z.	97.4	322	i 13 37	ŏ			, <u></u>		
	-	77. F. C	AP 40 AV					_	-	-

```
Additional readings :-
  Beigrade e = 3m.10s., i = 3m.23s., 3m.36s., and 5m.19s.
  Bucharest iE = 4m.32s.
  Basle e = 4m.2s.
  Prague e = 5m, 43s.
 Tortosa SSN = 6m.0s.
 Jena ePN = 3m.21s., eN = 3m.47s.
 Collmberg iPPP = 3m.53s., iS = 7m.9s., iSS = 7m.57s., with many unidentified
      readings.
 Helwan PPE = 3m.28s., PPPE = 3m.36s.
 Paris i = 6m.4s.
 Uccle iSE =6m.53s., iSN =6m.57s.
 Kew i = 4m.33s., eSSEN = 9m.7s.
 Copenhagen 4m.36s.
  Lisbon iSE =8m.26s.
 Edinburgh SS = 9m.51s., S_cS = 16m.14s.
 Bergen eE = 7m.7s., 10m.7s., and 12m.37s.?
 New Delhi iN = 17m.2s., eN = 17m.45s. and 20m.16s.
 Hyderabad PPN = 13m.53s., phases wrongly identified.
 Florissant eSKKSN = 22m.35s., ePSE = 22m.50s.
 St. Louis eSKKSN = 22m.35s., ePSN = 22m.52s.
 Long waves were also recorded at Barcelona.
```

Aug. 4d. Readings also at 1h. (near Branner, Lick, and near Andijan), 2h. (near La Paz), 6h. (Bozeman, Boulder City, Overton, Shasta Dam, Grand Coulee, Berkeley, Tucson (2), Haiwee, La Jolla, Mount Wilson (2), Pasadena, Palomar, Riverside (2), Santa Barbara, Tinemaha, Apia, and Collmberg), 7h. (Jena), 10h. (Bucharest and Sofia), 12h. (La Paz), 16h. (Mount Wilson (2), Palomar (2), Riverside (2), Tucson, and Collmberg), 19h. (near Bogota), 20h. (Ksara, Bombay, and near New Delhi), 21h. (near Balboa Heights and Bogota), 22h. (Bergen and near Berkeley).

Aug. 5d. Readings at 1h. (Bogota, Huancayo, and La Paz), 4h. (Riverview), 9h. (near Tananarive), 13h. (near Andijan), 14h. (Collmberg), 18h. (Kew), 20h. (Collmberg and Tucson), 21h. (Grand Coulee).

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1945

237

Aug. 6d. 23h. 2m. 0s. Epicentre 6° 0S. 77° 0W.

Intensity V-VI over a region of 700 sq. km. including Moyobamba, Calzada, Habana, Soritor, Yantalo, and Iepelacio. Depth suggested 30 km. Total macroseismic area about 40,000 sq. km.

E. Silgado. "Datos sismologicos del Peru, 1944-1945." Instituto geologico del Peru, Bol. 3, Lima 1946, p. 19.
"El tremblor destructivo de Moyobamba."

Loc. Cit. pp. 29-46 with 15 photographs and isoseismal chart p. 31

$$A = +.2237$$
, $B = -.9691$, $C = -.1038$; $\delta = -3$; $h = +7$; $D = -.974$, $E = -.225$; $G = -.023$, $H = +.101$, $K = -.995$.

		Λ	Az.	Ρ.	O-C.	S.	0-C.	Suj	pp.	L.
			0	m. s.	s.	m. s.	8.	m. s.		m.
Huancayo Bogota		6·3 11·0	$\frac{164}{16}$	i 1 40 e 2 39	$+\ \frac{4}{3}$	i 2 54 i 5 35	$^{+4}_{+48}$	i 2 14 i 2 42	$_{\mathbf{pP}}^{\mathbf{p}}$	i 5·3
La Paz	z.	13.6	141	i 3 20	+ 3	i 5 50	0			7 · 1
Fort de France San Juan		$25.9 \\ 26.5$	$\frac{39}{25}$	e 5 29 i 5 37	- 6 - 4	e 9 54	- 20	e 7 51	3	e 10·9
La Plata	E.	$33.7 \\ 33.7$	$\frac{150}{150}$	5 48 5 46	$-57 \\ -59$	$\begin{array}{ccc} 11 & 6 \\ 11 & 12 \end{array}$	$-62 \\ -56$	8 24	$\overline{P_cP}$	16·5 16·2
Philadelphia	***	45.8	3	i 8 24	- 1	e 14 57 15 11	$-12 \\ -5$	e 10 19 e 18 15	$_{ m SS}^{ m PP}$	e 20·9
Pittsburgh Fordham		46·3 46·7	$\frac{358}{4}$	e 8 28 e 8 31	- i	e 15 23	+ ĭ		_	e 23·5
Tucson		49.8	322	i 8 57	+ 1 - 2	16 12	$-\frac{1}{13}$	e 10 49	\mathbf{PP}	e 26.7 23.0
Ottawa Seven Falls		$51 \cdot 2 \\ 53 \cdot 2$	2	9 5		16 54	$+^{13}$		_	23.0
Palomar Pierce Ferry	Z.	54·4 54·4	$\begin{array}{r} 2 \\ 319 \\ 324 \end{array}$	i 9 32 i 9 31	+ 1 0		=			
Boulder City		54.8	323	e 9 34	0	<u> </u>		-	-	-
Riverside Mount Wilson	z.	55·1 55·7	$\frac{319}{319}$	1 9 37 1 9 42	$^{+}_{+}$ $^{1}_{2}$			i 12 6	\overline{PP}	
Pasadena Haiwee	z.	55·7 56·8	$\frac{319}{321}$	i 9 41 i 10 4	$^{+}_{+16}$	_	\equiv	i 11 39	PP_	1
Beerla 1999		1900-1900	20000000	PINGELOWA HEAVE	0		22.25	322		70
Tinemaha Shasta Dam		$57.6 \\ 62.4$	$\frac{321}{323}$	i 9 54 i 10 24	- 3					_
Malaga	\mathbf{z} .	79.8	311	i 12 11k	- 1	i 23 22	PPS			45.9
Granada		80.5	51 39	e 11 19 e 13 21	$-56 \\ -3$		_	i 20 49 e 17 6	$^{\mathbf{PP}^{\mathbf{i}}}$	48.1
Collmberg		94·6 94·6	34			24 14	$\{-1\}$			43.0
Helwan		108.9	61	e 33 18	SS	-	-	-	-	e 52·6

Additional Readings :-

Bogota i = 5m.43s. Philadelphia $eP_cS? = 13m.56s.$, eSS = 18m.29s.

Tucson i = 9m.6s., ePPP = 11m.59s.

Mount Wilson iZ = 9m.50s.

Pasadena i = 10m.10s., iNZ = 11m.19s., iEZ = 12m.2s., i = 13m.21s.

Malaga PPPZ = 18m.228., iSS = 23m.568., iPSZ = 24m.508., SSZ = 29m.458., iPKP, PKPZ =37m.15s.

Long waves were also recorded at Riverview and other European stations.

Aug. 6d. Readings also at 0h. (Berkeley), 1h. (near Zürich, Basle, and Neuchatel), 2h. (Collmberg, Bombay, Hyderabad, Calcutta, and Tashkent), 3h. (Pehpei), 8h. (near Tacubaya), 9h. (Tananarive), 13h. (Collmberg), 14h. (Ksara), 19h. and 21h. (near Tucson) 23h. (Collmberg, near Florissant, St. Louis, and Cape Girardeau).

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1945

238

Aug. 7d. 22h. 7m. 39s. Epicentre 30°.4N. 141°.8E. (as on 1939 May 7d.).

A = -.6790, B = +.5343, C = +.5035; $\delta = +3$; h = +2; D = +.618, E = +.786; G = -.396, H = +.311, K = -.864.

		Δ	Az.	Р.	0 - C.	s.	0 - C.		pp.	L.
Mizusawa		8.7	357	m. s.	8.	m. s.	8.	m. s.	pp.	m.
Irkutsk		35.1	320		- 3 - 1	e 3 36	-14			_
Honolulu. New Delhi	N	54·5 55·6	84 286	_	-	e 17 10	~ 0	-	-	e 23·1
Tashkent	N	58.2	303		+ 1	i 19 25 I 18 6	+ 7		_	i 32·4
Brisbane		58.5	168	e 10 2	+ 2	i 18 2	- 1	i 21 58	SS	
Hyderabad Sitka	N	. 58·7 61·3	273 38	e 10 39	1 10	19 52	S_cS		-	
Bombay	E		277	i 10 34	$^{+19}_{+4}$	e 18 36	3	e 20 7	$s_c s$	e 28·7
Riverview	500	64.5	172	e 10 43	$^{+}_{+}$ $^{4}_{2}$	i 19 20	+ 1	i 19 24	8	e 29·3
Victoria Moscow		70.8	45		_	20 36	+ 1			32.4
Shasta Dam		72·8 74·9	325 52	e 11 30	- 2	20 54	- 4			
Erevan		76 - 1	309	e 11 54	+ 3	e 21 52	+17			
Leninakan		76.3	310	11 59	+ 7		-	15	9	_
Saskatoon Butte		78·4 78·5	36	-		21 59	- 1	-	-	36.4
Tinemaha		79.4	43 54	i 12 10	+ 1	e 21 58	- 3	-	7	e 37·5
Bozeman		79.6	43		1_1	e 22 7	- 5	e 30 50	sss	e 43·7
Santa Barbara		79.7	57	e 12 9	- 2	1900 (1900)			_	-
Haiwee Mount Wilson	E.		54	e 12 14	+ 1 - 1		-	-	1	
Pasadena	Z.	81·0 81·0	56 56	i 12 17 i 12 16	$-\frac{1}{2}$	e 22 18	_	: 10 00	~=	
Logan		81.3	47	e 12 19	- î	e 22 18 e 22 25	- 9 - 5	i 12 20 e 27 56	P _c P SS	e 35·4 e 37·0
Riverside	z.	81.6	56	i 12 18	- 3		_		_	-
Salt Lake City Palomar	್ಷ	81.8	48		_	e 23 31	PS	-		e 36·1
Pierce Ferry	z.	82·3 82·9	57 53	i 12 24 e 12 29	- 1 + 1			-	_	
Copenhagen		84.0	334	i 12 33	- î	i 22 56	- 1	28 27	SS	_
Rapid City		85.1	41	e 12 39	0	e 23 1	- 7	~~~~~.	_	e 41·8
Collmberg		87.0	331	e 12 42	- 6	e 23 45	+18	i 13 0	$P_{e}P$	
Prague		$87 \cdot 2 \\ 87 \cdot 3$	35 330	e 12 47 e 12 213	-29	e 23 18 e 23 21	[+ 3]	e 13 45	3	e 39·9
Belgrade		88.1	323		- 20	e 23 21 e 23 37	[+ 5]	_		e 27·4 e 48·9
Ivigtut		88.4	5	-		23 39	- ĭ	5	_	- 40.9
De Bilt		89.5	335	i 13 3k	1. The state of th	e 23 31	[+ 1]	e 16 33	\mathbf{PP}	e 46·4
Uccle Helwan		90·1 90·7	335 305	e 12 21?	-42	e 23 21?	[-12]	e 16 217	\mathbf{PP}	e 35·4
Kew		91.9	338	e 13 9 i 13 12	$^{+}_{+}$ $^{3}_{1}$	24 3 i 24 7	+ 2	16 41 i 16 48	PP	
Paris		93.2	335	e 13 187	+ î	e 25 37	PS	i 16 48 e 16 58	PP PP	e 45·4 e 51·4
Clermont-Ferran	ıd	95.4	332	e 17 20	\mathbf{PP}		· ·	_	-	e 55·4
Florissant St. Louis	E.	95·7 95·9	39 39	e 17 56	\mathbf{PP}	e 24 5	[0]	e 24 40	8	e 46·4
Ottawa	200	97.2	26			e 24 5 24 9	$\begin{bmatrix} -1 \\ -4 \end{bmatrix}$	e 24 41 e 31 33	S	e 47·1
Seven Falls		97.4	22	-	-	24 27	(+13)		SS	44·4 49·4
Philadelphia		102.0	28		-	e 25 4	$\{-5\}$	e 32 42	88	e 45·5
San Fernando San Juan	E.	107·0 124·5	334	e 21 37		e 24 0	[-59]		_	58.4
La Paz	z.	149.4	69	19 51	[+ 5]		_	e 41 9		e 61·5 79·9
			1000	The second second second	The second second					

Additional readings :-Brisbane eSE = 18m.8s. Logan e = 12m.50s.

Collmberg i = 13m.15s., e = 13m.30s., 16m.5s., and 28m.39s. Helwan PPSN = 25m.9s.

Kew iSKSEN = 23m.43s., ePSE = 25m.3s., iPPSZ = 25m.27s., eSSE = 30m.23s.? Florissant eE = 33m.3s.

Long waves were also recorded at Ukiah, Upsala, Toledo, and Malaga.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1945

 $239 \cdot$

Aug. 7d. Readings also at 6h. (Bogota), 1h. (near Branner), 2h. (Collmberg and Almeria), 3h. (Christchurch and near Bogota (2)), 4h. (near San Francisco, Berkeley, Branner, and Lick), 5h. (Alicante and Bogota), 6h. (Bogota, La Paz, and near Huancayo), 7h. (Tananarive, San Juan, Bogota, and near La Paz), 10h. (near Erevan and Leninakan), 11h. (La Paz), 17h. (near Tucson), 18h. (Shasta Dam, Tinemaha, Haiwee, Pasadena, Mount Wilson, Riverside, Palomar, Tucson, San Juan, Montezuma, and near La Paz), 21h. (near Tashkent and Andijan), 22h. (Collmberg and Mizusawa), 23h. (near San Francisco, Berkeley, Branner, and Lick).

Aug. 8d. 9h. 53m. 38s. Epicentre 11° 0N. 92° 0E. (as on 1941 Sept. 21d.).

A = -.0343, B = +.9813, C = +.1896; $\delta = +7$; h = +6; D = +.999, E = +.035; G = -.007, H = +.189, K = -.982.

*1										
Calcutta Colombo Kodaikanal Hyderabad Bombay	N. E. N.	∆ 12.0 12.6 14.3 14.6 20.1	Az. 343 254 269 298 295	P. m. s. i 3 9 a i 3 9 i 6 33 e 3 26 i 4 41	O-C. 8. +14 +6 -3	S. m. s. i 5 37 (i 6 33) i 8 41	0-C. $+26$ $+27$ -8 $+22$	m. s. i 3 17	PP.	11.0 i 10.6
New Delhi Pehpei Andijan Tashkent Hukuoka		$22 \cdot 3$ $23 \cdot 1$ $34 \cdot 3$ $36 \cdot 2$ $41 \cdot 7$	324 33 334 331 51	i 4 59 4 51 6 50 e 6 55 7 49	$ \begin{array}{r} -2 \\ -17 \\ 0 \\ -11 \\ -3 \end{array} $	e 8 59 8 57 i 12 44 13 57	$-{3\atop -19\atop -{3\atop -13\atop -13}}$	<u>5</u> 22	PP = =	
Irkutsk Kôti Hikone Nagano Erevan		42·4 44·1 46·8 48·8 50·9	10 52 51 50 313	e 7 48 e 7 48 e 8 31 e 8 54 e 10 25	- 4 - 24 - 2 + 5 PP	14 18 15 12	- 27 - 12			
Sendai Mizusawa Tananarive Sapporo Ksara	E.	51·3 51·8 53·0 53·3 55·9	49 48 236 43 303	9 3 9 8 e 14 38 9 21 e 9 49?	- 5 - 4 - 2 + 7	16 18 e 16 25 17 5 16 46 e 17 32	- 8 - 8 + 15 - 8 + 3			
Helwan Yalta Moscow Bucharest Belgrade		59·6 59·6 61·3 65·2 69·2	298 315 329 314 313	e 10 5 e 10 10 i 10 17 e 10 52 11 31 a	+ 2 - 3 + 7 PcP	e 18 13 e 18 11 i 18 34 e 19 26 e 20 13	+ 1 - 6 - 5 - 2 - 3	13 45 i 20 39 e 15 20	PPP PPS PPP	35·4 e 41·9
Brisbane Riverview Upsala Prague Collmberg		70·4 71·7 72·7 73·7 74·6	124 131 330 319 320	i 11 20 i 11 24 e 11 30 i 11 47 i 11 39	+ 2 - 2 - 2 + 9 - 4	i 20 28 i 20 46 i 20 52 e 20 58 e 21 40	$ \begin{array}{r} -2 \\ +1 \\ -5 \\ -10 \\ +22 \end{array} $	1 20 44 1 21 21 e 14 24? e 14 44	PS PP PP	e 28.6 e 33.4 e 37.4 e 38.4 e 47.4
Copenhagen Jena Chur Zürich Strasbourg		75·1 75·5 76·9 77·6 78·0	325 319 315 316 318	e 11 46 e 11 47 e 11 57 e 12 0 e 12 2	- 1 + 1 0	i 21 21 e 21 22 e 21 48	- 3 - 6 - 3	14 45 e 16 39	PP PPP	e 46·4
Basle Neuchatel Bergen De Bilt Uccle		78·2 78·7 78·9 79·5 80·1	317 317 330 322 320	e 12 4 e 12 6 i 12 11 e 12 22a	+ 1 + 1 + 9	e 21 52 e 21 58 e 21 57 i 22 8 e 22 16	- 5 - 5 - 8 - 3 - 2	e 15 18 e 27 46	PP SS	39·6 e 42·4 e 42·4
Clermont-Fer Paris Kew Aberdeen Edinburgh	rand	81·5 81·5 82·9 83·1 83·9	315 318 321 327 326	e 12 30 e 12 20 e 12 28 e 12 30	$^{+}_{-}^{0}_{10}$	e 22 30 i 22 31 e 22 41 i 22 44 22 49	- 2 - 1 - 5 - 4 - 7	e 16 0 i 15 39 i 15 50 12 36	PP PP PP	e 44·4 e 41·4 e 40·9 e 41·7
Tortosa Toledo Granada Malaga San Fernand	E. 0 E.	84·0 87·6 87·8 88·6 90·0	310 310 307 307 307	e 18 49 e 12 53 e 11 27 a e 12 59 e 13 15	$^{+}_{2}^{\frac{9}{2}}$ $^{+}_{12}^{3}$	e 22 53 i 23 18 23 33 i 23 49 i 23 55	$\begin{bmatrix} -4 \\ 0 \end{bmatrix} \\ -1 \\ +7 \\ +13 \end{bmatrix}$	20 22 16 43	PP	47·4 51·4 48·4

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1945

· 240

```
O - C.
                                                                                 Supp.
                               Az.
                                                                                                L.
                                      m.
                                                          m. s.
                                                                                                m.
                                                                            m.
Coimbra
                               311
                                       12 17
                        90.8
                                                                                       SS
                                                                             30
                                                                                             e 50·4
Christchurch
                        90.8
                               135
                                                                                       Q
                        92 \cdot 3
College
                                     e 13 12
                                                                                       \mathbf{PP}
                       101.5
                               342
Ivigtut
Sitka
                       101.5
                                    e 18 4
                                                 \mathbf{PP}
                                                        e 24 33 [-
                                                                             25 32
Victoria.
                       113.0
                                                 \mathbf{PP}
                                    e 19 29
                                                                                               61.4
Saskatoon
                       115.1
                                 13
                                                                  \{+41\}
                                                                                               60.4
Butte
                       119 \cdot 1
                                    e 20
                                                 \mathbf{P}\mathbf{P}
                                                        e 30
                                                                                       SS
                                                                                             e 56.6
                       119.5
                                    e 18 53
Shasta Dam
                                                                           e 20 11
                                               [+1]
                                                                                      \mathbf{p}\mathbf{p}
                                                                                             e 52.6
                       119.9
                                19
                                    e 20 15
                                                                      1]
                                                                           e 30 15
                                                                                       _{\rm PS}
Bozeman
                                                 PP
Seven Falls
                       120.1
                               346
                                                                                       SS
                                                        e 28 10
                                                                                               50.4
                                                                           e 36 41
Ottawa
                       122.8
                               350
                                                          30 22?
                                                                                       SS
                                                                    _{\mathrm{PS}}
                                                                           e 37 227
                                                                                               49.4
                       123 \cdot 1
                                    e 19 23
                                21
                                               [+24]
Logan
                                                                                             e 60.8
                                13
                                                        e 30 35
                                                                    PS
                       123.5
                                                                                       SS
Rapid City
                                                                           e 36 57
                                                                                             e 59·1
                       124.0
                                22
                                    e 21 40
                                                 \mathbf{p}\mathbf{p}
                                                        e 26 58
                                                                 [+55]
Salt Lake City
                                                                           e 38 32
                                                                                      ssp
                                                                                             e 66.0
                       124 \cdot 4
                                    i 19
Tinemaha
                                                   2]
                                                +
                                30
                       125 \cdot 3
                                    i 19
Haiwee
                                                +
                                                    2]
Mount Wilson
                       126.7
                                     i 19
                                                                                      _{\mathrm{PP}}
                                                    3]
                                                                           i 21
                                32
                                                                           i 21
                                                                                      \mathbf{PP}
                       126.7
                                    i 19
Pasadena
                                                    2]
                                                                                              e70·1
                                                +
Pierce Ferry
                       127 \cdot 1
                                     i 19
                                               [+
                      127 \cdot 3
Riverside
                                    i 19
                                               [+1]
                                                                                      \mathbf{PP}
                                                                            21
                                                                   + 5}
                                    e 21
                       127.5
                                                                           e 38
                                                                                       SS
Chicago
                                                 PP
                                                                                             e 51·7
                                    e 21
                       127.9
                                                 \mathbf{p}\mathbf{p}
                                                        e 37 41
                                                                    SS
                                                                           e 22
                                                                                     PKS
Philadelphia
                               347
                                                                                             e 53·1
                       128 \cdot 0
                                    e 19
                                                                           i 21 11
                                                                                      _{\rm PP}
Palomar
                                                   1]
                                                +
                                                    3)
La Jolla
                       128 \cdot 2
                                    e 19
                                               [+
                       130.0
                                                                                      \mathbf{PP}
Cincinnati
                               356
                                      19
                                                                                               66.4
                                                                                20
                                    0
                                                    4]
Florissant
                       130.4
                                    e 19 14
                                               [+
                                                   1]
                                                                                      \mathbf{PP}
                                                                      9]
                                                        e 26 12
                                    e 19 14
                                                                          e 21
                       130.6
                                                   1]
                                                        e 26 19
St. Louis
                                                                                      \mathbf{PP}
                                                                                             e 50·7
                       131.4
                               333
                                                 \mathbf{PP}
                                      21 48
                                                                           e 38
                                                                                       SS
Bermuda
                                    e
                                                                                49
                                                                                             e 75.5
                       131.8
                                ^{26}
                                    i 19 18
                                               [+
                                                        i 26 58
                                                                                      _{\mathrm{PP}}
                                                                                             e 58.6
Tucson
                                                   3]
Cape Girardeau
                      131.9
                                                                                     PKS
                                                 PP
                               353
                                      22
Columbia
                       134.8
                                                                           e 39
                                                                                42
                                                                                       SS
                                                                                             e 58.8
                                    e
                                    e 19 38
San Juan
                       143.7
                               324
                                                +
                                                                                       SS
                                                                           e 41
                                                                                             e 68.9
                                      20
                                                   81
La Paz
                      160.0
                               253
                                                                                      \mathbf{PP}
                                                                                               76.4
                                      25 23
                       167.6
                               264
                                                 PP
                                                          31
                                                             56
                                                                                       ss
                                                                      5}
                                                                                             e 84·0
Huancayo
                                    e
                                                        e
  Additional readings :-
    Calcutta iSSN = 6m.7s.
     Kodaikanal eE = 7m.5s.
     Hyderabad PN = 3m.31s., SSN = 6m.15s.
    New Delhi SSN = 9m.52s.
     Pehpei P = 4m.57s.
    Mizusawa eSN = 16m.29s.
     Helwan iEZ = 10m.16s.
     Belgrade e = 16m.51s.
     Riverview iP_cPZ = 11m.41s., isS = 21m.1s., eN = 29m.5s.
     Upsala PSIE = 21m.5s., eSSIE = 25m.24s.?, SSN = 25m.43s., eE = 27m.29s., eSSSN = 25m.43s.
          28m,35s.
     Collmberg i = 11m.43s., 11m.57s., 12m.25s., and 13m.32s., e = 14m.34s. and 15m.50s.,
          ePPP = 16m.47s., e = 21m.55s., ePS = 22m.26s., e = 22m.39s., ePPS = 22m.48s.
         e = 24m.28s., eSS = 27m.2s., i = 44m.15s.
     Copenhagen 11m.55s., 22m.4s.
     Jena ePN = 11m.52s.
     Bergen eN = 25m.7s., eE = 30m.57s., eN = 32m.37s.
     De Bilt iP = 12m.20s.a, eSS = 27m.22s.7
     Paris iP = 12m.30s., i = 12m.51s. and 33m.45s.
     Kew iP_cPEZ = 12m.37s., eEZ = 13m.0s.?, ePPPZ = 17m.34s.?, iS_cSN = 22m.56s., ePS = 12m.56s.
          23m.30s., eSSS = 28m.14s.?, eQEN = 35.4m.
     Edinburgh S_cS = 23m.2s., PS = 23m.41s.
     San Fernando SKSE = 23m.19s., PSE = 24m.39s., PPSE = 25m.13s., SSE = 29m.59s.
     Coimbra i = 26m.22s.
     College eS = 24m.6s., ePS = 25m.29s., eSS = 30m.19s.
     Sitka ePS = 27m.14s., eSS = 32m.32s.
     Butte e = 32m.21s., eSSS? = 41m.13s.
     Bozeman eSS = 36m.34s., eSSS = 41m.8s.
     Logan e = 19m.37s.
     Rapid City e = 40m.50s.
    Pasadena eZ = 63m.16s.
    Chicago ePPS = 33m.14s.
    Palomar iZ = 19m.32s.
```

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1945

241

Florissant eZ = 21m.32s., eSKPZ = 22m.33s., eSE = 29m.30s., ePSE = 31m.44s., ePPSN = 33m.34s., eSSE = 38m.39s., eE = 40m.59s.

St. Louis eSKPNZ = 22m.34s., iN = 22m.44s., eZ = 22m.54s., eSKKSN = 28m.29s., eSE = 29m.31s., ePSN = 31m.46s., ePPSN = 33m.28s., eSS?E = 38m.22s., eSSE = 38m.45s., eE = 41m.7s., ePPPP?E = 41m.33s.

Tucson i = 22m.40s., eSKKS = 28m.21s., e = 31m.32s.

Columbia e = 40m.47s.

San Juan e = 42m.49s.

La Paz iPKPZ = 20m.14s., iPKP₁ = 21m.0s.

Huancayo e = 36m.5s., eSSS = 51m.29s.

Long waves were also recorded at Arapuni, Wellington, and Ukiah.

Aug. 8d. Readings also at 0h. (San Juan and Tucson), 5h. (2) and 6h. (near Tucson), 10h. (near Coimbra), 11h. (Brisbane, Mount Wilson, Tucson, and Collmberg), 14h. (near Mizusawa), 20h. (Pierce Ferry).

Aug. 9d. 3h. 13m. 25s. Epicentre 6°.0S. 77°.0W. (as on 6d.).

A = +.2237, B = -.9691, C = -.1038; $\delta = -3$: h = +7.Supp. Ρ. o-c. S. $\mathbf{0} - \mathbf{C}$. L. Az. 8. m. s. m. s. 8. m. s. m. i 2 51 i 5 35 +-++ e 2 12 1 2 37 i 1 38 e 3·2 164 + 1 Huancayo $\mathbf{P}_{\mathbf{c}}$ i 2 34 +4811.0 16 Bogota pPe 3 23 13.6 La Paz 141 +729.1 6 e 5 26.5 25 47 San Juan e 10 322 i 8 54 2 49.8 Tucson 319 54.4 Palomar i 9 319 34 55.1 Riverside i 9 39 Mount Wilson 55.7 319 i 9 38 319 Pasadena 55.7 Tinemaha i 9 51 57.6 321

Additional readings:—
Huancayo e = 2m.43s.

Bogota i = 4m.57s., $S_cPl = 6m.41s$.

Tucson i = 9m.5s. and 9m.36s.

Aug. 9d. 21h. 50m. 10s. Epicentre 20°.4N. 120°.4E. (as on 2d.).

A = -.4747, B = +.8090, C = +.3465; $\delta = -12$; h = +5.O-C. Supp. Ρ. O-C. Az. L. m. s. S. m. s. 8. m. s. m. + 2 + 4 5 36 25.8 40 10 10 18 Mizusawa e 12 29 6 53 343 34.2 Irkutsk 14 4 e 8 14 273 +2439.7 $(14 \ 4)$ Hyderabad N. $-{2}\\ +{2}$ 44.7 277 Bombay 15 54 e 8 43 +1647.8 308 Tashkent 57.1 145 e 9 41 Brisbane 152 e 10 17 61.4 Riverview e 20 19 11 11 324 69.4 Moscow 78.8 330 e 22 5 Upsala 298 i 12 11 79.3 Helwan 32825 32 83.0 40.8 Copenhagen 323 e 12 35 Collmberg 84.6 e 12 53 $\mathbf{p}\mathbf{P}$ 324 e 11 50 91.7 Paris SS e 35 34 Florissant E. 114.4 26 SS 114.6 e 27 25 {+48} e 35 40 St. Louis

Copenhagen gives also 29m.8s. Long waves were also recorded at Calcutta, and at other European stations.

Aug. 9d. Readings also at 2h. (Riverview, Christchurch, Tucson, and near La Paz), 7h. (near Andijan), 8h. (near Tananarive), 9h. (near Erevan and Leninakan), 12h. (Collmberg, Sofia, Ksara, Bucharest, and near Yalta), 13h. (De Bilt, Kew, and Belgrade), 14h. (near Andijan and Stalinabad), 16h. (De Bilt, Uccle, Kew, Collmberg, Belgrade, Sofia, Bucharest, and Helwan), 18h. (Collmberg, Boulder City, Pierce Ferry, Tucson, Palomar, Riverside, Pasadena, Mount Wilson, and Tinemaha), 21h. (Collmberg, Tinemaha, Mount Wilson, Pasadena, Riverside, Palomar, and Tucson).

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1945

242

August 10d. 11h. 20m. 15s. Epicentre 15°.5N. 88°.8W.

Felt at Chiquimula, Zacapa, and Izabel. Serious damage at Quirigua. Epicentre 15°·4N. 88°·8W. (U.S.C.G.S.). Annales de l'Institut de Physique du Globe de Strasbourg, 2ème partie, Séismologie, Tome X, Strasbourg, 1951, p.31.

A = +.0202, B = -.9639, C = +.2656; $\delta = +5$; h = +6; D = -1.000, E = -.021; G = +.006, H = -.266, K = -.964.

D	- 1	.000, E		021; O	- 7.0	00, H	200, 1		1.	
		Δ	Az.	P. m. s.	O – C. 8.	s. m. s.	0 - C. s.	m. s.	p.	I m.
Tacubaya	E. N.	10.6 10.6	293 293	e 2 41	$^{+}_{+}$ $^{2}_{5}$	i 4 53 i 4 55	$^{+16}_{+18}$	15 9	sss	-
Balboa Heights Bogota Columbia	707	11·1 18·1 19·7	124 126 19	e 2 43 i 4 18 e 4 33	+ 4 - 1	i 7 43 e 8 30	$+\frac{8}{20}$		_	e 5·5 e 11·7
Cape Girardeau San Juan St. Louis Florissant Cincinnati	E.	$21.8 \\ 21.9 \\ 23.1 \\ 23.3 \\ 23.9$	359 79 357 357 9	e 4 55 e 4 57 i 5 9 i 5 10 i 5 16	- 1 0 + 1 0 0	e 8 41 e 8 53 e 9 21 i 9 31 e 9 29	$ \begin{array}{r} -11 \\ -1 \\ +5 \\ +11 \\ -1 \end{array} $	e 9 1 e 6 0 i 5 18 i 5 19 5 53	PPP PP PP	e 11·3 e 12·0
Georgetown Pittsburgh Tucson Chicago Fort de France		$25.5 \\ 26.0 \\ 26.1 \\ 26.2 \\ 26.7$	23 16 315 1 89	i 5 34 e 5 38 i 5 35 i 5 36 e 5 40	+ 2 + 2 - 2 - 3	e 10 9 e 10 17 e 10 9 i 10 17	$^{+12}_{+11}_{+2}_{+8}$	e 6 3 i 6 13 e 8 28	PP PP	13·0 e 14·6 e 11·8
Philadelphia Bermuda Fordham Huancayo Pierce Ferry		27·6 27·6 28·4 30·4 30·4	24 48 24 153 318	i 5 47 e 5 50 i 5 55 e 6 16 i 6 15	+ 1 - 1 - 3 - 0	e 10 17 . e 11 28	- 7 - 12	e 6 22	PP 	e 12.5 e 10.8 e 13.4
Harvard Boulder City La Jolla Overton Palomar		$30.7 \\ 30.9 \\ 31.0 \\ 31.0 \\ 31.0$	$26 \\ 317 \\ 310 \\ 318 \\ 311$	i 6 18k e 6 20 e 6 20 e 6 9 i 6 20	$ \begin{array}{r} $	e 11_26	+ .5	e 9 20 i 9 16	PeP	e 13·0
Rapid City Riverside Ottawa Salt Lake City Mount Wilson	z. z.	$31.6 \\ 31.8 \\ 32.2 \\ 32.3$	$341 \\ 312 \\ 18 \\ 328 \\ 312$	i 6 22 i 6 26 6 27 e 6 29 i 6 32	$ \begin{array}{r} $	e 11 31 e 11 43 e 11 47	+ 5 + 5 + 2	i 9 16 7 45 e 7 48 i 9 18	P _c P PP P _c P	e 12·4 e 13·8 e 12·9
Pasadena Haiwee Santa Barbara Shawinigan Falls Tinemaha	z.	32·3 33·1 33·6 33·7 33·8	312 315 310 21 316	i 6 34 e 6 40 e 6 41 6 45 i 6 46	+ 1 0 - 3 0	e 11 48 - 12 10	+ 2 + 2 + 2	i 9 19 i 9 21 i 9 22 i 9 24	PeP PeP PeP	15.8
Fresno Seven Falls Bozeman Butte Santa Clara	N. Z.	34·7 34·9 35·4 36·3 36·5	315 22 334 333 313	e 6 57 6 54 e 6 58 e 7 6 e 7 11	+ 3 - 1 - 2 - 1 + 2	12 30 e 12 34 e 13 4 e 15 44	+ 3 + 16 SSS	e 8 19 e 8 19 e 8 33	PP PP PPP	18·8 e 16·5 e 15·9
Berkeley La Paz Shasta Dam Saskatoon Grand Coulee	Z.	37·8 37·8 38·5 39·2 40·8	313 146 318 343 329	7 14 1 7 17 k e 7 22 7 35 e 7 49	+ 1 - 3 - 4 + 4	13 2 - 13 33	+ 3 + 1	8 44 8 45 e 8 58 i 9 22	PP PP PP	19·8 19·3 e 18·8
Victoria Ivigtut Sitka College Coimbra		43·5 54·1 54·4 63·1 72·9	327 23 331 336 52	e 7 21 9 26 e 9 27 11 17	$-46 \\ -3 \\ -4 \\ -16$	e 17 11 e 17 10 e 19 5 21 32	+ 6 + 1 + 3 PS	e 12 52 e 22 59 16 37	PPP SS PP	19·8 27·8 e 26·4 e 26·0 e 39·6
Toledo Malaga Granada Kew Paris		76·3 76·5 77·0 77·1 79·3	55 55 40 42	i 11 51 i 11 57 i 12 11k i 11 53k e 12 7	- 1 + 3 + 15 - 4 - 2	e 21 32 e 22 0 e 22 45?	+10 - 7 +15 PS	e 16 27? e 15 15	PPP	35·4 36·8 e 34·8 e 38·8

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1945

243

		Δ	Az.	1	٠.	O-C.	S	.	0-C.		Su	pp.	L.
		0		m.	8.	8.	m.	8.	8.	m.	8.	-396-2500	m.
Tortosa	N.	79.5	51	e 12	13	+ 3	e 22	52	PS	23	17	PPS	_
Copenhagen	=3.5	83.5	34	1 12	31	0	e 23	1	+ 9	i 15	43	\mathbf{PP}	
Collmberg		85.2	38	i 12	36	- 3	-	-	-	e 15	55	\mathbf{PP}	-
Helwan	Z.	106.8	51	12	12	*	e 37	38	SSS	e 18	39	PP	
Riverview	z.	123.3	239	7=	_		e 24	39	3	e 30	9	\mathbf{PS}	_

Additional Readings :-

San Juan e = 6m.20s, and 9m.10s.

St.Louis iPPN = 5m.36s., iSN = 9m.28s., isSN = 9m.39s.

Florissant is SN = 9m.458.

Cincinnati i = 6m.9s., iS = 9m.43s.

Tucson i = 9m.4s.

Palomar iZ = 6m.46s.

Mount Wilson eZ = 6m.54s., iZ = 7m.18s.

Pasadena eS_cPNZ = 13m.3s., iS_cSEN = 17m.5s.

Tinemaha iZ = 7m.34s.

Fresno eN = 9m.33s.

Bozeman $eP_cP = 9m.34s$. Berkeley SS = 15m.49s.

La Paz PPP = 9m.19s.

Shasta Dam $iP_cP? = 9m.35s$. Sitka $eS_cS = 19m.13s$.

Tortosa PPN = 15m.54s., PSE = 24m.8s., PPSE = 24m.45s.

Collmberg e = 13m.9s.

Helwan eZ = 20m.57s.

Long waves were also recorded at De Bilt.

August 10d. 14h. 9m. 4s. Epicentre 15°-5N. 88°-8W. (as at 11h.).

		Δ	Az.	Р.	0 - C	S.	0 - C.	Su	pp.	L.
			0	m. s.	8.	m. s.	8.	m. s.	T(500)	m.
Oaxaca		7.8	282	e 2 55	+57	i 3 33	+ 5	i 3 38		-
Tacubaya	E.	10.6	293	e 2 48	+12	c 4 49	+12	i 5 4 i 5 7	SSS	
	N.	10.6	293	e 2 50	+14	e 4 46	+ 9	15 7	SSS	
Balboa Heights		11.1	124	e 2 43	0	and the second				
San Juan		21.9	79	e 4 58	+ 1	e 9 6	+12	6=		e 10·5
St. Louis		23.1	357	e 5 7	- 1	e 9 22	+ 6	i 9 41	sS	e 12·2
Florissant		23.2	357	e 5 9	0	e 9 20	$^{+}_{+}$ $^{6}_{2}$		-	
Pittsburgh		26.0	16			e 10 21	+15			-
Tucson		26.1	315	e 5 35	- 2	e 10 10	+ 3	e 6 17	\mathbf{PP}	e 14·3
Chicago		26.2	1	-	_	e 10 24	+15		****	e 13·7
Palomar	Z.	31.0	311	e 6 18	- 3			i 9 15	P_cP	
Riverside	Z.	31.6	312	e 6 26	Ò		1.	i 9 16	PeP	
Mount Wilson	Z.	32.3	312	i 6 33	0		_			
Pasadena	z.	32.3	312	i 6 33	0					
Collmberg	z.	85.2	38	e12 35	- 4		_			_

Additional Readings :-St. Louis iSN = 9m.27s.

Tucson $iP_cP? = 9m.2s$. Long waves were also recorded at Sitka, Philadelphia, and Kew.

August 10d. Readings also at 0h. (College, Tucson, Philadelphia, Palomar, Riverside, Mount Wilson, and Collmberg), 1h. (Christchurch, near Tacubaya and Oaxaca), 4h. (Pasadena, Mount Wilson, Riverside, Palomar, St. Louis, Tucson, Bogota, La Paz, and near Huancayo), 6h. (Tacubaya, near Bogota, and near Andijan, Tash-kent, and Stalinabad), 7h. (Auckland), 9h. and 10h. (Collmberg), 11h. (La Paz), 13h. (Tacubaya), 15h. (Reykjavik, Tucson, Palomar, Mount Wilson, and near Mizusawa), 16h. (near Andijan), 17h. (Tucson), 18h. (near Stalinabad), 19h. (Tucson, Palomar, Mount Wilson), 19h. (Tucson, Palomar, Mount Wilson), 19h. (Tucson), 18h. (near Stalinabad), 19h. (Near Palomar, Pasadena, Mount Wilson), 21h. (Balboa Heights, Berkeley, and Malaga). 23h. (La Plata).

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1945

August 11d. 0h. 33m. 49s. Epicentre 7°·1N. 82°·4W. (as on 1945 Feb. 18d.).

A = +.1313, B = -.9839, C = +.1214; $\delta = +4$; h = +7; D = -.991, E = -.132; G = +.016, H = -.120, K = -.993.

$\mathbf{D} = -$	·991, E = -	.132;	$\dot{y} = + \cdot 0$	16, H = -	·120, P	C ==993.	<u> </u>	
Balboa Heights Bogota Oaxaca N. San Juan Huancayo	3·4 55 8·6 104 17·2 310 19·5 53 20·2 161	P. m. s. e 0 52 e 2 7 e 3 41 e 4 26 i 4 41	O-C. - 3 - 2 - 2 - 2 - 5 + 2	s. n. s. i 1 36 — i 8 14 e 8 14	O-C. -1 -8 -7	m. Su	рр. = =	e 9·0 e 9·4
Tacubaya Fort de France Columbia La Paz Bermuda	$20.4 & 309 \\ 22.2 & 69 \\ 26.9 & 2 \\ 27.3 & 148 \\ 30.1 & 31$	i 4 47 e 4 55 e 5 37 5 53 e 6 15	+ 6 - 5 - 8 + 2	e 8 53 e 9 9 e 10 27 e 10 33 e 11 18	$^{+28}_{+9}_{+7}_{+6}$		=	e 12·5 14·2 e 12·7
Cape Girardeau E. Cincinnati Georgetown St. Louis Florissant	$30.9 349 \\ 32.0 357 \\ 32.1 9 \\ 32.3 349 \\ 32.5 349$	e 6 19 i 6 30 e 6 33 i 6 31 e 6 33	$\begin{array}{cccc} - & 1 & & \\ + & 2 & \\ - & 2 & \\ - & 1 & \end{array}$	e 11 30 i 11 45 i 11 48 i 11 56 i 11 59	+ 6 + 3 + 5 +10 +10	e 7 30 e 7 55 e 7 39	PP PP PP	13·2 —
Pittsburgh Pennsylvania Fordham Chicago Tucson	33.3 33.9 7 34.5 34.9 36.5 317	e 6 46 e 6 54 e 6 56 i 7 6	$+5 \\ +2 \\ +1 \\ -3$	e 12 7 e 12 19 i 12 23 e 12 24 e 12 56	+ 5 + 8 + 3 - 3 + 5	e 13 52 i 14 54 e 8 11 e 8 36	SS PP PP	17·8 e 15·1 e 17·8
Ottawa Shawinigan Falls Halifax Pierce Ferry Rapid City	38.7 40.3 11 40.9 21 40.9 320 41.2 337	e 7 42 i 7 44 i 7 50	$-\frac{1}{2}$ $-\frac{2}{2}$	13 26 o 13 53 e 14 1	$+ 1 \\ - 5 \\ - 1$	9 5 = i 9 27	PPP — PP	e 20·2 16·2 17·2 e 17·0
Seven Falls La Jolla Z. Palomar Boulder City Riverside	$\begin{array}{cccc} 41 \cdot 2 & 12 \\ 41 \cdot 3 & 313 \\ 41 \cdot 3 & 314 \\ 41 \cdot 4 & 319 \\ 42 \cdot 0 & 314 \end{array}$	7 55 e 7 44 e 7 45 e 7 48 i 7 54	+ 7 - 5 - 4 - 2	14 4 e 14 16	+ 2 + 11	e 9 33 —	SS PP	20·2 —
Mount Wilson Z. Pasadena Salt Lake City Logan Haiwee	42.6 42.6 314 42.6 327 43.3 328 43.5 317	i 7 57 i 8 3 e 8 2 e 8 9 i 8 10	- 2 + 4 + 3 + 3	i 14 30 e 14 30 e 14 34	+ 7 + 7 + 1	i 9 42 i 9 44 e 10 0 e 10 4	PP PP PP	e 19·0 e 22·2 e 17·8
Santa Barbara Fresno N. Bozeman Butte Berkeley	43·9 313 45·1 317 45·8 332 46·7 332 47·3 316	i 8 12 e 8 23 e 8 31 8 41	+ 2 + 3 - 1 + 4	e 15 17 e 15 26 15 42	+ 8 + 4 + 11	e 18 23 e 10 31 10 35	SS PP PP	e 19·6 e 20·6 21·5
Saskatoon Grand Coulee Victoria Sitka Coimbra	$ \begin{array}{cccc} 49 \cdot 2 & 341 \\ 51 \cdot 3 & 330 \\ 53 \cdot 9 & 327 \\ 64 \cdot 9 & 331 \\ 73 \cdot 3 & 50 \end{array} $	e 8 59 e 10 45	$ \begin{array}{r} $	e 16 0 e 17 11 e 19 28 21 1	+ 2 + 9 + 4 - 3	e 14 44 14 21	PPP PP	27·2 e 29·8 33·5
Honolulu Malaga z. Toledo Granada Kew	73.9 290 $76.2 53$ $76.6 51$ $76.9 53$ $79.6 39$	i 11 55 e 11 54 11 50 a	+ 3 - 6 + 3	e 21 28 i 21 46 i 22 5 e 22 15?	$ \begin{array}{r} $	e 23 13?	PPS PP PPS	31·7 35·6 36·4 e 33·2
Tortosa N. Paris Clermont-Ferrand Uccle Bergen	80·1 50 81·4 42 81·9 45 82·6 39 82·8 29	e 12 11? e 12 32? e 12 47 a	- 9 + 9 + 21	e 22 119 e 22 43 e 22 7	$^{+}_{-20}^{1}_{+7}$			e 33·2 e 38·2 e 36·2 e 35·2
De Bilt Copenhagen Collmberg Upsala	$ \begin{array}{r} 83.0 & 38 \\ 87.0 & 34 \\ 87.9 & 39 \\ 89.0 & 30 \end{array} $	e 12 59 e 12 49	+11	i 22 53 e 23 17 e 23 43	$\begin{bmatrix} + & 6 \\ + & 3 \end{bmatrix} \\ - & 2 \end{bmatrix}$	e 16 55 e 16 29	PP PP	e 36·2 — e 37·2

For Notes see next page.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1945

245

Notes to August 11d. 0h. 33m. 49s.

Additional readings :— Bogota e = 2m.13s. Oaxaca eE = 3m.44s. San Juan iP = 4m.31s., e = 5m.27s., i = 5m.33s.Huancayo i = 5m.38s. Cape Girardeau eE =6m.32s. St. Louis iZ = 6m.34s., eN = 10m.20s.Tucson i = 7m.11s. Ottawa SSS = 16m.41s. Pierce Ferry i = 7m.49s. and 8m.47s. Boulder City iP = 7m.52s. Logan e = 8m.21s.Butte e = 8m.52s., eSS = 18m.39s.Berkeley SS = 19m.12s. Sitka e = 23m.23s. Coimbra SS = 26m.0s. Malaga PPPZ = 16m.39s. Copenhagen i = 23m.35s. Collmberg i = 12m.58s.

Long waves were also recorded at Auckland, Riverview, New Delhi, Ukiah, and Ivigtut.

August 11d. 1h. Local Japanese shock. Seismo. Bull. Cent. Met. Obs., Japan, 1945. Epicentre suggested approx. 38°N. 138°E.

Hukusima P = 10m.39s., S = 10m.47s.Sendai P = 10m.39s., S = 11m.8s.Wazima P = 10m.50s., S = 11m.3s.Mizusawa PE = 10m.52s., SEN = 11m.22s. Utunomiya P = 10m.52s. Hunatu P = 10m.55s., S = 11m.28s. Omaesaki P = 11m.5s., S = 11m.57s.Tokyo P = 11m.7s., S = 11m.42s.Yokohama P = 11m.8s., S = 11m.43s.Miyako P = 11m.14s., S = 11m.50s. Misima P = 11m.17s., S = 11m.58s.Mera P = 11m.29s., S = 12m.14s.Collmberg eZ = 22m.17s. Mount Wilson iPZ = 22m.19s. Palomar ePZ = 22m.24s. Tucson iP =22m.50s.

August 11d. Readings also at 0h. (Christchurch, Andijan, Tashkent, and near Stalinabad), 3h. (Balboa Heights), 4h. (Collmberg and near Balboa Heights (2)), 8h. (Balboa Heights), 9h. (Collmberg near Erevan and Leninakan), 11h. (Tucson, Boulder City, Overton, near Fresno and Pierce Ferry), 12h. (St. Louis), 13h. (Mount Wilson, Palomar, and Riverside), 14h. (Apia, La Paz, Mount Wilson, Pasadena, Palomar, Riverside, Tucson, and Collmberg), 15h. (Copenhagen and Collmberg), 16h. (Palomar and Tucson), 17h. (Uccle), 22h. (De Bilt, Belgrade, Bucharest, and near Sofia).

Aug. 12d. 8h. 33m. 3s. Epicentre 29° ·0N. 142° ·0E. (as on 1944, Nov. 17d.).

A = -.6903, B = +.5393, C = +.4823; $\delta = -3$; h = +2; D = +.616, E = +.788; G = -.380, H = +.297, K = -.876.

		Δ	Az.	P		0-0	15	S		O-C.	Su	pp.	L.
		0	•	m.	8.	8.		m.	в.	8.	m. s.	000000000000000000000000000000000000000	m.
Mizusawa	E.	10.1	357	e 2	25	- 3		4	3	-22		-	
Irkutsk		36.3	320	e 7	83	+ 1	•	12	487	0		-	-
New Delhi	N.	56.1	287	1750.01	. (2002)	N 23			28	3	-		e 32·4
Andijan		57.0	302	e 9	50	0		The second second	45	+ 2		-	
Tashkent		59.1	303	i 10	5	+ 1	•	4.75	9	- 2			
Moscow		74.1	326	e 11	39	- 1	•	21	8	- 4	200	31000	_
Grand Coulee		74.7	44	e 11	57	+14	9.5		• 10 EEE - 1			-	
Shasta Dam		75.6	52	i 11	49	+ 1		-	21	_			
Tinemaha		80.1	54	i 12	14	+ 1		*****	0	_			
Santa Barbara	Z.	80.4	56	e 12	14	- 1		_	- 3	-	-	-	

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1945

50		Δ	Az.	Ρ.	$0 - \mathbf{C}$.	s.	O-C.	Suj	p.	L.
		0	0	m. s.	8.	m. s.	s.	m. s.		m.
Haiwee	Z.	80.8	54	e 12 17	0	1 1 1 1 1	·		Secon :	
Pasadena		81.6	56	i 12 21	0	e 22 30	- 3			e 38·0
Mount Wilson	Z.	81.7	56	i 12 22	0	170 170 77 (1976-1976) 17 17 17 1		93 	-	
Riverside	Z.	82.3	56	i 12 25	0					
La Jolla	3000	82.9	57	e 12 33	+ 5			-		
Palomar		83.0	56	i 12 30	+ 2		-		-	
Copenhagen		85.3	334		·	23 7	- 3		_	-
Ksara		86.3	306	e 12 47	+ 2	e 23 30	+10	-		
Tucson		87.9	54	i 12 54	+ ī				· —	e 41.5
St. Louis		96.9	39	e 13 35	÷ ī	e 24 9	[-2]	e 31 23	SS	e 44·4
La Paz	7.	149.6	72	e 20 1	[+ 14]				1777	

Additional readings:—
Tinemaha iZ = 12m.24s.

Pasadena eNZ = 12m.32s., i = 12m.44s.

Mount Wilson iZ = 12m.35s.

Tucson e = 13m.13s. and 13m.43s.

St. Louis eSKKSN = 24m.49s., eSN = 25m.9s.

Long waves were also recorded at Riverview, Sitka, Paris, Uccle, Kew, and De Bilt.

Aug. 12d. 14h. Indian Ocean.

Tananarive iP = 44m.19s., iSSS = 46m.19s., i = 46m.28s. Helwan PZ = 49m.17s., PPPZ = 50m.57s., SEN = 55m.18s. Tashkent eP = 51m.13s., eS = 58m.53s. Collmberg iZ = 52m.21s., eZ = 52m.39s. and 53m.43s. Tinemaha iPZ = 61m.28s. Haiwee iPZ = 61m.29s. Palomar iPNZ = 61m.32s. Pasadena iP = 61m.32s., iNZ = 62m.18s. and 62m.35s. Mount Wilson iPZ = 61m.33s. La Jolla ePNZ = 61m.34s. Riverside ePZ = 61m.34s. Riverside ePZ = 61m.36s., iZ = 62m.35s. Long waves were also recorded at La Paz and Kew.

Aug. 12d. Readings also at 0h. (Almeria), 2h. (Collmberg and near Andijan), 3h. (Belgrade, Collmberg, Copenhagen, Bucharest, and near Sofia), 4h. (Collmberg), 5h. (near Mizusawa), 9h. (Collmberg), 10h. (La Paz), 12h. (Christchurch, Wellington, and De Bilt), 18h. (Berkeley (2)), 19h. (Collmberg), 20h. (Auckland and Berkeley), 23h. (Collmberg).

Aug. 13d. 3h. Alaska,

College eP = 24m.33s., eS? = 24m.43s., eL = 25m.19s.Grand Coulee eP? = 29m.1s., eL = 36m.19s.Shasta Dam iP = 29m.43s. Tinemaha iPEZ = 30m.24s. Haiwee iP = 30m.34s. Santa Barbara ePZ = 30m.44s. Mount Wilson iPNZ = 30m.47s. Pasadena iP = 30m.47s., i = 30m.57s.Pierce Ferry iP = 30m.47s. Riverside iPNZ = 30m.50s. Palomar iP = 30m.58s. La Jolla iPNZ = 31m.0s. Tucson iP = 31m.26s., i = 31m.35s.St. Louis ePZ = 31m.54s., eLE = 46m.53s.Ottawa eZ = 32m.58., L = 45m.Collmberg eZ = 34m.32s. Long waves were also recorded at Sitka, Butte, and Philadelphia.

Aug. 13d. Readings also at 2h. (Collmberg, Uccle, and La Paz (2)), 3h. (College and near Andijan), 4h. (near Tashkent), 6h. (near Tucson), 9h. (Palomar and Tucson), 12h. (Riverview), 14h. (Auckland), 15h. (near Mizusawa), 17h. (La Paz), 19h. (San Francisco, near Berkeley, Branner, and Lick), 21h. (La Paz and near Tucson), 23h. (Alicante).

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

247

1945

Aug. 14d. 8h. Pasadena suggests Java Sea, depth of focus 600km.

Mizusawa PN = 3m.47s., PE = 4m.1s., SN = 7m.52s., SE = 7m.55s.Brisbane iPZ = 3m.48s., eSN = 10m.9s.Riverview iPEZ = 4m.14s. a, iEZ = 7m.33s., iN = 10m.47s.Shasta Dam iPKP = 13m.34s., e = 14m.22s., i = 14m.34s.Grand Coulee iPKP = 13m.36s. Santa Barbara iPNZ = 13m.42s. Pasadena iP = 13m.44s.k, iEZ = 13m.53s. and 14m.1s., ipPEZ = 15m.6s., isPZ = 16m.18s., iZ = 17m.15s.Riverside iPZ = 13m.44s., iZ = 14m.6s., ipPZ = 15m.8s., iZ = 15m.17s., isPZ = 16m.19s.Mount Wilson iP = 13m.44s.k, ipPZ = 15m.7s., isPZ = 16m.18s. Tinemaha iP = 13m.44s.a, epPZ = 15m.10s. Haiwee iP = 13m.45s.a.La Jolla iP = 13m.47s. Palomar iP = 13m.47s.k, ipPZ = 15m.12s., isPZ = 16m.21s. Pierce Ferry iPKP = 13m.51s. Tucson iPKP = 13m.57s., i = 14m.16s., ipPKP = 16m.9s., i = 23m.48s.St. Louis iPKP?Z = 14m.9s., iPP?Z = 16m.50s., eZ = 17m.16s. and 17m.36s. Harvard i = 14m.26s. Bogota i = 15m.0s. and 15m.55s. La Paz PKPZ = 15m.9s.

Aug. 14d. 12h. 10m. 44s. Epicentre 26° 3N. 129° 0E.

A = -.5649, B = +.6976, C = +.4407; $\delta = -3$; h = +3; D = +.777, E = +.629; G = -.277, H = +.342, K = -.898.

		Δ	Az.	P. m. s.	0 -C.	s. m. s.	0 - C. s.	m. s.	p.	L. m.
Mizusawa Vladivostok Pehpei Irkutsk Dehra Dun	N.	16·3 17·0 20·2 31·9 44·7	35 7 286 331 288	e 3 45 e 3 21 e 6 28	- 1 - 1	7 28 e 6 15 8 21 e 11 53 e 14 34	$^{+35}_{-55}$ 0 $^{+13}$ $^{-20}$		<u>-</u>	e 24·7
New Delhi Hyderabad Andijan Colombo	E. N. E.	45.7 45.7 47.5 48.6 50.5	285 285 270 302 256	e 8 31 e 8 34 9 11 e 8 51 9 6	$^{+}_{+10}^{7}_{+33}$ $^{+}_{+4}$	e 15 9 i 15 13 15 43 17 2	$^{+}_{+}^{1}_{\stackrel{5}{5}}_{+}^{+}_{\stackrel{1}{6}}$	e 18 23 18 39 10 50	SeS SeS PP	21·8 23·0
Tashkent Bombay Sverdlovsk Brisbane Riverview	Е.	50.9 52.1 56.6 58.3 63.4	303 274 322 155 159	i 9 0 e 9 19 i 9 47 i 9 59 10 45	$ \begin{array}{r} -5 \\ +5 \\ 0 \\ +11 \end{array} $	e 16 32 e 17 47 e 18 1 e 19 11	$+\frac{11}{9} \\ +\frac{0}{5}$		=	
College Honolulu Moscow Erevan Leninakin		63·6 66·3 69·4 69·6 69·9	28 77 323 305 307	c 10.35 i 11 12 e 11 12? e 11 14	$-\frac{0}{1}$	e 19 43 e 19 43 e 20 22 e 20 473 e 20 32	$^{-6}_{+1}$ $^{+4}_{+26}$ $^{+8}$	e 23 33	<u>ss</u>	e 28.8 e 26.9
Sitka Yalta Auckland Arapuni Upsala	E. N.	71·1 75·3 76·2 77·5 77·6 77·6	35 312 144 144 331 331	e 13 59 e 11 36 e 12 4 e 12 0	PP -11 + 4 0	e 20 36 e 21 27 21 49 19 16 e 21 49 e 22 5	$ \begin{array}{r} -2 \\ +1 \\ +13 \\ -2 \\ +14 \end{array} $	e 21 45 e 26 34 e 27 2 e 29 52	Ses Ses Ses	e 35·6 37·3 34·3 e 34·3 e 35·5
Ksara Wellington Christchurch Bucharest Victoria	A COLUMN	78·3 79·5 80·2 80·6 81·4	302 147 149 315 39		$^{+\ 5}_{+\ 23} \ ^{+\ 11}_{+\ 8}$	e 22 8 22 16 22 24 e 22 24 e 21 52	$^{+}_{+}$ $^{5}_{+}$ $^{+}_{-}$ $^{1}_{9}$	12 50 27 39 e 22 39	PcP SS ScS	38·3 38·8 32·3 36·3
Bergen Copenhagen Sofia Helwan Belgrade		82·2 82·2 83·2 83·4 83·9	336 329 314 300 317		$^{+23}_{+15}$	e 22' 43 i 22 45 e 22 55 22 58 e 23 9	$^{+}_{+}^{4}_{6} \\ ^{+}_{+}^{7}_{7} \\ ^{+}_{13}$	e 18 45 16 16	SS PPP PP	e 32·4 37·3 e 41·3 e 46·0

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1945

248

		۵	Az.	P. m. s.	0 – C.	s. m. s.	O – C.	m. s.	pp.	L. m.
Grand Coulee Collmberg Jena Cheb		84·3 84·5 85·4 85·5	38 325 325 325	i 12 37 e 12 39	- 1 + 1 - 1	e 22 19 e 23 15	$-43 \\ + 4$	e 15 32	PP	e 47·6
Shasta Dam		86.1	46		- 1	e 24 16?	PS	e 34 161		e 46·3
Aberdeen Triest Berkeley De Bilt Saskatoon		87 · 2 87 · 4 87 · 6 87 · 8 88 · 0	$335 \\ 320 \\ 48 \\ 329 \\ 31$	i 12 53? e 12 50 i 12 54k	$\begin{array}{c} - & - \\ + & 3 \\ - & 1 \\ + & 2 \end{array}$	i 23 31 i 23 32 e 23 34 e 23 36 e 23 36	$^{+}$ $^{+}$ 2 $^{+}$ 2 0	i 13 20 e 16 16	pP PP	46·4 e 35·8 e 44·3 37·3
Edinburgh Strasbourg Butte Chur Uccle		88.6 88.8 89.0 89.0	$335 \\ 325 \\ 38 \\ 323 \\ 329$	e 12 59 e 13 1 e 13 1 e 12 58 e 12 59k	$^{+}$ $^{+}$ 4 $^{+}$ 0 $^{+}$ 1	23 42 e 23 49 e 23 40 e 23 52 e 23 43	+ 5 - 5 + 7 - 2	e 16 47 e 16 30	SKS PP — PP	46·3 e 40·6 e 47·3 e 46·3
Zürich Basle Neuchatel Kew Tinemaha		89·2 89·6 90·3 90·7 90·7	324 324 324 331 48	e 13 0 e 13 0 e 12 55 e 13 4 i 13 8	$^{+}$ 1 $^{-}$ 9 $^{+}$ 2	e 23 49 e 23 58 e 23 56 e 23 48	+ 2 + 7 - 1 [+11]	i 24 54	PS	e 46·3
Santa Barbara Paris Haiwee Pasadena Mount Wilson	z.	$91.2 \\ 91.3 \\ 91.5 \\ 92.4 \\ 92.5$	50 328 48 50 50	i 13 12 i 13 9 e 13 10 i 13 12 i 13 13	$\begin{array}{cccc} + & 4 & & & \\ & 0 & & & \\ - & 2 & & \\ - & 1 & & \end{array}$	e 23 32 e 24 2	[- <mark>8</mark>] { + 3 }	e 16 41 i 17 17	PP PP	e 38·4
Salt Lake City Clermont-Ferrance Riverside La Jolla Palomar	ł z.	$92.6 \\ 93.1 \\ 93.1 \\ 93.8 \\ 93.8$	$ \begin{array}{r} 41 \\ 325 \\ 50 \\ 49 \\ 50 \end{array} $	e 13 21 i 13 16 e 13 21 i 13 20k	+ 4 - 1 + 1 0	e 24 20 —	+_2	e 17 3	PP	e 53·5 e 45·3 —
Pierce Ferry Rapid City Tortosa Tucson Toledo	N.	$94.1 \\ 95.2 \\ 97.9 \\ 98.5 \\ 101.0$	34 323 48 325	i 13 22 e 13 29 e 15 7 e 13 42 e 13 39	$^{+}_{\overset{0}{\overset{0}{2}}}^{\overset{0}{\overset{0}{2}}}_{-14}$	e 24 47 e 24 47 e 26 50 24 50	[+ 2] -16 PS (-11)	26 34 c 17 42	PS PP	e 48·1 50·7 e 43·3
Seven Falls	E, Z.	102·7 102·9 104·6 104·8 105·5	$\begin{array}{r} 323 \\ 328 \\ 324 \\ 14 \\ 31 \end{array}$	e 14 37 e 18 32	$\frac{-2}{+36}$ $-$ PP	e 31 20 26 53 e 25 2 e 33 40	SS PS + 13] SSP	e 20 21 33 53 — e 27 31	PPP SS — PS	54.0 54.3 56.3 48.3 e 45.4
St. Louis Pittsburgh Philadelphia Bermuda San Juan San Juan Huancayo La Paz		105.7 108.3 110.3 120.2 133.2 153.1 161.3	$\frac{13}{20}$	The state of the s	PP PP PP PP +11]	e 24 52 { e 22 43	- 2] - 2] PKS - 5]	e 27 42 e 28 21 e 30 17 e 44 29 i 24 45	PS PS SSS	e 44·3 e 62·1 e 63·1 e 32·2 78·3

```
Additional readings :-
  Mizusawa PE =4m.4s.
  Brisbane eS?N = 10m.24s.
  Riverview iZ = 11m.7s., iN = 19m.24s.
  Sitka e = 16m.8s.
  Upsala eSSS?E = 30m.54s.
  Wellington PSZ = 23m.4s., iZ = 23m.17s.
 Copenhagen 21m.58s., 23m.51s., and 32m.28s.
 Sofia eN = 37m.238.
 Collmberg ePPP=17m.21s., ePPS=23m.16s., eSS=27m.58s., and many other unidenti-
      fled readings.
 Jena ePN =12m.43s., eSN =23m.19s.
 Triest essn = 33m.3s.
 Berkeley e = 22m.31s., 22m.51s., and 23m.46s.
 Edinburgh ePS = 24m.46s.
 Butte e = 27m.55s., 34m.41s.
 Uccle eSKKSN = 23m.34s.
 Kew eSSS?N = 36m.16s.?, eQN = 42 \cdot 3m.
 Santa Barbara eZ = 13m.32s.
 Paris e = 20m.29s., ePS? = 25m.18s.
```

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1945

249

Haiwee eE = 13m.37s.

Pasadena iNZ = 13m.34s., eZ = 29m.3s.

Mount Wilson iZ = 13m.18s. and 13m.34s.

Clermont-Ferrand ePPS? = 25m.45s.

Riverside iZ = 13m.36s.

Palomar iZ = 13m.41s.

Pierce Ferry i = 13m.49s.

Rapid City e = 15m.36s.

Tortosa SSN? = 32m.39s.

Tucson e = 14m.2s., ePPP = 19m.48s.

Coimbra ? = 17m.46s. and 20m.16s., PS = 28m.29s., ? = 30m.46s., and 41m.6s.

St. Louis eZ = 19m.16s., eS?E = 26m.42s., ePPSN = 28m.54s., eN = 32m.14s.

Long waves were also recorded at Barcelona, Lisbon, Malaga, Prague, Tananarive, and Ukiah.

Aug. 14d. Readings also at 2h. (Boulder City, Overton, Pierce Ferry, and near Tucson (2)), 6h. (San Juan (3)), 7h. and 8h. (Brisbane), 9h., 10h., and 12h. (Collmberg), 13h. (Alicante), 15h. (Collmberg (2)), 16h. (Collmberg (2)) and Stalinabad (4)), 17h. (Tucson and St. Louis), 18h. (Collmberg), 19h. (Mount Wilson, Pasadena, Palomar, Riverside, Tinemaha, Tucson, and Pierce Ferry), 20h. (Collmberg, Boulder City, Pierce Ferry, Grand Coulee, near Andijan and Stalinabad), 21h. (Mount Wilson, Pasadena, Palomar, Riverside, Tucson, Shasta Dam, and Mizusawa), 22h. (near Andijan), 23h. (Copenhagen, Cheb, and Collmberg).

Aug. 15d. 14h. 15m. 56s. Epicentre 30°.4N. 141°.8E. (as at 7d.).

h = +2. $\delta = +3$; A = -.6790. B = +.5343. C = +.5035; L. Supp. S. O - C. 0 - C. Az. m. m. s. 8. m. s. m. s. 3 38 -12357 Mizusawa e 12 30 320 35.1Irkutsk e 19 25 286 55.6 New Delhi N. 301 56.1 Andijan 58.2 303 Tashkent 60.4 Sverdlovsk e 11 33 72.8 325 Moscow e 11 42 74.9 52 -Shasta Dam +13e 12 76.1 309 Erevan + 2 e 11 54 310 76.3 Leninakan e 34·5 e 30 33 i 12 10 i 12 14 SSS 76.7 Santa Clara N. $P_{c}P$ i 12 23 $+ 1 \\ + 3$ 54 79.4 Tinemaha 57 79.7 Santa Barbara z. $P_{c}P$ i 12 27 0 i 12 13 54 80.1 Haiwee Z. PcP i 12 31 0 i 12 18 56 81.0 Mount Wilson e 38·7 P_cP i 12 27 0 81.0 56 Pasadena z. i 12 31 $P_{c}P$ i 12 22 + 56 81.6 Riverside z. i 12 33 $P_{c}P$ i 12 25 82.3 57 Palomar i 12 42 i 12 28 53 82.9 Pierce Ferry 44.1 i 22 56 e 12 34 + 334 84.0 Copenhagen e 23 19 e 12 49 + 9 306 85.3 Ksara $P_{c}P$ e 23 28 e 12 48 331 87.0 Collmberg PS e 26 19 e 24 39 95.9St. Louis

Additional readings:—
Mount Wilson eZ = 12m.41s.
Pasadena iZ = 12m.57s., eZ = 17m.57s.
Riverside iZ = 12m.36s. and 12m.48s.

Palomar iZ = 12m.39s. and 12m.46s. Collmberg e = 16m.10s. and 21m.28s.

St. Louis eSKKSN = 24m.38s., eSSN = 31m.5s. Long waves were also recorded at Honolulu and other European stations.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1945

250

Aug. 15d. 17h. 56m. 22s. Epicentre 33°·1N. 116°·1W. (as on 1943 Nov. 2d.).

Intensity VI at Borego Valley, Fall Brook, Mecca, Fullerton, and San Jacinto; V at Brawley, Palm Springs, and San Diego; III at Los Angeles, Riverside, and Santa Ana. Epicentre 33°13'N, 116°8'W. Macroseismic area 15000sq. m. United States Earthquakes, 1945.
U.S. Coast and Geodetic Survey, Washington, 1947, p. 14.

A = -.3693, B = -.7538, C = +.5435; $\delta = -1$; h = +1; D = -.898, E = +.440; G = -.239, H = -.488, K = -.839.

		Δ	Az.	Р. m. s.	0 - C.	s. m. s.	o – c.	m. s.	pp.	L. m.
Palomar La Jolla Riverside Mount Wilson Pasadena		$ \begin{array}{r} 0 \cdot 7 \\ 1 \cdot 0 \\ 1 \cdot 4 \\ 2 \cdot 0 \\ 2 \cdot 0 \end{array} $	$291 \\ 256 \\ 277 \\ 305 \\ 301$	i 0 26	- 1 + 1 - 1 - 0	i 0 44 i 1 3 i 1 4	- 2 + 1 + 2			
Boulder City Santa Barbara Haiwee Pierce Ferry Overton	Z.	$3.0 \\ 3.2 \\ 3.4 \\ 3.5 \\ 3.7$	$^{19}_{294}$ $^{333}_{30}$ 21	i 0 53 i 0 54	$\begin{array}{cccc} - & 1 \\ + & 1 \\ - & 1 \\ - & 3 \\ - & 2 \end{array}$	i 1 24 i 1 38	- 3 + 1 =	i 0 58 — i 1 11	Pr Pr	=
Tinemaha Tucson Fresno Lick Santa Clara	N.	4·4 4·5 4·8 6·2 6·4	336 100 321 313 313	i 1 7 i 1 10 i 1 21 e 1 43 e 2 1	- 3 - 1 + 6 + 8	i 2 4 i 1 27 i 3 20 i 3 20	-1 S. S.	i 1 21 i 1 51	P*	i 2·5
Branner Berkeley San Francisco Ukiah Shasta Dam		6.6 6.9 7.0 8.3 9.1	$312 \\ 315 \\ 314 \\ 319 \\ 328$	e 1 33 i 1 47 e 1 50 e 2 17	$ \begin{array}{r} -8 \\ +2 \\ +4 \\ -3 \end{array} $	e 3 19 e 3 32 e 4 10 e 4 10	+14 S* +10	e 1 50 e 1 53 e 3 48 e 4 30	P* S# S*	e 4·7
Ferndale Bozeman Butte Rapid City Grand Coulee		$ \begin{array}{c} 9 \cdot 9 \\ 13 \cdot 2 \\ 13 \cdot 2 \\ 14 \cdot 9 \\ 15 \cdot 0 \end{array} $	$321 \\ 16 \\ 12 \\ 39 \\ 352$	e 4 12 e 3 45	$+\frac{38}{10}$	e 5 0 e 5 48 e 5 22 e 6 28	** + 8 + 8 + 8	e 5 20	s <u>.</u>	e 6·8 e 5·8 e 7·3 e 7·9
Victoria Saskatoon Florissant St. Louis Cape Girardeau	E.	$16.4 \\ 20.2 \\ 21.6 \\ 21.7 \\ 22.1$	342 17 69 69 72	e 3 14 e 4 57 e 4 55 e 5 1	$ \begin{array}{r} -39 \\ +3 \\ 0 \\ +2 \end{array} $	e 8 32 e 9 1 e 9 6	$+\frac{11}{+12} \\ +\frac{15}{-}$	i 9 12 i 4 58	ss,	8.6 10.6 111.4 e 11.3 e 11.6
Chicago Cincinnati Sitka Collmberg	z.	$24 \cdot 2 \\ 26 \cdot 1 \\ 27 \cdot 8 \\ 84 \cdot 8$	$\begin{array}{r} 62 \\ 69 \\ 339 \\ 31 \end{array}$	e 12 38	= + 1	e 9 47 e 10 31 e 10 58	$^{+12}_{+24}_{+23}$		=	e 12·4 i 13·7 e 13·5

Additional readings :-

Boulder City i = 1m.32s. Tucson i = 1m.29s., 1m.49s., and 2m.23s.

Branner eN = 2m.20s.

Berkeley iE = 3m,37s., iN = 3m,42s.Shasta Dam e = 2m.20s., i = 2m.24s.

Long waves were also recorded at Philadelphia, Honolulu, and at other European stations.

August 15d. Readings also at 0h. (Uccle, De Bilt, Kew, and Paris). 5h. (Bogota). 7h. (near Andijan), 8h. (Collmberg), 9h. (Collmberg and near Mizusawa), 10h. (Collmberg, Christchurch, Tucson, Riverside, Palomar, Mount Wilson, and near Andijan), 11h. Tucson, Palomar, Mount Wilson, and Collmberg), 12h. (Collmberg), 13h. (Collmberg (2), near Irkutsk, and near Tananarive), 14h. (Collmberg (3) and near Mizusawa), 15h. (Collmberg and Tucson), 17h. (Collmberg), 18h. (near Tucson, Pierce Ferry, and Boulder City), 19h. (Pierce Ferry and near Tananarive), 21h. (Tucson).

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1945

251

August 16d. 0h. Undetermined shock.

Tashkent eP = 22m.29s., eS = 33m.0s.Hyderabad PPN = 22m.35s., SN = 28m.17s.Tananarive eN = 23m.51s., eLN = 27m.31s.Riverview eS?E = 25m.57s., eZ = 26m.2s., eLN = 31.7m.Colombo PE = 26m.3s., S?E = 35m.49s.Christchurch P = 28m.14s., S = 33m.29s., SS = 35m.2s., Q = 35m.21s., R = 37m.6s. Bombay eEN = 28m.51s. Collmberg eZ = 29m.24s. Riverside ePZ = 30m.3s., iZ = 30m.30s., and 30m.45s. Tucson ePKP = 30m.10s., ePP = 34m.35s., eL = 89m.48s. Shasta Dam ePKP = 30m.11s. Mount Wilson ePZ = 30m.13s., iZ = 31m.20s. Palomar eZ = 30m.14s., iZ = 30m.30s.Helwan eN = 33m.428. St. Louis eN = 42m.1s., 42m.30s., 42m.50s., and 43m.1s., eL?N = 58m. Triest eSE = 44m.18s., eLE = 56n.27s.Copenhagen 46m.0s. and 50m.18s. San Juan eSS = 52m.20s., eL = 70m.55s.Long waves were also recorded at Wellington, Pasadena, College, Bermuda, and other European stations.

August 16d. 1h. Undetermined Shock.

La Plata PN =41m.12s., PE =41m.24s., E =44m.36s., N =44m.54s., EN =50m.36s. La Paz iPZ=43m.0s.a, iZ=43m.22s., PPZ=44m.40s., iZ=45m.47s., iSNZ=50m.0s., iZ = 53m.52s., LZ = 61m.0s.Huancayo eP = 43m.54s., eS = 51m.49s., eL = 60m.45s.Bogota e = 45m.21s. and 45m.42s. San Juan eP? =46m.36s., eS =56m.11s., e=57m.15s., eSSS =65m.8s., eL =72m.45s. Helwan PZ = 51m.48s., eN = 58m.12s.Tucson iPKP = 52m.38s., eSKS = 59m.15s.Riverside iPZ = 52m.43s., iZ = 53m.99s., eZ = 54m.10s.Palomar iPZ = 52m.45s., eZ = 53m.59s., iZ = 54m.5s.Mount Wilson iPNZ = 52m.46s., iZ = 53m.1s., eZ = 54m.15s.Pasadena iPZ = 52m.46s., iZ = 53m.59s. Tinemaha iPZ = 52m.52s., eZ = 53m.13s.Triest ePP?N = 52m.52s., eS?N = 58m.49s.Collmberg eZ = 52m.54s. Shasta Dam ePKP = 52m.57s., ePP = 54m.47s. Grand Coulee ePKP = 53m.12s. St. Louis ePZ = 53m.12s. Copenhagen 53m.36s., 59m.22s., and 60m.41s., i=63m.28s. Bermuda eSKS = 57m.41s., eS? = 58m.22s., eL = 71m.47s. Long waves were also recorded at Riverview, Clermont-Ferrand, Paris, and Sitka.

August 16d. 19h. Undetermined shock.

Mizusawa PE = 24m.45s., SE = 26m.8s. Irkutsk eP = 31m.38s., eS = 39m.0s. Tashkent eP = 32m.8s., eS = 40m.10s. Andijan eP = 32m.18s. Shasta Dam iP? = 33m.40s. Tinemaha eP = 33m.40s. Tinemaha eP = 33m.40s. Haiwee ePNZ = 33m.53s. Santa Barbara iPZ = 33m.53s. Santa Barbara iPZ = 33m.53s. Pasadena iP = 33m.53s. Riverside ePZ = 33m.53s. Riverside ePZ = 33m.56s. Palomar iP = 34m.2s. Tucson iP = 34m.30s. Collmberg eZ = 34m.37s. St. Louis iPZ = 35m.4s.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1945

252

August 16d. 23h. Undetermined shock.

Auckland P? = 59m.18s.?, i = 63m.15s., S = 65m.28s., L = 69m.28s.Wellington P = 60 m. 45 s., sP = 61 m. 10 s., iZ = 61 m. 45 s., PP ?Z = 62 m. 18., $pP_cPZ =$ 63m.30s., i = 64m.45s., SZ = 66m.25s., R = 69m.Christchurch P = 60 m. 56 s., S = 65 m. 25 s., L = 68 m.Riverview iPN = 61m.7s., i = 61m.17s., iN = 61m.46s., iSN = 64m.54s., iSEZ = 64m.57s., iPcP?EN =65m.9s., iSS?Z =65m.25s., eRZ =66.3m. Arapuni e = 63 m. 30 s., i = 64 m. 18 s., S = 65 m. 24 s.Pasadena iPZ = 69m.23s., iNZ = 70m.5s.Mount Wilson iPZ = 69m.24s., iZ = 69m.34s.Shasta Dam iP = 69m.25s., i = 69m.45s.Palomar iP = 69m.27s., iZ = 69m.49s. Riverside iP = 69m.27s., iZ = 69m.36s.Tinemaha iPEZ = 69m.30s., iEN = 69m.34s.Haiwee iPEZ = 69m.31s. Tucson iP = 69m.48s., i = 69m.57s.Collmberg iZ = 76m.11s., 76m.21s., and 76m.34s., eZ = 78m.18s., 79m.34s., 83m.30s., and 84m.12s. St. Louis eE = 84m.39s. Long waves were also recorded at Kew.

August 16d. Readings also at 0h. (Pierce Ferry, New Delhi, and near Triest), 1h. and 2h. (Colimberg), 3h. (Copenhagen and near Andijan), 5h. (near Tashkent and Andijan), 6h. (Copenhagen), 7h. (near Mizusawa), 8h. (Copenhagen), 13h. (Tucson, Palomar, Riverside, Pasadena, Mount Wilson, Tinemaha, and near Apia), 14h. (Riverview and Collmberg), 15h. and 17h. (Collmberg), 23h. (Collmberg, Tucson, Tinemaha, Riverside, Palomar, Mount Wilson, Pasadena, Shasta Dam, Christchurch, and Riverview).

August 17d. 19h. 5m. 33s. Epicentre 60°-2N. 148°-9W. (as on 1943 July 28d.).

$$A = -.4277$$
, $B = -.2580$, $C = +.8663$; $\delta = -3$; $h = -9$; $D = -.517$, $E = +.856$; $G = -.742$, $H = -.447$, $K = -.500$.

		Δ	Az.	Р.	0 - C.	s.	O-C.	Su	pp.	L.
III A SAMATO MINING AND LOC		0	•	m. s.	s.	m. s.	8.	m. s.		m.
College		4.7	6	e 1 56	+42	e 1 45	-25			e 2·3
Sitka		7 . 7	107	e 2 2	+ 6	i 3 31	+ 6		-	e 5.0
Victoria		18.9	118	e 4 49	+25	e 8 21	+28			_
Grand Coulee		21.2	113	i 4 53	+ 4		-	i 5 3	\mathbf{PP}	_
Shasta Dam		25.5	129	i 5 32	0	-				-
Berkeley	Z.	28.0	131	e 5 54	- 1	3 <u>14 (42</u>)		10 <u>2004.1</u>	750	2=3
Tinemaha		30.3	127	i 6 16	+ 1		-	i9 9	D D	100
Haiwee		31.2	127	e 6 23	Ô		1	100	$P_{\mathbf{c}}P$	_
Santa Barbara		32.0	130	i 6 30	ŏ	-				
Overton		32.3	122	e 6 34	+ 1		_	_	_	_
Boulder City		32.6	123	e 6 36	4. 1					
Mount Wilson		32.8	128	1 6 37	+ 1	255 2			-	-
Pierce Ferry		32.8	122	i 6 38	, ,		_	7	-	_
Pasadena		32.9	128	i 6 36	+ 1			e 6 51	~ ī	
Riverside		33.3	100	1 0 30	z	-		i 9 33	$\mathbf{P_{c}P}$	e 16·2
rerrerate		33.3	128	i 6 39	- 2	-	-	e 9 32	$\mathbf{P_{c}P}$	_
Palomar		34.1	127	i 6 47k	- 1		-	i7 0	2	
La Jolla		34.3	128	i 6 50	0		-			
Tucson		37.5	121	i 7 18	+ ĭ	e 13 9	+ 2	i 9 31	p.p	e 19·3
St. Louis		42.1	94	e 7 55	Õ	e 17 47	SSS	e 8 7	$_{\mathbf{pP}}^{\mathbf{pp}}$	e 23.7

Additional readings:—
Tinemaha iZ = 9m.23s.

Mount Wilson iZ = 6m.49s. and 7m.25s.

Pasadena iNZ = 6m.48s., iZ = 8m.14s.

Riverside iZ = 6m.52s., 7m.17s., and 9m.16s.

Tucson i = 7m.41s.

St. Louis ePPZ = 9m.51s.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1945

August 17d. 20h. 21m. 12s. Epicentre 37°·5N. 118°·5W. (as on 1940 July 8d.).

Epicentre 37°25'N. 118°35'W (Pasadena).

A = -.3795, B = -.6989, C = +.6062; $\delta = -4$; h = -1; D = -.879, E = +.477; G = -.289, H = -.533, K = -.795.

		Δ	Az.	Ρ.	O-C	s.	O-C.	Suj	pp.	14.
		0	0	m. s.	8.	m. s.	8.	m. s.		m.
Fresno	N.	1.3	233	i 0 24	- 1	i 0 39	- 5	-	-	_
Lick	200420	2.5	266	e 0 43	0	e 1 19	+ 5	· —	-	
Branner		2.9	268	e 0 50	+ 2			e 0 57	$\mathbf{P}_{\mathbf{z}}$	
Berkeley	Z.	3.0	277	e 0 48	- 2		_	 -		•
San Francisco	4343	3.2	275	e 0 54	+ 2	e 1 37	+ 5	_		_
Boulder City		3.3	117	e 0 57	+ 4	e 1 43	S*	e 1 2	P*	
Overton		3.4	106	e 0 55	0	i 1 48	s*	e 1 0	P.	
Pierce Ferry		3.9	110	e 1 2	0	i 2 3	S*	i 1 12	P*	-
Shasta Dam		4.4	318	e 1 16	+ 6	i 2 22	Sz	i 1 19	P*	
Tucson		8.2	128	e 2 42	Pe			2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		e 4·0

Additional readings:—
Overton i = 1m.6s.
Pierce Ferry e = 1m.5s.

August 17d. Readings also at 0h. (near Stalinabad and near Granada), 1h. (near Jena and Collmberg), 2h. (Colmberg), 4h. (Stalinabad), 11h. (Kew), 12h. (near Stalinabad), 14h. (near Andijan, Stalinabad and near La Paz), 15h. (Tucson, Shasta Dam, Auckland, and Brisbane), 17h. (Tucson, Tinemaha, Haiwee, Riverside, Palomar, Pasadena, and Mount Wilson), 18h. (Tinemaha, Mount Wilson, Palomar, Pasadena, Riverside, Tucson, and St. Louis), 19h. (Shasta Dam, Grand Coulee, Santa Barbara, Tinemaha, Pasadena, Mount Wilson, Riverside, Palomar, and Tucson), 21h. (near Lick, Branner, Berkeley, and San Francisco), 22h. (Tucson), 23h. (Palomar, Tinemaha, Riverside, Mount Wilson, Auckland, and Riverview).

August 18d. Readings at 0h. (Mount Wilson, Riverside, Tucson, and near La Paz), 2h. (Auckland and near Bogota), 7h. (Christchurch), 11h. (Mount Wilson, Pasadena, Palomar, Riverside, Tucson, St. Louis, Mizusawa, and Collmberg), 15h. (near Andijan and Stalinabad), 21h. (near La Paz).

August 19d. 4h. 5m. 18s. Epicentre 36°-3N. 142°-8E.

Scale IV at Hukusima; II-III at Onahama, Tukubasan, and Utunomiya. Depth of focus suggested, 60 km. Epicentre as adopted. Seismo. Bull. Cent. Met. Obs., Japan, 1945, Tokyo 1951, p. 39, with chart of Intensity.

$$A = -.6435$$
, $B = +.4884$, $C = +.5894$; $\delta = +2$; $\hbar = 0$; $D = +.605$, $E = +.797$; $G = -.469$, $H = +.356$, $K = -.808$.

		Δ	Az.	I	.	0 - 0	o.	S	.	0-C.
		0	0	m.	s.	8.		m.	8.	s.
Onahama		1.7	293	0	28		3	0	42	-12
Tukubasan		2.2	268	0	31 a		7	0	43	$\mathbf{P}_{\mathbf{r}}$
Hukusima		2.3	308	0	37 a		3	1	5	4
Sendai		2.5	322	0	45	+ 1	2	1	15	+ 1
Mizusawa	E.	3.1	335	0	55	+ 3	4	1	35	+ 6
Hunatu		3.4	258	0	52		3	1	47	S.
Misima		3.4	250	0	47	-	8	1	19	-18
Miyako		3.4	350	0	58	+	3	1	39	+ 2
Shizuoka		3.8	251	0	58		3	1	48	+ 1
Toyama		4.5	277	1	10	-	1	2	39	Sz
Wazima		4.9	285	1	11	- (6	2	5	-10
Kameyama		5.3	256	1	32	P*	Ē.	2 2	43	S*
Hikone		$5 \cdot 4$	261	1	19)	5	2	26	- 2
Owase		5.8	249	1	38	P*	P	2	54	s.
Kyoto		5.9	259	1	34	+ :	3	2	52	S*

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1945

254

		Δ	Az.	F	.	O-C.	S.	O -C.
		0	0	m,	8.	8.	m. s.	8.
Sapporo		6.8	352	2	6	P.	4 1	S-
Hukuoka		10.5	259	2	30	- 5	5 13	S.
Irkutsk		31.4	313	e 6	23	- ž	e 11 4	-28
Mount Wilson	Z.	77.1	57	i 12	15	+18		
Riverside	. Z.	77.7	57	i 12	7	+ 7		
Palomar	Z.	78-4	57	i 12	21	+17		-
Collmberg	Z.,	82.3	331	e 12	30	+ 5	1	-
Tucson		83.1	55	i 12	37	-1- 8	-	-
St. Louis	Z.	90.8	39	e 13	22	+16	-	

Additional readings:—
Mount Wilson iZ=12m.36s.
Riverside iZ=12m.18s.
Tucson i=12m.48s.

Long waves were recorded at a few European stations.

Aug. 19d. 5h. 30m. 25s. Epicentre 10°-5S. 74°-9W.

Foreshock of 21d. 16h.

$$A = +.2562$$
, $B = -.9495$, $C = -.1811$; $\delta = -1$; $h = +6$; $D = -.965$, $E = -.261$; $G = -.047$, $H = +.175$, $K = -.983$.

		Δ	Az.	P.	0 - C.	s.	O-C.	L.
		0	0	m. s.	s.	m. s.	8.	m.
Huancayo		1.6	195	i 0 24	- 6	i 0 43	- 8	e 1.0
La Paz		8.9	133	2 38	+26	4 29	+34	5.5
Bogota		15.0	3	i 4 44	+69		1000	e 7·7
St. Louis	Z.	50.9	345	e 9 5	0		_	
Tucson		54.6	322	i 9 32	0			-
Riverside	Z.	59-9	320	e 10 11	+ 1		-	11.000 0
Mount Wilson	Z.	60.5	320	i 10 15	$\dot{\mathbf{i}}$			
Victoria.	0.7097	79.7	398			a 99 999	999	a 22.5

Aug. 19d. Readings also at 1h. (Sofia (2)), 2h. (near Fort de France), 5h. (Vladivostok), 6h. (Bogota), 7h. (Balboa Heights, Bogota, San Juan, St. Louis, Boulder City, Tucson (2), Riverside, and Palomar), 10h. (Haiwee, Mount Wilson, Palomar, Riverside, Pasadena, Santa Barbara, Tucson, Boulder City, Shasta Dam, Grand Coulee, Overton, Pierce Ferry, St. Louis, San Juan, and Collmberg), 11h. (Mount Wilson, Palomar, Tucson, and near Tacubaya), 13h. (Tucson), 17h. (Shasta Dam), 19h. (Mount Wilson, Riverside (2), Palomar, and Tucson), 22h. (Boulder City, Overton, Pierce Ferry, Mount Wilson, Pasadena, Riverside, Palomar, Riverview, and Collmberg).

Aug. 20d. Readings at 2h. (Collmberg and La Paz), 9h. (near Mizusawa), 10h. (Bucharest and La Paz), 11h. (Collmberg), 13h. (near Tucson), 14h. and 21h. (near Balboa Heights).

Aug. 21d. 10h. 7m. 7s. Epicentre 41°-5N. 130°-5E. Depth of focus 0.080.

$$A = -.4879$$
, $B = +.5712$, $C = +.6601$; $\delta = +5$; $h = -2$; $D = +.760$, $E = +.649$; $G = -.429$, $H = +.502$, $K = -.751$.

		Δ	Az.	P.	O-C.	S.	0 - C.	Su	pp.	L.
Contract of Company Contract C		0	0	m. s.	8.	m. s.	s.	m. s.		m.
Mizusawa	N.	8.4	102	12 6	+ 4	3 40	0	-	-	
Irkutsk		20.8	310		-	5 58	\mathbf{pP}			-
Andijan		43.1	289	7 18	+ 4	13 3	+ 2			-
Tashkent		45.0	291	-	-	13 25	- 3	16 23	8	-
Stalinabad		46.5	288	e 7 41	+ 1	13 48	– 1			-
Moscow		58.5	319	9 3	- 3	16 19	- 9		-	8 - 32
Grand Coulee		71.8	42	e 10 26	- 3	2 <u>2</u> 25		i 13 12	PP	- Company
Collmberg		72.8	325	i 10 35	0	e 19 36	+19	e 12 29	\mathbf{pP}	
Shasta Dam		74.9	49	i 10 46	- 1	e 19 59	+19	i 12 44	pP	-
Berkeley	Z.	76.9	51	i 10 57	1		-	i 12 56	\mathbf{pP}	

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1945

255

		Λ	Az.	P.	O-C.	s.	O-C.	Su	pp.	L.
		•	0	m. s	. 8.	m. s.	8.	m. s.	TO 1000	m.
Tinemaha		79.7	49		2a - 1	e 20 35	+ 4	i 13 13	\mathbf{pP}) -
Haiwee		80.5	49		a - 1	e 20 43	+ 4	i 13 18	pP	
Santa Barbara		80.7	52	The second secon	a - 1		_			
Mount Wilson		81.8	51		a Ô	_	· ·	i 13 24	\mathbf{pP}	
Pasadena		81.8	51	i 11 2		i 20 50	- 2	i 13 24	$\hat{\mathbf{p}}\hat{\mathbf{P}}$	
Rapid City		82.1	36	e 11 27	+ 2	e 20 56	+ 1	_		e 38·3
Overton		82.2	47	i 11 27	- The Control of the		· · ·	i 12 15	3	
Boulder City		82.4	48	i 11 27		i 20 54	- 4	i 13 29	pP	
Riverside		82.4	51	i 11 26				i 13 28	pP	
Pierce Ferry		82.8	47	i 11 29		-		i 12 25	1 .	-
Palomar		83.1	51	i 11 30)a 0	i 21 0	- 4	i 13 31	\mathbf{pP}	1.
La Jolla		83.3	52	i 11 30						-
Tucson		87.4	48	i 11 5		_	A	e 13 55	\mathbf{pP}	Canada
Florissant		91.8	31	e 12 10		e 22 21	- 3	e 25 59	sS	1
St. Louis		92.0	31	i 13 11		e 22 24	- 9	e 26 0	sS	
Cape Girardeau	E.	93.4	31			The state of the s	$[-\tilde{6}]$		-	

Additional readings :-

Mizusawa SE = 3m.44s.

Collmberg e = 13m.26s, and 20m.9s,

Shasta Dam is P = 13m.43s., e = 22m.20s.Tinemaha iZ = 11m.41s., isPZ = 14m.26s.

Haiwee esPZ = 14m.3s.

Mount Wilson is PZ = 14m.39s.

Pasadena $iP_cP?Z = 11m.42s.$, iEN = 12m.10s., isPNZ = 14m.43s.

Boulder City i = 11m.45s. and 12m.1s., isP? = 14m.40s. Riverside iZ = 11m.44s., eZ = 13m.50s., isPZ = 14m.48s.

Palomar $iP_cPZ = 11m.36s.$, esPZ = 14m.45s.Tucson i = 12m.19s., iPP = 15m.25s., e = 26m.39s.

Florissant eS?E = 21m.45s. St. Louis eZ = 15m.52s.

Aug. 21d. 16h. 29m. 39s. Epicentre 10°.5S. 74°.9W. Depth of focus 0.015. (as on 19d.).

Intensity V at Cerro de Pasco and San Ramon. Macroseismic epicentre near 10°.5S. 76°.0W. Depth 120km. Macroseismic area 210,000sq.m.

E. Silgado.

Datos sismológicos del Perú, 1944-1945. Instituto geológico del Perú, Bol. 3, Lima 1946, p. 20.

A = +.2562, B = -.9495, C = -.1811; $\delta = -1$: h = +6.Supp. 0-c. S. 0 - C. L. Az. m. m. s. m. s. 8. 8. m. s. i 0 46 i 0 6 1.6 195 Huancayo i 3 49 + i 2 4.9 La Paz 8.9 133 5a 5 2 7 i 3 38 i 6 30 +2115.0 i 3 3 31 Bogota Balboa Heights 2519.9 348 28.5 30 e 5 38 Fort de France 13 50 La Plata +4217.0 150 28.8 46 E. 11 21 28.8 150 i 5 47 +5417.9 N. PPP 28.8 i 5 150 47 i 10 45 i 6 33 $\mathbf{p}\mathbf{P}$ e 11.8 San Juan e 6 30.0 17 e 8 e 14 35 +2130 e 17.9 $\mathbf{p}\mathbf{P}$ 43.756 Bermuda e 9 i 9 $\mathbf{p}\mathbf{P}$ Cape Girardeau 345 49.5 E. pP i 8 6 12 50.2 351 43 e 15 51 Cincinnati 8S 8S e 15 46 e 26.0 50.2 i 8 45 Philadelphia 0 -56i 15 51 -59i 14 59 50.9 355 Pittsburgh pPi 15 50.9 345 i 8 i 9 St. Louis i 9 $\mathbf{p}\mathbf{P}$ 345 i 8 e 15 55 Florissant $51 \cdot 1$ 50 i 8 52 + Fordham i 16 i 9 $\mathbf{p}\mathbf{P}$ 51.1 1 i 8 51.1 358 46 Pennyslvania -19 52.8 Harvard e 16 25 pP 53.3348 Chicago

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1945

256

```
Ρ.
                                                 O - C
                                                                                                   L.
                                Az.
                                                                    O-C
                                                                                   Supp.
                                       m. s.
                                                   s.
                                                            m. s.
                                                                      S.
                                                                                                  m.
                                                                              m. s.
                                322
                                       i 9
Tucson
                                                          e 16
                                                                                               e 26·1
                                                               51
                                                                                         pP
                                359
Ottawa
                         55.6
                                           24
                                                                              i 9 53
                                                                                         \mathbf{p}\mathbf{P}
                                                                                                  24 \cdot 4
Shawinigan Falls
                         56.8
                                           33
Seven Falls
                         57.5
                                           37
                                                                                                 26.4
                                                                             i 10 18
La Jolla
                         59.1
                                319
                                                                                         \mathbf{p}\mathbf{P}
                                         9
Palomar
                         59.1
                                320
                                           50 k
                                                                                         \mathbf{p}\mathbf{P}
                                                  +
Pierce Ferry
                                324
                         59 \cdot 2
                                       i 9 50
                                                                             i 10 21
                                                                                         pP
                                       i 9 52
Boulder City
                         59.6
                                323
                                                          e 17 57
                                                                                         \mathbf{p}\mathbf{P}
                                324
                         59.8
Overton
                                       i 9 55
                                                  +
                                320
                                                                             i 10 23
                                                                                         \mathbf{p}\mathbf{P}
Riverside
                         59.9
                                       i 9 55k
Rapid City
                         60.1
                                337
                                                          i 18
                                       i 9
                                           57
                                                                             i 10
                                                                                         \mathbf{pP}
                                                                                               e 19.9
                                                  +
                                320
                                       i 9 59k
                         60.5
Mount Wilson
                                                                             i 10
                                                                                        \mathbf{p}\mathbf{P}
Pasadena
                         60.5
                                320
                                       i 9
                                           59 k
                                                                             1 10
                                                                                        \mathbf{p}\mathbf{P}
Haiwee
                         61.6
                                321
                                      i 10
                                                          e 18 24
                                                                             i 10
                                                                                  37
                                                                                         \mathbf{p}\mathbf{P}
Santa Barbara
                         61.7
                                319
                                      i 10
                                            6
                                                                             i 10
                                                                                  36
                                                                                        \mathbf{p}\mathbf{p}
Tinemaha
                         62.4
                                322
                                      i 10 12k
                                                          e 18 32
                                                                                         \mathbf{pP}
                                                                             i 10
                                                  +
                         67 \cdot 2
                                323
                                     i 10 41
                                                          e 19 27
Shasta Dam
                                                                                  11
                                                                                         \mathbf{pP}
                                331
                         70-1
Grand Coulee
                                                                             i 11
                                                                                  30
                                                                                        \mathbf{pP}
                                 13
                         74.5
                                     i 11 25k
                                                            20 51
                                                                               21
Ivigtut
                                                                                  42
                                                                                         8S
                                                                                                 14.5
Coimbra
                         79.4
                                 46
                                     e 11 33
                                                  -20
                                                            13
                                                               23
                                                                                        \mathbf{PP}
                                                                                  31)
                                                                              (14
San Fernando
                         79.6
                                                                                      pPPP
                                      i 11 53
                                 50
                                                                               17 46
                                                                     +
                                 50
                         81.0
                                     i 11 59
Malaga
                                                                             i 12 29
                                                                                        pP
                         81.8
                                 50
                                     i 12 10a
                                                  +
                                                          i 22 17
Granada
                                                                     +10
                                 47
                         82.4
Toledo
                                     i 12 11
                                                         e 21 33
                                                                     -40
                         86.0
                                       12
                                                                               13 18
Tortosa
                                 48
                                                                                        \mathbf{pP}
                                          34
                                                  +
                                                            22 57
                                                                     + 9
Clermont-Ferrand
                         89.2
                                     e 12 42
                                     e 13 14
                                                  \mathbf{p}\mathbf{P}
Paris
                         89.7
                                 40
                                                                                        pP
pP
Neuchatel
                        92 \cdot 1
                                 42
                                                                            e 13 27
                                     e 12 56
                        92.6
Basle
                                 42
                                                                            e 13 30
                                     e 12 58
                        93.3
                                 42
                                     e 13
Zürich
                                           1 k
                                                                        3
                                                                            e 13
                                                                                  32
                                                                                        pP
                        93.8
                                 43
Chur
                                     e 13 4
                                                     0
                                                                       2
Cheb
                        96 \cdot 2
                                 39
                                                         e 24 21
                        96.5
                                 45
                                     i 13 17
                                                         e 24 26
                                                                                        \mathbf{p}\mathbf{P}
Triest
                                                                     + 4
                                                                             i 13 45
                        96.8
                                 39
                                     i 13 18
Collmberg
                                                                             i 13 49
                                                                                        \mathbf{p}\mathbf{P}
                        97.7
                                     e 13 20
                                                          i 24 34
Copenhagen
                                                                             i 13 51
                                                                                        \mathbf{pP}
                       111.3
Moscow
                                 33
                                     e 14 22
                                                   P
                                                         e 25 44
                                                                      88
                                                                              19
                                                                                        \mathbf{PP}
Tashkent
                       136.0
                                 39
                                     e 19
                                                                            e 22 29
                                                                                        \mathbf{p}\mathbf{p}
                                           0
                                                     6]
                       138.3
                                 37
                                     e 19
Andijan
  Additional readings :--
     La Plata Z = 6m.27s.
    San Juan eS = 10m.42s.
     Bermuda esP = 8m.36s., e = 13m.37s.
    Cape Girardeau eE = 13m.54s, and 14m.27s.
    Cincinnati i = 9m.25s.
     Philadelphia ePP = 10m.44s., e = 11m.19s., eS<sub>c</sub>S = 18m.11s., eSS = 19m.35s.
    Pittsburgh iZ = 8m.3s.
    St. Louis iZ = 9m.2s. and 9m.43s., esS?E = 16m.37s., eN = 21m.6s.
     Florissant esSE = 16m.46s.
     Fordham i = 16m.27s.
     Tucson iP<sub>c</sub>P = 10m.18s., i = 10m.32s., iPPP = 12m.26s., esS = 17m.41s., e = 19m.53s.
     Ottawa iE =17m.51s.
     La Jolla iN = 10m.50s.
     Palomar iZ = 10m.5s., isPZ = 10m.34s., iZ = 11m.33s., 12m.0s., and 22m.49s., iPKP,
          PKPZ = 39m.29s.
     Boulder City esS = 18m.49s., e = 19m.12s.
     Riverside iZ = 11m.9s., 11m.41s., ePKP.PKPZ = 39m.9s.
     Rapid City iP_cP? = 10m.55s., e = 12m.58s., iSS = 18m.54s.
     Mount Wilson iZ = 11m.14s., ePKP,PKPZ = 39m.8s.
     Pasadena isPNZ = 10m.42s., iEZ = 11m.0s., iNZ = 11m.14s., iPKP.PKPZ = 39m.0s.,
          iZ = 39m.27s.
     Haiwee eZ = 10m.45s.
     Santa Barbara eNZ = 10m, 20s,
     Tinemaha iZ = 10m.51s., iZ = 22m.10s., ePKP,PKPZ = 39m.19s.
     San Fernando PSE = 22m.27s., SSE = 26m.53s.
     Malaga i = 12m.56s., 13m.11s., and 13m.52s.
     Tortosa PcPN? = 13m.8s., sPE = 13m.36s., PSN = 22m.39s., ScSE = 22m.44s., SKKSE? =
          23m.5s.
     Triest eSKSE = 23m.42s.
     Collmberg e = 15m.59s., 16m.46s., 17m.5s., and 17m.51s.
    Copenhagen 17m.55s., SKS = 23m.49s., 25m.21s., and 32m.21s.
    Moscow epPP = 19m.37s.?, eS = 26m.33s., SP = 28m.18s.
```

Long waves were also recorded at De Bilt.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1945

257

Aug. 21d. 20h. 2m. 42s. Epicentre 18°-0S. 167°-7E. (as on 1944 Dec. 10d.). A = -.9299, B = +.2027, C = -.3071; $\delta = +11$; D = +.213, E = +.977; G = +.300, H = -.065, K = -.952. 0-c. Supp. L. m. s. m. s. Auckland 4 53 Riverview 21.6219 i 8 58 5 24 Wellington $24 \cdot 0$ 167 18 53 +21pP SSS 36 12.2 Christehurch 25.8 171 37 9 58 38 12.8 Perth 48.6 242 i 16 15 +26i 19 52 ssi 26·1 Honolulu 51.6 43 e 15 39 e 16 22 9 e 16 50 PPS e 21.5 Ukiah 85.9 47 8 5 e 23 [+ 1) e 38.9 Berkeley 86.0 i 23 3] 29 29 SS [e 39·3 Santa Clara 86.0 e 12 32 e 23 -1123 e 47·1 Shasta Dam 87.2 e 12 45 -- 4 Pasadena 87.5 e 12 33 -18e 23 13 4] i 12 52 P e 35.9 Mount Wilson 87.6 53 i 12 49 -Riverside 88.0 53 e 12 49 Palomar 88-1 i 12 50 Haiwee 88.4 e 12 Z. 54 Tinemaha 88.6 z. 501 12 56 Sitka 88.8 e 12 50 2] \mathbf{PPP} e 18 -Irkutsk 326 88.9 12 53 23 27 1] **** College 89.3 17 e 12 54 e 23 50 e 23 28 SKS e 36.5 Boulder City 90.7e 13 e 23 33 4] \mathbf{P} -Overton 91.2 e 13 52+6 e 13 50 Pierce Ferry 52 91.4e 13 e 16 57 \mathbf{PP} Tucson 92.5 56 e 13 11 \mathbf{PS} e 25 27 e 13 21 $P_{c}P$ Hyderabad 94.6286 N. 23 59 0] 24 31 Salt Lake City 94.648 e 17 PP24 2] e 40.8 Bozeman 96.8 44 10 e 24 56 88 e 40.6 New Delhi 98.8 297 i 24 19 2] i 25 11 Bombay e 16 24 286 100.1 e 24 24 3] -Saskatoon 101.4 39 e 24 42 + 8] 50.3 Rapid City 101.7 47 24 30 $_{PS}$ 5] I -49.6 Tashkent 107.9 308 e 18 13 25 [-16]6 [+ 3] 34 SSP Florissant 110.2 54e 19 \mathbf{PP} e 25 13 e 26 11 SKKS 01 [-6]St. Louis E. 110·3 54 e 19 PP e 25 7 e 26 15 SKKS 112.6 Chicago 51 e 19 19 PPe 28 57 P8 e 35 42 SSP Cincinnati 114.8 e 14 48 55 e 25 32 [+ 1] \mathbf{P} e 53·3 La Paz 115.2 119 e 19 58 $\mathbf{p}\mathbf{p}$ 30 53.8 Columbia 117.2 60 e 17 51 [-56]e 25 38 2] e 29 49 $_{\rm PS}$ e 47.7 Ottawa 121-2 e 18 52 [-3]e 25 48 6] e 29 [-187 49.3 Philadelphia 122.0 53 e 15 P e 25 41 e 20 24 [-16]PPe 50·7 124.3 Seven Falls 45 e 20 42 PP e 30 12 (37 18?) SS $37 \cdot 3$ Moscow 126.9 e 19 327 770 i 20 55 \mathbf{PP} San Juan 129.0 e 19 11 80 [+1]SSS e 21 25 \mathbf{PP} e 60·5 130.0 Ivigtut 22 33 PKS Bermuda 130.8 62 e 21 24 $\mathbf{P}\mathbf{P}$ e 33 21 PPS e 39 19 SS e 66-0 Upsala 133.0 340 21 55 PP e e 39 18? sse 22 44 PKSe 61.3 Bergen 135.8 347 22 56 PKS e 28 $\{-50\}$ 38 183 Copenhagen 138 0 340 i 19 24 [-3]i 23 PKS 2218 \mathbf{PP} Bucharest 138.5 318 22 18? \mathbf{PP} 187 32 PS Helwan 138.6295 e 19 33 [+5]e 40 24SS e 22 24 \mathbf{PP} Aberdeen N. 140.2 2511 22 28 $\mathbf{P}\mathbf{P}$ i 23 8 PKS i 35 49 e 75.7 Collmberg 141.2 334 e 19 27 [- 6] PP e 23 10 PKS e 22 33 \mathbf{PP} Cheb 142-4 334 e 23 18 e 33 18 \mathbf{PS} e 42 18 sspe 72·3 De Bilt 143.3 342 e 19 18? -18]e 41 33 SS Uccle 144.7 343 e 19 38k e 41 36 SS e 32 27? PSKS Triest 145.0 328 i 19 45 [+ 61 32 29 PSKS i 19 53 pPKP Chur 146.1 334 e 19 42 + Basle 146.3 335 e 19 35 6] -4 Strasbourg 146.4 337 e 19 48 6] Paris 147.0 342 e 19 43 0] PP e 22 55 Tortosa N. 154.7 336 e 34 52 e 93·3

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1945 258

```
Supp.
                                                                                      L,
                                          O-C.
                           Az.
                       Δ
                                                                                     m.
                                            S.
                                                   m. s.
                                  m.
                                                                                     55.3
                    157.1
                                          [-24]
Toledo
                                                                                   e 87.5
                                                    65 39
                           351
                    157.6
                                  55
Coimbra
                                                           PSKS
                    159 \cdot 4
                           340
                                     53 a
                                  19
Granada
                                                                                     64.1
                    160.1
                                                  i 27 10
Malaga
                    160.8
                           345
San Fernando
  Additional readings :-
    Auckland i = 5m.48s.
    Riverview iEZ = 4m.59s., iZ = 9m.6s., iN = 9m.21s., iE = 9m.25s., iSSN = 9m.43s.,
        iE = 9m.47s.
    Wellington iZ = 5m.24s., PP = 6m.8s., PcPZ = 8m.43s., i = 9m.41s., sS? = 10m.33s.
    Berkeley e = 35m.7s.
    Sitka ePS? = 24m.48s., e = 32m.22s.
    Tucson ePP = 16m.51s., eSS? = 31m.52s.
    Bozeman ePS = 26m.11s., eSS = 30m.53s.
    New Delhi eN =33m.16s.
    Tashkent PPS = 28m.54s.
    Florissant ePSE = 28m.32s.
    St. Louis eSE = 26m.54s., ePSE = 28m.39s., SSE = 34m.18s.?.
    Cincinnati e = 22m.48s. and 24m.22s.
    Philadelphia e = 27m.20s., ePS = 29m.39s., e = 32m.32s., and 37m.18s.
    San Juan e = 22m.28s, and 32m.34s.
    Bermuda e = 22m.34s.
    Copenhagen 25m.28s., 30m.6s., 34m.54s., and 41m.10s.
    Helwan eN = 43m.24s.
    Collmberg eZ = 19m.36s.
    Triest ePPZ = 22m.38s., eSSE = 41m.50s.
    Paris e = 25m.7s.
    Granada SS = 43m.358.
    Malaga iPPZ = 24m.25s., PPP?Z = 27m.45s., SKKSZ = 31m.45s., SKSPZ = 33m.51s.,
        PPSZ = 37m.22s., SKS,SKSZ = 45m.4s.
    Long waves were also recorded at Arapuni and Tananarive.
```

Aug. 21d. Readings also at 1h. (Collmberg, Tucson, Tinemaha, Haiwee, Palomar, Riverside, Mount Wilson, and Pasadena), 4h. (Riverside, Palomar, and near Tucson), 7h. (Collmberg, near Neuchatel, Strasbourg, Zürich, and Basle), 8h. (near Tashkent, Andijan, and Stalinabad), 9h. (Collmberg), 10h. (near Andijan and Stalinabad), 12h. (Collmberg and near Mizusawa), 13h. (Collmberg), 15h. (Collmberg), 16h. (Tucson, Pierce Ferry, Boulder City, Tinemaha, Palomar, Riverside, Pasadena, Mount Wilson, Santa Barbara, Shasta Dam, Grand Coulee, St. Louis, Collmberg, and Coimbra), 19h. (near Stalinabad and Andijan), 21h. (Toledo).

Aug. 22d. 5h. Widely recorded shocks from an epicentre in the Pacific. No determination is made.

```
Riverview ePZ =8m,54s., iSE =12m,39s., iZ =12m,44s., iP<sub>c</sub>P?Z =13m,1s., eQN =13·1m., eRZ =14·2m.

Arapuni P =13m,0s.?, L =23·5m.

Auckland P =13m,2s., e =16m,30s., S =24m,53s., S<sub>c</sub>S =28m,38s., Q =34·5m., R =35·5m.

Wellington P?Z =13m,40s., iZ =17m,13s., S? =19m,27s., iZ =20m,57s., S<sub>c</sub>S? =23m,50s., R =24m.

Christehurch SEN =14m,27s., QEN =16m,27s., RZ =19m,20s.

Palomar iPZ =16m,25s.

Riverside ePZ =16m,25s.

Mount Wilson ePZ =16m,28s.

Tucson eP =16m,48s.

Riverview iPZ =19m,22s.k, iSN =23m,9s., IE =23m,14s., iZ =23m,18s., eLN =24·4m.
```

Riverview iPZ = 19m.22s.k, iSN = 23m.9s., iE = 23m.14s., iZ = 23m.18s., eLN = 24·4m.
Berkeley eP = 26m.30s., eSKSN = 37m.30s., eSE = 38m.31s., eN = 43m.37s., eSSE = 44m.6s., eL = 54m.30s.

Santa Clara ePZ = 26m.53s., ePPPSE = 38m.54s.

Shasta Dam eP = 26m.56s.

Pasadena iPZ = 26m.58s., eZ = 38m.24s., eLN = 49·7m.

Mount Wilson iPZ = 27m.0s.

Riverside ePZ = 27m.1s.

Palomar iPZ = 27m.3s., iZ = 27m.14s., iPKP,PKPZ = 50m.59s.

Tinemaha iP = 27m.9s.

Haiwee ePEZ = 27m.11s.

Boulder City eP = 27m.14s.

College eP = 27m.15s., eSKS = 37m.41s., eL = 59m.24s.

Pierce Ferry eP = 27m.17s.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1945

259

Overton eP = 27 m. 22 s., e = 27 m. 34 s.Tucson eP = 27m.22s., ePP = 31m.13s., e = 38m.36s., ePS = 39m.47s., eSS = 44m.49s.eL = 52m.4s.Rapid City eP = 28m.12s., eSKS = 38m.46s., ePS = 41m.18s., eL = 62m.25s.Tashkent eP = 28m.41s., SKS = 39m.16s., PS = 41m.53s., PPS = 42m.32s.Honolulu eS = 30m.30s., eL = 35m.41s. St. Louis eE = 31m.13s., 32m.18s., 42m.44s., and 47m.28s. Ottawa eZ = 33m.0s., eE = 44m.18s., eN = 50m., L = 67m. Copenhagen iP = 33m.39s., 37m.11s., 46m.17s., and 48m.24s. Helwan eZ = 33m.42s. and 36m.45s. Collmberg iZ = 33m.43s., eZ = 37m.0s.Zürich eP = 33m.44s. De Bilt iZ = 33m.47s, and 33m.59s., eL = 85m. Uccle ePN = 33m.47s.a, e = 37m.18s., eL = 57m. Triest iPZ = 33m.50s.7, ipPZ = 34m.9s., eSSE = 57m.19s.Strasbourg PKP = 33m.51s. Chur eP = 33m.52s. Basle eP = 33m.53s. Neuchatel e = 33m.56s. Paris PKP = 33m.57s., i = 34m.58s., e = 41m., eL = 92m.Clermont-Ferrand e = 34 m.0s. and 37 m.36s.Seven Falls e = 34m.54s, and 44m.54s, L = 74m. San Juan ePP = 35m.28s., e = 36m.43s., ePS = 45m.26s., ePPS = 47m.9s., eL = 75m.11s.Sitka e = 36m.35s., eSKS = 37m.36s., ePS = 39m.6s., eL = 49m.52s.Bermuda e = 36m.48s., ePKS = 47m.35s., eL = 75m.31s.Cheb e = 37m.0s. Salt Lake City eSKS? = 38m.11s., ePS = 40m.7s., eL = 55m.18s. Ukiah e = 38m.32s., eL = 53m.22s.Florissant eE = 38m.47s. and 42m.45s. Saskatoon e = 41m., L = 64m.Huancayo ePS = 43m.2s., eSS? = 49m.38s., eL = 63m.30s. Philadelphia c = 44m.26s. and 47m.16s., eSS = 49m.30s., c = 51m.43s., eL = 64m.30s. Long waves were also recorded at Columbia, San Fernando, and Ivigtut.

- Aug. 22d. Readings also at 0h. (Ksara), 2h. (La Paz), 8h. (Auckland, Christchurch, Riverview, Mount Wilson, Palomar, Riverside, Tucson, Sitka, near Berkeley, Branner, and Lick), 9h. (Auckland), 12h. (near Granada), 13h. (2) and 14h. (Collmberg), 16h. (Copenhagen, Collmberg, and near Malaga (2)), 20h. (San Juan), 22h. (near La Paz).
- Aug. 23d. Readings at 1h. (near Andijan), 5h. (Bogota, La Paz, and near Mizusawa), 6h. (near La Paz), 7h. (Arapuni, Auckland, Christchurch, Wellington, and Riverview), 10h. (near Andijan), 13h. and 15h. (Collmberg), 17h. (near Andijan, Stalinabad, Tashkent, near Berkeley, Branner, Fresno, Lick, and San Francisco), 19h. (Bucharest and Collmberg).
- Aug. 24d. Readings at 0h. (Branner), 4h. (Alicante), 5h. (near Bogota), 7h. (Alicante and near Stalinabad), 9h. (Boulder City, Mount Wilson (2), Palomar (2), Tinemaha (2), Tucson (2), St. Louis (2), Tacubaya (2), San Juan, Collmberg (2), Copenhagen, Zürich, Belgrade, near Bucharest, and Sofia), 12h. (Huancayo), 13h. (Mount Wilson, Palomar, Riverside, Tinemaha, Tucson, and Tacubaya), 14h. (near Andijan and Stalinabad), 17h. (Collmberg and near Tucson), 18h. (San Juan and near Tucson), 20h. (near La Paz, near Mizusawa, and near Tucson), 22h. (Berkeley), 23h. (San Juan).
- Aug. 25d. Readings at 1h. (near Berkeley, Branner (2), Santa Clara, and San Francisco), 3h. (near Branner), 7h. (Mizusawa and Collmberg), 12h. (Auckland and Collmberg), 13h. (Collmberg), 14h. (Collmberg and Ksara), 17h. (near Lick), 21h. (Apia, Triest, and near Tucson (2)), 22h. (near Berkeley, Lick, and Fresno).
- Aug. 26d. Readings at 6h. (Bucharest), 1h. (Kew), 2h. (Kew, Triest, and Uccle), 3h. (Calcutta), 7h. (near Mizusawa), 9h. (San Fernando), 16h. (La Paz), 19h. (San Juan), 21h. and 22h. (Collmberg), 23h. (near Tacubaya (3)).

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1945

Aug. 27d. 1h. 17m. 26s. Epicentre 51°·3S. 163°·6E. (as on 1940 March 6d.). Very doubtful.

A = -.6023, B = +.1773, C = -.7783; $\delta = -5$; h = -6; D = +.282, E = +.959; G = +.747, H = -.220, K = -.628.

260

						The second second					
		Δ	Az.	I	ο.	O-C.	s.	0 - C.	Su	pp.	L.
		٥	0	m.	s.	s.	m. s.	s,	m. s.	26(200)	m.
Christchurch		9.9	41	2	23	- 2	i 4 20	0		-	4.8
Kaimata		10.3	34	2	29	- 3	3 54	9		G	5.0
Wellington		12.6	42	3	4	+ 1	6 9	+43	7 29	PcP	6.9
Arapuni		15.7	37	(4	343)	+50	4 34	P		_	7.3
Auckland		16.5	33	3	10	-44			== 8		-
Riverview		19.7	328	i 4	37 a	+ 3	7 59	-11	i 9 11	$P_{e}P$	8.9
Brisbane		25.1	338	i 5	30	+ 2	i 9 53	+ 2			_
St. Louis		128.4	73		Service :		e 41 43	SSS			e 47.4
San Juan		129.0	111	22	46	\mathbf{PP}		142.23.23 10.00	*****		e 64.8
Collmberg	4.	161-6	280	e 21	6	PKP.	-	<u> 1888</u> Ş		_	_
Granada		163.2	218	e 31	47	SKKS		*****		-	
Paris		167.6	268	e 25	34?	\mathbf{PP}		_	1000		-

Additional readings :—

Christchurch S? = 3m.46s., i = 4m.33s.

Kaimata i = 4m.12s.

Wellington iZ = 6m.29s., Q = 6m.39s.Riverview iZ = 5m.46s., iE = 8m.12s.

Brisbane iPN =5m.34s., iN =10m.25s.

Long waves were also recorded at Honolulu, Sitka, Tucson, De Bilt, and Clermont-Ferrand.

Aug. 27d. 7h. 34m. 41s. Epicentre 22°.5N. 143°.5E. Depth of focus 0.005.

$$A = -.7434$$
, $B = +.5501$, $C = +.3805$; $\delta = +3$; $h = +4$; $D = +.595$, $E = +.804$; $G = -.306$, $H = +.226$, $K = -.925$.

Mizusawa Zi-ka-wei Irkutsk Brisbane Calcutta	N. E. Z.	∆ 16·7 21·5 42·2 50·5 50·7	Az. 354 300 326 169 282	P. m. s. 3 47 5 15 7 48 i 8 57 e 9 5	O-C. s. - 4 + 30 + 3 + 10	S. m. s. 6 41 i 14 1 i 16 8	O-C. s. -12 -2 +4	m. Sul	ър. = =	L. m. =
Honolulu Riverview New Delhi College Hyderabad	N. N.	54·2 56·5 59·5 60·8 60·9	80 173 292 27 278	e 9 25 i 9 38a e 10 22 e 9 56	$+rac{4}{0} \\ +rac{14}{12}$	e 16 49 i 17 26 i 17 54 e 18 14 18 19	- 3 + 4 - 8 - 4 - 1	e 12 33	PP	e 22.6 e 28.0 e 30.3 e 26.8 30.6
Andijan Tashkent Kodaikanal Stalinabad Bombay	Ε,	61·7 63·9 64·1 64·7 65·7	305 307 272 304 282	e 10 13 e 10 213 e 8 12 e 10 32	- 1 - 7 - 1	i 18 31 i 18 56 i 19 4 i 19 17	$\begin{array}{c} + & 1 \\ - & 1 \\ - & 3 \\ - & 2 \end{array}$			
Auckland Sitka Sverdlovsk Grand Coulce Shasta Dam		66·6 66·6 67·6 78·4 78·7	153 37 325 43 51	i 11 54 i 11 56	- - 1	11 44? e 19 33 i 19 33 e 22 1 e 21 45	pP + 3 - 9 sS - 3	i 11 2 i 12 12 i 12 15	pP pP pP	e 27·5
Berkeley Santa Clara Moscow Erevan Leninakan		$79.7 \\ 80.1 \\ 80.2 \\ 82.3 \\ 82.6$	54 54 327 310 311	e 12 2 e 12 6 12 2 e 12 20	$^{+}_{-}^{\overset{0}{\overset{2}{3}}}_{-}^{3}$	e 21 56 e 22 19 21 59 e 22 23 22 28	$ \begin{array}{r} -2 \\ +17 \\ -4 \\ -2 \\ 0 \end{array} $		=	35.6 40.2 —
Santa Barbara Tinemaha Haiwee Saskatoon Mount Wilson		82·9 83·6 83·9 84·2	56 53 54 36 56	i 12 19 i 12 20 i 12 20 i 12 25	$-{3 \atop 0}{-1}$	e 22 32 e 22 193	$-\frac{\overline{0}}{22}$	i 12 37 i 12 39 i 12 42 i 12 44	pP pP pP	38·3

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1945

261

```
O-C.
                                                                                 Supp.
                                Az.
                                                                                                L.
                                                                                                m.
                                                                             m. s.
Pasadena
                                                                                       \mathbf{p}\mathbf{P}
Bozeman
                                                                                               36.5
                                                                                       \mathbf{p}\mathbf{P}
                         84.8
Riverside
                                                 +
La Jolla
                                                                                       pP
                         85.4
                                                                           e 12 50
Palomar
                         85.5
                                                                           i 12 51
                                                         e 23 16
                                                                    pS
                                                                                      \mathbf{p}\mathbf{P}
                                                 +
Boulder City
                        85.9
                                                                                      pP
pP
                                                                           i 12 53
Overton
                        86.0
                                 53 1 12 35
                                                                           i 13 1
Pierce Ferry
                                 53
                        86.5
                                     i 12
                                                                           i 12 51
                                                                                       \mathbf{p}\mathbf{P}
Upsala
                        86.8
                               336
                                     e 16
                                          19
                                                          22
                                                                      81
                                                 PP
                                                                                             e 45·3
                                                                                        _
Yalta.
                        87.3
                                318
                                       12
                                          513
                                                 +10
                                                           23
                                                                  (+
Tucson
                        90.5
                                 55
                                                                                      pP
SS
                                                        e 23
                                                              45
                                                                           i 13 17
                                                                    +
                                                                                             e 41.0
Bergen
                        90.7
                                                                   - 3
                               341
                                     e 13 19
                                                 +22
                                                          23 42
                                                                             29 45
                                                                                               42.3
                                334
Copenhagen
                        91.7
                                     e 16
                                                 \mathbf{PP}
                                          41
                                                        e 23 42
                                                                    -12
                                                                                       _{PS}
                                                                           i 24 58
                                                                                               40.3
Collm berg
                               331
                        94.6
                                     i 13
                                          12
                                                 - 3
                                                        e 25 37
                                                                    P8
                                                                           i 13 22
                                                                                      \mathbf{pP}
Jena
                               331
                                     e 13 35?
                                                                                      \mathbf{P}\mathbf{P}
                        95.5
                                                 +16
                                                                           e 17 16
Ivigtut
                        96.1
                                  6
                                                                                       S
                                                                             24
                                                                                25
                                                              43
                                                                       9]
                        96.6
Helwan
                               306
                                    e 13 25
                                                 + 1
                                                          23
                                                              52
                                                                                       _{
m PP}
                                                                             17
De Bilt
                        97.3
                               335
                                                                                       PS
                                                         i 23
                                                              55
                                                                           e 26
                                                                                             e 47·3
Triest
                        98.3
                                                                                       SS
                               327
                                    e 13 47
                                                 +15
                                                         i 23
                                                              57
                                                                           i 31
Uccle
                        98.6
                               335
                                    e 13 40
                                                                                       PS
                                                 + 7
                                                                           i 26
                                                                                             e 46.3
                                                         i 23
                                                              52
                                                                  [-12]
Chur
                                                 PP
                        99.4
                               330
Zürich
                        99.5
                               331
                                                 \mathbf{P}\mathbf{P}
                                    e 17
Basle
                        99.8
                               331
                                                 PP
Kew
                               338
                        99.8
                                                                           e 17 43?
                                    e 13
                                                                   -3]
                                                                                      \mathbf{PP}
                                          337
                                                 - 5
Paris
                       100.9
                               334
                                                 \mathbf{P}\mathbf{P}
                                    e 18
                                                          26
                                                              39
                                                                                             e 49.3
Florissant
                       100.9
                                    e 21
                                40
                                                                                     sSKS
                                                        e 24 12
                                                                      3]
                                                                           e 24 49
St. Louis
                       101.1
                                40
                                    e 14 13
                                                 器
                                                                  [+15]
                                                                           i 25
                                                         i 24 31
                                                                                     8SKS
Clermont-Ferrand
                       103.1
                               332
                                    e 18
Ottawa
                       103.6
                                                                                      PP
                                27
                                                                                               48.3
                                    e 14 22
                                                 pP
                                                        e 24 25 [-
                                                                       3]
                                                                           e 17 43
Seven Falls
                       104.1
                                23
                                                        e 24 25
                                                                       5]
                                                                                               50.3
Fordham
                       108.0
                                29
                                    e 19
                                                 \mathbf{PP}
                                                        e 24 46 [- 2]
Toledo
                                                                                      PP
                       110.9
                               333
                                    e 18
                                               [-19]
                                                                             19 22
                                                                                               60.3
Granada
                       113.0
                               332
                                      19
                                          20 k
                                                 \mathbf{PP}
                                                          28 19
                                                                    PS
San Fernando
                       114.7
                               333
                                    e 18 53
                                                        e 25
                                                              38
                                               [+20]
                                                                  SKKS
Bermuda
                       119-1
                                27
                                                          29
                                                              32
                                                                    PS
                                                                                             e 56·0
San Juan
                       130 \cdot 1
                                37
                                    e 19 51
                                                [+48]
                                                                   PKS
                                                        e 22 39
                                                                                             e 60.6
Bogota
                              58 i 19 15 [+ 4]
                       134.4
                                                                           i 23 10 PKS
La Paz
                              84 i 19 39 a [+ 1] i 23 17 PP
                   z. 149·6
                                                                           1 20 19 pPKP
                                                                                               73.8
```

```
Additional readings :-
  Mizusawa SE = 6m.36s.
  Zi-ka-wei iE = 5m.53s., 9m.5s., and 9m.13s.
  Riverview iN = 18m.13s., iE = 19m.58s.
  New Delhi iN =18m.29s. and 19m.36s.
  College epPP = 12m.53s., eSeS? = 19m.44s., eSS = 22m.24s.
  Sitka e = 15m.3s., eSS = 19m.59s., e = 20m.35s.
  Grand Coulee i = 12m.17s., ePS = 22m.34s.
  Shasta Dam is P = 12m.22s., e = 15m.21s., ePS = 22m.36s.
  Santa Barbara isPNZ = 12m.44s., iNZ = 12m.54s.
  Tinemaha isPNZ = 12m.44s.
  Haiwee is PZ = 12m.48s.
  Mount Wilson isPZ = 12m.51s.
  Pasadena isPZ = 12m.51s., iN = 23m.15s.
  Bozeman e = 28m.47s.
  Palomar is PZ = 12m.59s.
 Boulder City isP? = 13m.1s., esS = 23m.28s.
  Pierce Ferry i = 12m.43s.
 Upsala eS1N = 22m.52s.
 Tucson isP=13m.31s., e=14m.23s., and 14m.45s., eSKS?=23m.27s., e=24m.25s.,
      ePS = 24m.50s., ePKP, PKP = 38m.49s.
  Bergen eSKS?EN = 23m.19s.
 Copenhagen 23m.23s., SS = 29m.47s.
 Collmberg i = 13m.31s., 13m.38s., and 13m.54s., e = 16m.54s., i = 17m.2s., e = 20m.38s.
 Jena eN = 13m.46s. and 14m.40s., eE = 17m.21s., eEN = 17m.32s.
 Helwan iZ = 13m.42s., 14m.4s., and 17m.46s., PSZ = 25m.58s.
 Triest ePPZ = 17m.27s.
 Kew ePS? = 26m.29s., eSS?E = 31m.43s.?
 Florissant eSN = 25m.14s., eE = 25m.40s., eSSN = 31m.47s.
 St. Louis eZ = 18m.22s., eSN = 25m.29s., eSSN = 26m.4s., eSSN = 32m.9s.
 Long waves were also recorded at Arapuni, Christchurch, Weston, and Cheb.
```

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1945

262

Aug. 27d. 9h. 13m. 2s. Epicentre 37°·3N, 121°·7W. (as on 1943 Oct. 26d.).

Scale VI at Mt. Hamilton and San Jose; V at Alma, Hollister, San Francisco, and San Martin; IV at Santa Cruz, Berkeley, and San Carlos.

Macroseismic area, 13000sq.m.

"United States Earthquakes, 1945." U.S.C.G.S. Washington, 1947, p.14.

$$A = -.4190$$
, $B = -.6784$, $C = +.6034$; $\delta = -12$; $h = -1$; $D = -.851$, $E = +.525$; $G = -.317$, $H = -.513$, $K = -.797$.

		Δ	Az.	Ρ.	$0 - \mathbf{C}$.	s.	0-C.	Suj	pp.	L.
		•	•	m. s.	8.	m. s.	8.	m. s.		m.
Lick		0.0		10 4	- 3			-	-	
Santa Clara		0.2	284	i 0 8	- 2	-	-		1.0	
Branner		0.4	287	i 0 10	- 3	i 0 14	- 7	-		
Berkeley		0.7	321	i 0 15	- 2	i 0 25	- 3		-	-
San Francisco	N.	0.7	308	e 0 15	- 2	i 0 26	- 2			
Fresno	N.	1.6	110	e 0 31	+ 1	i 0 52	+ 1		-	
Ukiah		2.2	327	e 0 40	+ 2	e 1 2	- 4	i 1 11	S	i 1·4
Tinemaha		2.7	94	i 0 50	+ 5	i 1 27	+ 8			
Haiwee		3.2	111	i 0 55	+ 3	i 1 45	S.	-	-	*****
Santa Barbara		3.3	151	i 0 54	+ 1	1 1 1 1 1 1	_			-
Shasta Dam		3.4	351	e 0 53	- 2	e 1 37	0	i 1 0	P*	5
Mount Wilson	Z.	$4 \cdot 2$	136	i 1 8	+ 1					
Pasadena		4.2	137	i 1 8	+ 1	i 1 59	+ 2		_	
Riverside		4.9	133	e 1 15	- 2				-	
Palomar	z.	5.6	133	i 1 26	- 1			-		
Boulder City		5.7	102	i 1 30	+ 2	e 2 43	+ 8	i 1 48	P_{g}	e 3·0
Overton		5.9	96	i 1 34	$\begin{array}{c} + & 2 \\ + & 3 \\ + & 3 \end{array}$		-	i 1 44	P*	i 3·1
Pierce Ferry		6.3	99	i 1 39	+ 3			i 1 59	Pr	i 3·3
Salt Lake City		8.4	63			e 4 29	S,		_	e 4.8
Logan		8.4	57	e 3 15	ş	e 4 12	+19			e 4.7
Tueson		10.3	117	e 2 29	- 3	i 4 30	0		-	e 5·4
Grand Coulee		10.8	10	e 3 28	3			-		e 5.6
St. Louis		24.8	77	e 5 48	+23	-		-	-	i 13.8

Additional readings:— Lick iE = 378., iN = 508., iE = 1m.168., iEN = 1m.328.

Shasta Dam e = 1m.53s. Boulder City i = 1m.40s.

Overton i = 2m.16s. Pierce Ferry i = 2m.41s.

Tucson iP = 2m.34s., i = 3m.24s., e = 4m.51s.

Long waves were also recorded at Bozeman and Florissant.

Aug. 27d. 16h. 26m. 43s. Epicentre 35° 9N. 26° 0E.

$$A = +.7297$$
, $B = +.3559$, $C = +.5838$; $\delta = -5$; $h = 0$; $D = +.438$, $E = -.899$; $G = +.525$, $H = +.256$, $K = -.812$.

	Δ	Az.	P. m. s.	O – C.	S. m. s.	0 – C. s.	m. s.	pp.	$_{\mathbf{m.}}^{\mathbf{L.}}$
Sofia	7.1	344	e 1 53	+ 5	i 3 12	+ 2		-	-
Ksara Bucharest	8.4	101	e 2 5 2 10	$-1 \\ + 1$	e 3 35	8	<u> </u>	_	5.1
Triest	13.4	320	i 3 16	+ 2	e 5 46	+ 1	i 3 23	PP	
Chur	16.5	317	e 3 56	+ 2	e 6 50	8			
Zürich	17.3	316	e 4 3k	- 1	e 7 15	- 1	e 4 39	\mathbf{PP}	
Basle Neuchatel	18.0	316 314	i 4 12 e 4 13	- 1	e 7 33	+ 1	_	=	
Collmberg	18.0	331	e 4 11	- 2	_				0 9.3
Jena	18.3	329	i 4 20	+ 3	e 7 40	+ 1			e 8·3
Strasbourg	18.5	320	e 4 21	+ 2	e 7 51	+ 7			
Clermont-Ferrand Tortosa	19·9 20·6	306 292	e 4 32 i 4 42	- 4 - 1	e 8 19 8 26	+ 4 3	5 9	PP	
Paris Uccle	21·5 21·6	314 320	e 4 50 e 4 41k	-13	e 9 17 e 8 34	SS -15	e 9 8	ss	e 11·3

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1945

		Δ	Az.	Ρ.		o-c.	s.	O-C.	Suj	pp.	L. m.
		0	6	m.	s.	s.	m. s.	8.	m. s.		
Copenhagen		21.9	339	i 4 5	52	5	e 9 19	+25	4	-	11.7
De Bilt		21.9	325		55	- 2	i 8 50	- 4			***
De Bilt						$+$ $\tilde{8}$	9 38	+10	5 43	PP	
Granada		23.8	283	1 2 1 2 2 2 2 2 2 2 2	3 a	T 0		1.552-6-301.3000		7.74	-
Toledo		24.0	288		16	- 1	e 9 35	+ 2	3.50		- 0.9
Kew	Z.	24.4	318	e 5 3	31	+10			15.7		e 6.3
San Fernando	z.	25.9	280		33	- 2	e 10 14	+10	e 6 11	\mathbf{PP}	
	Z.				2.17.22.17	7	e 22 58	-12	e 24 7	PS	
St. Louis		85.3	315	1 12 .	36		6 22 30	1.0	U MI	- 100 CH C	

Additional readings:—
Collmberg i = 4m.30s., 5m.4s., 5m.27s., and 5m.53s., e = 6m.51s., 8m.0s., 8m.37s., 10m.15s., and 10m.34s.

Jena eN = 4m.37s., eE = 4m.40s.

Tortosa PPPN = 5m.14s., SS?N = 8m.59s.

Granada PPP = 6m.5s.

St. Louis eZ = 13m.16s., 25m.16s., and 26m.0s.

Long waves were also recorded at Cheb.

Aug. 27d. 20h. Local Spanish shock.

Alicante P = 36m.16s. Malaga iP = 36m.52s. and 36m.56s., iP_g = 37m.3s., SPP = 37m.9s., S = 37m.27s. and 37m.30s.

San Fernando ePZ = 37m.1s., ePPSZ = 37m.53s., eS₈Z = 38m.31s., eZ = 39m.12s. and 39m.38s.

Granada $P_g = 37 \text{m.98}$. and 37 m.22s., $P_g S_g = 37 \text{m.40s.}$, $S_g = 37 \text{m.55s.}$ and 38 m.20s. Almeria P = 37 m.10s.

Toledo ePZ = 37m.368., eS_g = 38m.528.

Tortosa iN =39m.44s., eN =39m.59s., eE =40m.11s., iE =40m.28s., iN =40m.41s., iE =42m.13s.

Collmberg eZ = 41m.0s. Long waves are also recorded at Clermont-Ferrand, Paris, De Bilt, and Uccle.

Aug. 27d. Readings also at 1h. (Collmberg, Alicante, Toledo, and near Coimbra), 2h. (Auckland), 3h. (Riverside, Tinemaha, and Tucson), 4h. (Boulder City, Pierce Ferry, Mount Wilson, Pasadena, Palomar, Riverside, Tinemaha, Tucson, and Shasta Dam), 7h. (San Francisco, Santa Clara, near Berkeley, Branner, and Lick), 9h. (Santa Clara, Lick, near Berkeley, Branner, Fresno, and San Francisco), 10h. (Alicante and Collmberg (2)), 11h. (Tucson, near Boulder City, Overton, and Pierce Ferry), 12h. (Alicante and San Fernando), 13h. (Collmberg (2)), 14h. (near Tacubaya), 15h. (near La Paz), 16h. and 17h. (Collmberg), 20h. (near Tucson).

August 28d. 12h. 49m. 51s. Epicentre 11°·2S. 163°·9E. (as on 1940 Nov. 9d.).

$$A = -.9427$$
, $B = +.2721$, $C = -.1930$; $\delta = -3$; $h = +6$; $D = +.277$, $E = +.961$; $G = +.185$, $H = -.054$, $K = -.981$.

		Λ	Az.	Р.	0 - C.	s.	O-C.	Suj	pp.	L.
		•	19000000000	m. s.	s.	m. s.	8.	m. s.	Lines.	m.
· · · · · · · · · · · · · · · · · · ·		10.9	911	i 4 29	+ 1	i 8 11	+12		2	e 10·4
Brisbane		19.2	211	177 J. Aller M. Marchell, Phys. Lett. B 40, 100 (1997).		i 9 43	$-1\bar{3}$	i 5 56	pP	e 11.8
Riverview		25.4	204		9 UQ 2 07	10 49	+21	11 55	$_{\mathbf{P_cS}}^{\mathbf{PP}}$	14.2
Auckland		27.4	161	5 45 7	- 4		- 4	4 60 4 60	SS	e 20.6
Honolulu		49.6	49	e 8 57	$+\ \ \frac{2}{3}$	e 15 59		100 May 200 May 200	ŝŝ	37.2
Berkeley		84.4	49	i 12 33	- 3	e 23 1	0	e 28 33	SS	
Santa Clara	z.	84.4	49	e 12 38	$\frac{+}{-}\frac{2}{2}$	-		9 211	- == //	-
Shasta Dam	-	85.2	47	e 12 37	$^{+}_{-}^{2}$		****	-		
	z.	85.3	54	e 12 39	- 1				****	
Santa Barbara	23.77.75	86.4	54	e 12 42	$-\tilde{3}$		-	e 16 0	PP	e 38·4
Pasadena	z.			i 12 42	- 4		-	-		_
Mount Wilson	$\mathbf{z}.$	86.5	54	1 12 14						
La Jolla		86.8	55	e 12 45	- 2			-		-
Riverside	Z.	87.0	54	i 12 44	- 4	-				
Haiwee		87.1	52	e 12 49	0			****		
		87.2	51	e 12 46	- 3				-	
Tinemaha Victoria		87.2	39		_	e 23 45	+17		-	41.2
Deleman		87.3	55	i 12 46	- 4				_	
Palomar		89.5	53	e 12 57	$-\hat{3}$				-	
Boulder City			41	e 13 1	- ĭ	-	-			
Grand Coulee		89.8			+ 1	i 23 15	[-18]			-
Overton		90.0	53	e 13 4	T 3	1 20 10				
Pierce Ferry		90.2	53	e 13 1	- 3			VESS:	460.22	

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1945

264

```
Az.
                                             O - C.
                                                               O - C.
                                                                             Supp.
                                                                                           L.
                                               8.
                                                       m. s.
                                                                        m.
                                                                                           m.
Tucson
                                                                       e 18
                                                                            39
                                                                                 PPP
                                                                                        e 41.3
San Juan
                      132 \cdot 0
                                               PP
                                                                       e 22
                                                                            30
                                                                                 PKS
                                                                                        e 60·0
Helwan
                      132 \cdot 2
                                    19
                                             [+14]
                                                     e 23 51
                                                               PPP
                                                                       e 22 17
                                                                                 PKS
Collmberg
                      133.5
                              334
Paris
                      139.4
                                                                                        e 76.2
Clermont-Ferrand
                      141.9
```

Additional readings:— Brisbane ePE =4m.34s.

Riverview iEN = 9m.54s., iN = 10m.2s., iZ = 10m.16s., isS?E = 10m.22s., iN = 10m.34s., iSS?E = 10m.56s.

Berkeley eSSS = 32m.37s. Shasta Dam i = 12m.41s.

Long waves were also recorded at Arapuni, Christchurch, Wellington, Ukiah and Kew.

```
August 28d. 19h. 20m. 12s. I
                                              Epicentre 33°.0N. 137°.8E.
                19h. 21m. 8s. II
                                                 (as on 1943 Nov. 17d.)
                A = -.6225, B = +.5644, C = +.5421; \delta = -7;
                D = +.672, E = +.741;
                                              G = -.402, H = +.364, K = -.840.
                                Az.
                                         Ρ.
                                                0-C.
                                                            S.
                                                                  0-C.
                                                                                 Supp.
                                                                                                L.
                                       m. s.
                                                  S.
                                                          m. s.
                                                                    8.
                                                                             m. s.
                                                                                                m.
  I Owase
                                        0 46
                                309
 H
                          1.7
                                309
                                                              35
 1 Shizuoka
                          2 \cdot 0
                                14
                                                              57
                                                                    - 5
 I Kameyama
                          2 \cdot 2
                                329
                                          21
                                                                   -22
 I Misima
                          2.4
                                 24
                                           42k
                                        0
                                                                    Sg
 1 Mera
                          2 \cdot 5
                                 41
                                        0 43k
                                                                   -11
 I Hunatu
                          2.6
                                 18
                                        0 38 a
 1 Kyoto
                                320
                                          54
11
                               320
 1 Sumoto
                                                  P_{\mathbf{z}}
                                299
                                            2 a
 I Tokyo
                          3 \cdot 2
                                31
                                        0 54
11
                          3 \cdot 2
                                31
                                                  Ps
Ps
 1 Toyooka
                          3.5
                               316
                                                                    S_{s}
 I Toyama
                               353
п
                               353
                                                            1 28
                                                                   -17
 I Wazima
                               351
                          4.4
                                                  P_g
 I Hukusima
                          5 \cdot 2
                                 24
                                          19
                                                 man.
 I Sendai
                          5.8
                                 25
                                                 P*
                                          37
II Mizusawa
                         6.7
                                23
                                          27
                                                           \frac{2}{3} \frac{47}{32}
                                                 -15
                                                                   -13
II Miyako
                          7.4
                                26
                                          44
                                                 - 8
                                                                   +14
 1 Hatinohe
                         8 \cdot 1
                                21
                                        2 16
                                                 P*
                         8.1
11
                                21
 I Sapporo
                        10.5
                                        2 35
                                14
                                                          \frac{4}{11} \frac{17}{24}
                                                                   -18
II Irkutsk
                        30.9
                               319
                                     e 6 20
II Calcutta
                        44.6
                               270
                                                                          e 10 45
                                                                                     PPP
                                                                                            e 24·2
II New Delhi
                        51.6
                               282
                                    e 11 13
                                                 P_cP
                                                        i 16 41
                                                                   +10
                                                                            19 39
                                                                                      s_cs
II Andijan
                        51.8
                               298
                                     e 9
                                                   5
                                                -
II Tashkent
                        54.0
                               300
                                     e 9
                                          28
                                                        e 17 7
                                                                   + 4
II College
                        54 \cdot 1
                                31
                                     e 9
                                          26
                                                        e 16
                                                             44
                                                                   -21
                                                                                      PP
                                                                          c 11 24
                                                                                            e 25.8
II Hyderabad
                   N.
                        55.2
                               268
                                                +10
                                     e 9
                                                          17
                                                             23
                                                                   +
                                                                      3
                                                                            11 37
                                                                                      PP
                                                                                               27.4
II Honolulu
                        57.7
                                84
                                    e 13 10
                                                PPP
                                                        e 17 55
                                                                   + 2
                                                                                            e 23·0
II Bombay
                               273
                        59.3
                                    e 10 11
                                                +
                                                    5
II Sitka
                        61.2
                                    e 10
                                                +++
                                                        e 18 25
                                                    1
                                                                   -13
                                                                                            e 25.4
II Brisbane
                        61.9
                                                    39
                               164
                                                       e 20 9
II Riverview
                        67 \cdot 7
                               168
                                                                   +11
                                                                                      SS
                                                                          e 24 55
                                                                                            e 30·0
II Moscow
                        68.8
                               323
                                    e 11
                                                +19
                                                          20
                                                                      6
II Victoria
                        71.4
                                45
                                    e 11 34
                                                       e 20 40
                                                +10
                                                                                              28.9
II Grand Coulee
                        74.2
                                43
                                    e 11 36
                                                - 4
II Upsala
                        75-2
                               333
                                                          21 15
                                                                   -10
                                                                                      SS
                                                                            26
                                                                                            e 36.9
I Shasta Dam
                        75.9
                                    e 11 55
                                51
                                                   5
                                                +
                                                                          i 14 41
                                                                                      \mathbf{PP}
\mathbf{n}
                        75.9
                                    i 11
```

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1945					265					*2
II Ukiah II Berkeley I Santa Clara II Saskatoon		∆ 76·2 77·5 78·0 78·3	Az. 52 53 53 53	P. m. s. 11 59 e 12 2	O - C. s. -0	e 21 32 e 21 38 e 22 10	O -C. 8. - 4 - 12 + 11	m. Sup	p. =	L. m. e 31·4 30·9 e 37·1 34·9 39·9
II Bergen I Bozeman I Copenhagen II Ksara II Ksara II Santa Barbara		79·1 80·0 80·1 80·1 81·0 81·1	338 332 332 304 55	e 12 21 e 12 12 e 12 24? 12 17	+ 8 - 1 + 6 - 1	e 21 52 e 22 18 e 22 35?	-15 + 1 8	e 24 5 27 27	PPS SS	e 42·3
II Haiwee II Logan I Mount Wilson II II Pasadena	z. z.	$81.3 \\ 81.9 \\ 82.3 \\ 82.3 \\ 82.3$	53 45 54 54 54	12 18 e 12 42 i 12 30 i 12 21 i 12 32	$ \begin{array}{r} - & 2 \\ + & 19 \\ + & 5 \\ - & 4 \\ + & 7 \end{array} $	e 23 7	PS =	e 15 45 e 15 32	PP PP	e 35·7 e 33·7
II Christchurch I Riverside II Collmberg II	Z. Z. Z.	$82.5 \\ 82.9 \\ 82.9 \\ 83.1 \\ 83.1$	155 54 54 328 328	i 12 33 i 12 26 i 12 38 i 12 28	+ 5 - 2 + 9 - 1	22 52 = e 23 4	+10 - +16	27 50 = 15 36	SS	39·9 — — e 47·9
I Boulder City II II La Jolla II Sofia II Belgrade	z.	83·5 83·5 83·7 83·7 83·9	51 55 317 320	i 12 37 i 12 29 e 12 31 e 13 0 e 13 25 a	+ 6 - 2 - 1 + 28 PcP	e 23 5 e 23 23	_ + 11 + 27			e 43·4 e 46·9
II Jena I Pierce Ferry II II Aberdeen II Edinburgh	N.	83·9 83·9 83·9 84·0 85·4	329 50 50 340 339	e 12 39 i 12 33 i 12 31 e 15 32	+ 6 0 - 2 PP	i 22 54 23 4	- - 3 [+ 1]	e 14 52 — 23 10	PP	41.9
II De Bilt II Helwan II Triest II Uccle II Strasbourg		85·7 86·5 86·8 87·0 87·3	333 303 324 333 329	e 13 4 e 12 51 e 12 50 e 13 28	$^{-18}_{+2}$	e 23 12 e 23 21 e 23 29 e 23 22 e 23 34	- 2 - 1 + 4 - 5 + 5	i 16 14 e 16 16 e 16 22	PP PP PP	e 39·9 e 40·9 e 48·9
II Chur II Zürich II Basle II Kew I Tucson II		87·9 87·9 88·2 88·4 88·4	327 328 329 335 52 52	e 12 33 e 12 55 e 12 54 e 12 56? e 13 0 e 12 53	$ \begin{array}{r} -20 \\ +2 \\ 0 \\ +2 \\ +5 \\ -2 \end{array} $	e 23 31 e 23 29 e 23 36 e 23 36 e 24 42	- 4 - 6 - 2 - 2 - 2 PS	e 23 21 3 e 16 21	SKS PP	e 47·2 e 40·9 e 36·2
II Neuchatel II Paris II Clermont-Ferra II Florissant II St. Louis	and	88.9 89.3 91.5 95.7 95.9	329 332 330 36 36	e 12 57 e 13 5 e 13 14 e 13 26 e 13 28	$ \begin{array}{rrr} - & 1 \\ + & 6 \\ + & 4 \\ - & 3 \\ - & 2 \end{array} $	e 23 46 e 24 4 e 24 11	$\begin{bmatrix} -2 \\ -1 \\ +5 \end{bmatrix}$	e 17 22 e 25 7	- PP S	e 43·9 e 36·1
II Seven Falls II Ottawa II Coimbra II Granada II Malaga	z.	$96.2 \\ 96.3 \\ 100.7 \\ 101.4 \\ 102.2$	$\begin{array}{r} 19 \\ 23 \\ 334 \\ 329 \\ 330 \\ \end{array}$	e 27 9 e 27 50 e 18 15	PS PS PP	e 24 40 e 24 40 e 36 19 e 30 24	- 8 - 9 - 8 - 9 - 7		=	46·9 39·9 e 49·6 52·9 54·0
I San Juan II Huancayo II La Paz	z.	124·0 143·2 151·4	27 62 53	— i 19 56k	[+7]	e 26 27 i 30 25		e 56 1	Q PP	e 54·9 e 68·3 75·9

Additional readings to shock II:—
Mizusawa II PE =1m.32s.
College II e =18m.8s.
Riverview II eZ =11m.58s.
Upsala II SSIN =26m.4s.
Berkeley II iSE =21m.46s.
Copenhagen II i=12m.15s.
Logan II e =24m.53s.
Pasadena II iZ =12m.41s.
Christchurch II SSSE =31m.30s., QEN =33m.37s.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1945

266

Colimberg II i = 12m.36s., c = 13m.51s., and 14m.21s., i = 15m.47s., c = 16m.1s., and 16m.40s., ePPP = 17m.51s., e = 21m.28s., i = 32m.20s. Jena II eN = 14m.56s. Helwan II eZ = 13m.59s., eEZ = 24m.22s. Triest II eSS = 29m.11s. Kew II ePSEZ = 24m.12s., eSSEN = 29m.26s.?, eQ = 35m·9m. Tucson II e = 14m.38s., e = 27m.3s. Florissant II eSKKS?E = 24m.44s., eSSS?E = 31m.7s. St. Louis II eZ = 13m.42s., eSKKSN = 24m.39s., ePS?N = 25m.52s. Coimbra II PP = 31m.38s., ? = 37m.10s. and 42m.39s. Long waves also recorded at Auckland, Wellington, Colombo, and other European stations.

August 28d. Readings also at 11h. (Collmberg and Sitka), 14h. (2) and 15h. (Collmberg), 19h. (Tacubaya), 20h. (St. Louis, Boulder City, Overton, Pierce Ferry, Tucson, Mount Wilson, Pasadena, Palomar, Riverside, Oaxaca and near Tacubaya), 21h. (near Tacabuya), 22h. (Mizusawa and near Tacubaya (2)), 23h. (Mount Wilson, Palomar, Riverside, Tucson, Boulder City, Pierce Ferry, Shasta Dam and Uccle).

August 29d. 10h. 22m. 35s. Epicentre 14°-38, 167°-3E.

A = -.9457, B = +.2131, C = -.2454; $\delta = -2$; h = +6; D = +.220, E = +.976; G = +.239, H = -.054, K = -.969.

		Δ	Az.	P. m. s.	O – C. s.	"S.	O – C.		pp.	L.
Brisbane Apia Auckland Riverview Arapuni		18.7 20.3 23.5 24.3 24.8	$224 \\ 92 \\ 166 \\ 215 \\ 166$	i 4 24 e 4 40 6 15 i 5 28k 5 43	$^{+63}_{+8}$	m. s. i 8 8 9 46 i 9 48 7 49	$+20 \\ -23 \\ +11 \\ ?$	m. s. 10 47 i 5 49	sss pp	e 9.0 13.0 e 10.9 11.4
New Plymouth Wellington Kaimata Christchurch Honolulu		$25.4 \\ 27.7 \\ 28.4 \\ 29.5 \\ 49.2$	$169 \\ 170 \\ 174 \\ 173 \\ 45$	6 6 5 50 6 7 6 9 e 8 53	PP - 2 + 9 + 1 + 1	10 2 11 0 10 44 11 27 e 15 53	$^{+\ 6}_{+\ 27} \ ^{-\ 1}_{+\ 25} \ ^{-\ 5}$	i 6 12 6 11 i 10 50 i 6 28 i 11 9	PPP pP ?	13·9 14·4 — 15·3 e 20·5
Perth Mera Shizuoka Kôti Sendai		50·0 55·5 56·1 57·5 57·8	241 333 332 327 336	$\begin{array}{cccc} 9 & 23 \\ 10 & 5 \\ 9 & 46 \\ 9 & 54 \\ 9 & 53 \\ \end{array}$	$^{+ 25}_{+ 26}_{+ 3}_{+ 1}_{- 2}$	i 15 47 18 14 18 3 17 53 17 58	$^{-22}_{+50} \ ^{+31}_{+3} \ ^{+3}_{+4}$	i 11 10	PP	
Mizusawa Miyako Hukuoka Hamada	E. N.	58·5 58·6 59·2 59·3	337 338 325 327	$ \begin{array}{cccc} 10 & 6 \\ 10 & 17 \\ 9 & 59 \\ 10 & 7 \\ 10 & 6 \end{array} $	$^{+}_{+}^{6}_{17} \\ ^{-}_{+}^{2}_{0}$	$\begin{array}{c} 17 & 50 \\ 18 & 2 \\ 18 & 10 \\ \hline 18 & 38 \end{array}$	$-13 \\ -16 \\ +6 \\ -24$			24·9 —
Sapporo Ferndale Branner San Francisco Ukiah		61·9 83·5 83·7 83·7	340 46 49 49 47	e 10 35 e 12 39 e 12 31 e 12 35 e 12 29	$^{+11}_{-8}$ $^{+3}$ $^{-3}$	e 23 15 e 22 45	- + 23 - - 9	e 12 40 e 16 3	P _c P	e 37·9 e 37·9 e 37·9 e 35·2
Berkeley Santa Clara Lick Santa Barbara Shasta Dam	z.	$83.9 \\ 83.9 \\ 84.1 \\ 84.5 \\ 84.9$	49 49 49 53 46	e 12 31 i 12 35 e 12 34 e 12 35 e 12 36	- 2 + 2 - 0 - 1 - 2	e 22 56 e 23 30 e 23 4	+34 - 2	e 15 38 e 12 50 e 16 6	PP PP	e 39·2 e 37·4
Fresno Calcutta Irkutsk Pasadena Mount Wilson	N.	85·5 85·6 85·6 85·7	50 295 327 54 54	c 12 42 e 13 10 e 12 39? i 12 40a i 12 40a	$^{+\ 2}_{+\ 29}$ $^{-\ 2}$ $^{-\ 2}$	23 17 i 23 13	- + 4 0	i 18 5 15 57 i 16 3 i 12 53	PPP PP PP	e 38·5 e 34·9
Sitka La Jolla College Riverside Palomar		85·7 85·8 85·9 86·1 86·3	28 55 17 54 55	e 12 40 i 12 42 e 12 40 i 12 42 i 12 44	- 2 - 3 - 2 - 1	e 23 8 e 23 36 e 23 14	$-{6\atop +21\atop -2\atop -}$	e 16 5 i 12 59 e 29 12 i 12 57	PP SS	e 36·0 e 35·3

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1945

		Δ	Az.	P. m. s.	O – C.	S. m. s.	O – C. s.	m. s.	p.	$_{\mathbf{m.}}^{\mathbf{L.}}$
Haiwee Victoria Seattle Boulder City Colombo	E.	86·4 87·4 87·8 88·7 89·2	52 39 40 53 277	i 12 45 13 1 e 12 45 i 12 55 13 7	- 7	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+39 PPS +18 +10	e 25 8	PP PS	e 36·3 50·5
Overton Pierce Ferry Grand Coulee Tucson Kodaikanal	E.	89·2 89·4 90·1 90·8 92·3	52 53 40 57 280 (i 12 58 i 12 59 i 13 4 i 13 6 i 12 55	$-1 \\ -1 \\ +1 \\ 0 \\ -18$	e 23 42 e 24 8 (i 23 25)	$\begin{bmatrix} + & 9 \\ + & 6 \\ -21 \end{bmatrix}$	i 13 30 i 14 2 i 16 56 e 16 57 (15 55)	PP PP PP	e 40·9 (39·9)
Salt Lake City Logan Hyderabad Bozeman Dehra Dun	N. N.	92·4 92·7 93·1 94·4 96·4	$^{49}_{48}_{287}_{44}_{300}$	e 13 17 e 13 18 13 35 e 13 43 e 15 31	$^{+\ 3}_{+\ 18} \ _{+\ 20}$	e 24 19 e 24 38 e 24 42 e 24 49	$^{+\ 3}_{+\ 20} \ _{+\ 16}$	e 25 49 i 17 16 e 17 13	PPS PP PP	e 38·2 e 38·0 e 38·8 e 66·5
New Delhi Tacubaya Bombay Saskatoon Tashkent		96·8 97·9 98·7 98·8 105·3	$^{298}_{72} \\ ^{287}_{38} \\ ^{310}$	e 13 40 e 13 36 i 14 3 14 4 e 14 24	$^{-3}_{+21}$	i 24 51 i 24 27 24 32 26 47 e 24 47	$egin{pmatrix} -&3 \ [+10] \ [+11] \ PS \ [-&5] \end{bmatrix}$	e 17 39 17 16 17 56 e 18 46	PP PP PP PP	e 58·5 e 45·7 41·9 45·4
Florissant St. Louis Mobile Chicago Tananariye		108·4 108·4 109·5 110·6 112·1	54 54 62 50 243	e 14 25 e 14 28 19 49 e 18 33 19 46	P ? [1]	i 28 21 i 26 39 29 19 e 25 23 25 7	PS S PPS [+8] [-14]	i 19 12 i 19 7 i 19 27 21 40	PP PP PPP	e 45·8 e 53·0
Huancayo Cincinnati La Plata Columbia La Paz		112.6 112.9 114.9 115.7 117.3	110 53 140 58 117	e 19 28 i 15 1 17 43 e 20 5 18 35	[-60] PP	e 29 23 e 29 19 e 25 47 25 45	PS PS [+12] [+ 5]	e 22 4 e 18 45 18 43 e 29 22 i 19 53	PPP PKP PKP PS PP	e 45.5 e 53.4 48.9 e 51.8 55.9
Pennsylvania Georgetown Bogota Ottawa Shawinigan Falls	i.	118.0 118.7 118.9 119.0 120.8	51 53 92 45 43	i 20 21 e 15 32 e 18 56 18 51 19 7	P [+ 5]	25 55	PS [+10] - [+8] PS	e 36 15 e 19 7 e 20 13 20 8 20 43	PKP PP PP PP	54·0 e 55·4 59·4
Fordham Seven Falls Harvard Moscow Erevan		$\begin{array}{c} 121.0 \\ 121.9 \\ 122.4 \\ 123.5 \\ 124.1 \end{array}$	51 42 48 329 309	e 20 21 19 37 e 18 56 15 51 e 19 4	[+41]	e 30 29 25 55 e 28 15	PS [-1] 	e 20 40 20 50 16 30	PP PP pP	e 69·4
Leninakan Ivigtut Halifax San Juan Upsala	E. N.	124·5 126·7 127·5 128·7 129·4 129·4	310 21 43 77 341 341	e 19 11 e 21 39 e 21 39 e 21 39	[+13] PP [+1] PP	32 49	$\begin{array}{c} & & & & & & &$	21 9 e 31 22 i 21 35 e 31 31 e 38 13	PP PS PP PS SS	52·4 51·4 e 60·8 e 56·4
Bermuda Yalta Bergen Ksara Fort de France	1377.E	129·5 130·2 132·1 132·1 133·2	59 317 348 302 83	i 19 37 e 19 20 e 14 27 e 19 20 e 19 20	[+8]	e 43 59	PPS SSS	e 21 41 e 19 17 e 22 1 e 22 48	PP PP SKP	e 56·4
Copenhagen Bucharest Aberdeen Helwan Collmberg	N. Z.	134 · 4 135 · 4 136 · 5 136 · 6 137 · 7	$341 \\ 320 \\ 352 \\ 298 \\ 336$	i 19 2; e 18 3; 19 3; e 19 1;	$[-45] \\ [+13] \\ [+1]$	i 23 15 i 40 41 28 58	SKP SKP SSP {- 3} [+ 6]	e 22 6 e 21 53 i 22 22 22 13 e 22 12	PP PP PP PP	69·4 e 79·4
Edinburgh Sofia Jena Belgrade De Bilt		137 ·8 138 ·1 138 ·5 138 ·6 139 ·7	$\frac{319}{336}$	e 19 3 e 19 3 e 19 3 e 19 2 e 19 2	[+7] $[+6]$ $[-1]$	e 29 18	[+ 3] SKP (+ 5) SKP	e 22 31 i 22 35 e 22 28 e 22 39 i 22 40	PP PP PP PP	e 68·4 e 63·6 e 72·8 e 67·4
Uccle Kew Triest Strasbourg Chur		141·6 141·6 141·6 141·9 142·6	343 347 330 337 335	e 19 3	Sa [+ 2]	i 23 26 e 26 41	SKP SKP [- 1]	i 22 51 i 22 44 22 36	PP PP	e 67·4 e 73·4 67·4

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

```
1945
```

```
Az.
                                          0 - c.
                                                                         Supp.
                                                                                      L.
                                            8.
                                                    m. s.
                                                                                      m.
                                                                     m.
Zürich
                                  19
                                           [+12]
                                                                             \mathbf{PP}
Basle
                                  19
                                               0]
                                                                        56
                                                                              \mathbf{P}\mathbf{P}
Paris
                     143.4
                                              5]
                                                   i 23 29
                                                            SKP
                                                                     41
                                                                              SS
                                                                                   e 70.4
Neuchatel
                    143.5
                                               3]
                                                                   e 23
Clermont Ferrand
                    145.9
                                                    23
                                                            SKP
Marseilles
                                e 20 31
Barcelona
                    150 \cdot 1
                            338 e 20 0
                                                                   i 28 46
Tortosa
                           338 i 19 54
                    151 \cdot 2
                                                    26 45 [-10]
                                          [+5]
                                                                     20 42 pPKP e 77.4
Toledo
                    153.4
                           345 i 19 56
                                         [+4]
                                                                     25 19
                                                                                     75.8
Coimbra
                    153.9
                           352
                                  20 10
                                          [+17]
                                                    30 0 {-40}
                                                                     44 10 SSP
                                                                                  e 63·9
Lisbon
                    155.5 353
                                  19 58a [+ 3]
                                                                   i 20 40 PKP2
                                                                                    73.7
Granada
                    155.8
                                  20 10
                           342
                                                    26 28 [-33] 20 55 pPKP
                                          [+14]
                                                                                    81.9
Malaga
                    156.5
                           343 e 20 2
                                          [+5]
                                                    33 7 1
                                                                   i 21 24 PKP.
                                                                                    99 \cdot 2
San Fernando
                           347 i 20 19
                    157 \cdot 2
                                                  i 27 19 [+17] i 21 16 PKP, e 79.9
                                          [+22]
  Additional readings :--
    Auckland PP? =6m.46s., i =7m.57s. and 8m.37s., SS? =11m.35s.
    Riverview iPPN = 6m.12s., iPPPE = 6m.24s., iN = 6m.32s., iE = 6m.35s., iN = 7m.35s.
        iPcP?N = 8m.48s., iN = 10m.15s., iE = 10m.19s., iScSE = 16m.20s., iScSN = 16m.25s.
    Wellington PP? = 6m.45s., PPP? = 7m.13s., PcP = 9m.0s., iZ = 10m.5s., PcS? = 12m.40s.
    Honolulu i = 9m.11s., 10m.33s., and 16m.19s., eSS = 19m.32s.
    Perth i = 12m.38s. and 13m.17s.
    Ferndale iEN = 12m.59s., eE = 23m.25s.
    Branner ePEN = 12m.36s., iE = 12m.52s., eN = 13m.1s. and 37m.9s.
    Ukiah e = 12m.51s., ePPS = 24m.13s., eSS = 28m.15s.
    Berkeley iZ = 13m.35s., iNZ = 13m.49s., eEN = 14m.1s., eSN = 23m.13s.
    Shasta Dam e = 22m.4s.
    Calcutta iN = 13m.50s, and 14m.15s., e = 21m.10s.
    Irkutsk pPPP = 18m.9s., sSS = 28m.28s., SSS = 31m.25s.
    Pasadena i = 12m.59s., iE = 24m.34s.
    Sitka i = 12m.57s., eScS = 23m.39s., eSS = 28m.48s., e = 33m.56s.
    College e = 12m.58s, and 14m.36s., eSSS = 32m.29s.
    Boulder City i = 13m.13s., iPKKP = 31m.1s.
    Grand Coulee i = 13m.17s., ePS = 25m.2s.
   Tucson i=13m.13s. and 13m.54s., e=14m.18s., 15m.51s. and 22m.33s., eSKS?=
        23m.51s., e = 25m.57s., eSS? = 30m.17s., e = 32m.41s.
    Kodaikanal SSE = (28m.35s.), readings increased by 2 minutes.
   Salt Lake City e=18m.25s.
   Logan i = 13m.34s, and 18m.15s., e = 21m.55s., eSKS = 23m.28s., e = 25m.54s. and
        28m.13s.
   Bozeman e = 16m.41s, and 25m.5s., ePS? = 25m.55s., eSS? = 31m.25s., eSSS? = 34m.57s.
   New Delhi eE = 19m.16s., iE = 27m.42s., iN = 35m.38s.
   Tacubaya ePE = 13m.46s., iPN = 13m.50s., ePP?N = 17m.14s., ePP?E = 17m.42s.,
        ePP?E = 19m.21s., 19m.29s., ePPP?N = 19m.41s., eN = 20m.33s. and 21m.26s.,
         eSKS?N = 24m.33s., iPS = 26m.22s., ePPSE = 26m.47s., eE = 32m.17s.
   Saskatoon e = 23m.42s., SS = 32m.13s., SSS = 35m.55s.
   Tashkent eS = 25m.48s.
   Florissant iZ = 14m.44s., eZ = 17m.13s., iPPPZ = 21m.29s., eE = 27m.12s.
   St. Louis ePKPZ = 17m.54s., ePPPZ = 21m.31s., iE = 26m.23s., eE = 27m.12s., iPSE =
        28m.23s., iSSE = 33m.48s.
   Chicago e = 23m.44s., iPS = 28m.39s., eSS = 34m.9s., eSSS = 39m.23s., e = 43m.44s.
   Tananarive PSEN = 29m.23s., iE = 30m.41s., SSE = 35m.15s., N = 35m.21s., SSS =
        39m.40s., EN = 41m.40s.
   Huancayo i = 19m.53s. and 20m.25s., eSS = 35m.34s., eSSS = 40m.10s.
   Cincinnati iPPS = 19m.46s.
   La Plata PPPE = 21m.43s., E = 30m.37s., N = 31m.43s., SSN = 36m.13s., E = 37m.31s.
   Columbia eSS = 35m.40s.
   La Paz iZ = 20m.23s., iPPP = 22m.34s., SKKS = 27m.15s., iSZ = 27m.32s., iPSZ =
        29m.55s., iPPSZ = 31m.7s., iSSZ = 37m.9s., iSSS = 41m.25s.
   Pennsylvania i = 20m.448.
   Georgetown ePP = 20m.11s., ePS = 29m.39s.
   Ottawa e = 20 \text{m.} 26 \text{s.}, PS = 30 \text{m.} 10 \text{s.}, SS = 36 \text{m.} 47 \text{s.}, SSSE = 40 \text{m.} 55 \text{s.}, e = 44 \text{m.} 7 \text{s.}
   Shawinigan Falls SS = 36m.55s.?
   Seven Falls PS = 30m.34s., SS = 37m.1s., e = 46m.37s.
   Harvard e = 19m.51s.
   Moscow ePKP = 19m.19s., ePKP = 20m.12s., sPP = 21m.40s.
   San Juan i = 22m.32s., eSS? = 39m.13s., e = 44m.4s.
   Upsala iSKP = 22m.47s., eSKKS?E = 29m.21s., eE = 41m.20s.
   Bermuda iPKS = 22m.55s., iPPP = 23m.51s., eSS = 38m.9s.
   Bergen eZ = 21m.23s., PPPNZ = 21m.57s., PPPE = 22m.2s.,
                                                                   e = 22m.40s., SSN =
       35m.25s.?.
   Ksara e = 23m.9s.
   Copenhagen i = 19m.40s., eE = 23m.12s., 23m.48s.
```

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1945

```
269
    Aberdeen iN = 55m.2s.
    Helwan SKPZ = 22m.57s.
    Collmberg ePP = 21m.51s., iPKS = 23m.4s., eSKKS = 28m.35s., eSKSP = 32m.25s.,
         PPS = 34m.11s., eSS = 39m.16s., eSSS = 44m.19s.
    Edinburgh PKS = 23m.20s., ePS = 32m.25s., SS = 40m.40s.
    Sofia iEN = 19m.50s. and 23m.22s.
    Jena eN = 19m.43s., and 20m.50s., eE = 22m.40s.
    Belgrade e = 20 \text{m.} 59 \text{s.}, iPKS = 23 \text{m.} 23 \text{s.}, e = 36 \text{m.} 58 \text{s.}, 46 \text{m.} 27 \text{s.}, and 51 \text{m.} 52 \text{s.}
    De Bilt iZ = 19m.51s.
    Uccle ePKP = 19m.39s., eSSEN = 40m.25s.?
    Kew iZ = 19m.51s., eZ = 20m.39s.
    Triest iSSE = 41m.30s.
    Strasbourg e = 23m.31s. and 28m.9s., ePPS? = 34m.31s., eSS = 41m.25s.
    Paris i = 19m.52s. and 20m.38s., iSKP? = 22m.54s., i = 27m51s.
    Clermont-Ferrand i = 19m.59s., e = 25m.36s.
    Tortosa PKP<sub>2</sub>E = 20m.21s., sPKPEN = 21m.12s., PPN = 24m.16s., PPPN = 28m.25s.,
        SKKSN = 31m.36s., SKSPE = 34m.36s., PPSE = 36m.54s., SSE = 42m.52s.
    Coimbra PKP<sub>2</sub> = 22m.4s., PP = 25m.28s., ? = 28m.30s., SKKS = 32m.10s., PSKS =
        37m.10s.,
    Lisbon eZ = 20m.15s., PPZ = 23m.59s?, PPE = 24m.8s.
    Granada PP = 24m.43s., SKKS = 30m.40s., SKSP = 34m.46s.
    Malaga PKS = 23m.9s., SS = 29m.29s., PPP = 31m.33s., SKSP = 35m.45s., Q = 78m.47s.
    San Fernando eSKPE = 23m.27s., iPPE = 24m.25s., iPPFE = 29m.12s., cSKKSE =
        30m.55s., ePSKSE = 37m.42s., eSSE = 46m.58s.
August 29d. 12h. Undetermined shock.
    Colombo eE = 47m.
    Tananarive N = 48m.43s., EN = 50m.41s., N = 52m.39s. and 53m.45s., E = 53m.51s.
        LEN = 54m.15s.
    Brisbane iPZ = 50m.48s.
    Helwan eZ = 52m.34s. and 53m.15s.
    Tashkent eP = 52m.36s., eS = 62m.23s.
    Riverview iN =58m.29s.
    Pasadena ePZ = 60m.30s., eZ = 61m.30s.
    Riverside ePZ = 60m.31s., iZ = 61m.34s.
    Mount Wilson ePZ = 60m.32s., iZ = 61m.32s.
    Pierce Ferry ePKP = 60m.33s., i = 60m.42s.
```

August 29d. 15h. Undetermined shock.

Shasta Dam ePKP? =61m.19s.

Palomar iP = 61m.38s.

New Delhi eN = 73m.3s.

Boulder City ePKP = 60m.35s., i = 61m.16s.

Tucson ePKP = 60m.36s., i = 61m.51s., ePP = 65m.41s.

```
Kodaikanal eE = 8m.40s., 10m.20s., 15m.40s., 18m.40s., and 22m.40s.
Tananarive P?E = 9m.45s., EN = 11m.5s., SN = 14m.36s., LE = 16m.42s.
Brisbane iPZ = 13m.17s.
Perth 1 = 14 \text{m.} 32 \text{s., L} = 16 \text{m.}
Helwan ePZ = 15m.4s., iZ = 15m.16s., eN = 25m.10s.
Tashkent eP = 15m.5s., iS = 24m.59s.
Ksara e = 15m.22s., and 25m.38s.
Colombo ePE = 17m.37s.
Hyderabad SN = 20m.0s.
Bombay eEN = 20m.30s.
Riverview iP?EN = 20m.54s., iZ = 21m.2s., eLE = 30 \cdot 1m.
Triest iPZ = 20m.56s.?, ipPZ = 21m.19s., ePPP = 28m.5s., ePS = 35m.24s.
Clermont-Ferrand ePP = 21m.37s.
Paris ePP? = 22m.4s., ePPP? = 24m.12s.
New Delhi iN =22m.21s. and 23m.34s., eN =35m.21s.
Pasadena ePZ = 23m.0s., iZ = 23m.8s. and 24m.0s., eLZ = 76m.20s.
Riverside ePZ = 23m.0s., eZ = 23m7s.
Mount Wilson ePZ = 32m.1s., iZ = 23m.8s., 24m.1s., and 24m.6s.
Christchurch S = 23m.3s., SS = 27m.13s., SSSEN = 30m.50s., QEN = 31m.39s., R =
    35m.27s.
Saint Louis eZ = 23m.3s., 23m.9s. and 24m.19s., eE = 39m.5s., eL?E = 49m.11s.
Tucson ePKP = 23m.3s., i = 23m.10s., ePP = 28m.10s., e = 33m.46s., eSS = 49m.46s.
        eL = 83m.28s.
Palomar ePZ = 23m.10s., i = 24m.5s., iZ = 24m.10s., eZ = 28m.7s.
La Jolla eZ = 24m.2s. and 24m.8s.
Auckland S? = 25m.6s., L = 40m.
Copenhagen 28m.42s., L=54m.
Collmberg eZ = 38m.31s.
Sitka eSS = 45m.51s., eL = 66m.24s.
La Paz eZ = 62m.6s., LZ = 72m.0s.
Long waves were also recorded at Wellington, Uccle, Granada, De Bilt, San Fernando,
    Honolulu, Bermuda, Bozeman, Salt Lake City, and San Juan.
```

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1945

270

August 29d. Readings also at 3h. (Brisbane, Tucson (2), near Fresno, Branner, Lick, and Berkeley), 4h. (Collmberg (2) and Bogota), 8h. (Collmberg), 10h. (Tucson, Palomar, Riverside, Mount Wilson and Mizusawa), 11h. (Logan and La Paz), 13h. (Riverview (4), Pasadena, Mount Wilson, Riverside, Palomar, Tucson, Bogota, La Paz, and Huancayo), 14h. (Riverview, New Delhi, Palomar (2), Riverside (2), Mount Wilson, and Pasadena), 15h. (Collmberg and Tananarive), 16h. (San Fernando, Collmberg, New Delhi, St. Louis, Tucson, Palomar, Riverside, Mount Wilson, Pasadena, and near Mineral), 17h. (near Pehpei and near Andijan), 18h. (near Pehpei), 19h. (near Fresno, Lick, Branner, San Francisco, and Berkeley), 22h. (near Tucson).

August 30d. 17h. 3m. 4s. Epicentre 26° 8N. 111° 2W. (as on 1945 July 3d.).

$$A = -.3232$$
, $B = -.8333$, $C = +.4485$; $\delta = 0$; $\hbar = +3$; $D = -.932$, $E = +.362$; $G = -.162$, $H = -.418$, $K = -.894$.

		Δ	Az.	Р.	O-C.	s.	o-c.	Su	pp.	L.
		D	0	m. s.	8.	m. s.	8.	m. s.		m.
Tucson		5.4	4	i 1 19	- 5	e 2 21	- 7	i 1 25	\mathbf{P}	e 2.8
Palomar		8.2	324	12 4	+ 1	e 4 18	8.			
Riverside	Z.	8.9	325	e 2 13	+ 1	e 4 49	S.	-	-	-
Mount Wilson	Z.	9.5	323	i 2 21	+ 1	i 5 11	S. S.	-		
Pasadena		9.5	322	i 2 19	- 1		-		-	e 4.7
Pierce Ferry		9.6	347	i 2 21	0	-	1000	i 2 41	2	e 5·7
Boulder City		9.7	342	i 2 23	+ 1	-	-	<u> </u>		e 5.0
Overton		10.1	345	i 2 30	+ 2	i 4 32	+ 7			e 5.8
Haiwee		10.9	330	e 2 42	$+$ $\overline{2}$	-		-	-	
Tinemaha		11.9	332	i 2 54	Ō	200				
Florissant	E.	21.2	50		2 -1 770	e 8 43	+ 2	·	-	e 11·4
St. Louis		21.2	50	e 4 43	- 6	e 8 42	+ 1			e 11.0

Tucson gives also e = 1m.33s, and 1m.48s, i = 2m.32s. Long waves were also recorded at other American stations.

August 30d. 23h. 30m. 6s. Epicentre 18°·1S. 175°·2W. (as on 1944 September 23d.).

$$A = -.9478$$
, $B = -.0796$, $C = -.3088$; $\delta = +2$; $h = +5$; $D = -.084$, $E = +.996$; $G = +.308$, $H = +.026$, $K = -.951$.

		Δ	Az.	P.	$\mathbf{O} - \mathbf{C}$.	s.	o-c.	Su	pp.	L.
		0	0	m. s.	8.	m. s.	s.	m. s.		m.
Auckland		20.7	204	2 51		8 35	+ 4	9 4	Q	9.7
Arapuni		21.5	201	e 4 54?	$+\dot{2}$	8 54	+ 7			
Wellington		24.7	200	3 7		8 44	- 60	3 26	\mathbf{pP}	11.9
Christehurch		27.4	200	5 40	- ģ	10 14	-14	11 24	Ġ.	13.7
Brisbane	E.	30.7	247	e 6 10	- 9				~	13.1
Riverview		33.9	237	e 6 45	- 2	i 12 1	-10	e 7 52	\mathbf{PP}	e 14·7
Honolulu		42.7	24	e 8 3	$+$ $\tilde{3}$	e 14 34	+10		<u> </u>	e 17.5
Perth		63.1	243	18 51	S	(18 51)	-11	25 54	SSS	29.3
Santa Barbara	Z.	74.2	45	e 11 47	+~7	(10 01)		20 01	200	20 0
Santa Clara	***	74.5	41	e 11 46	+ 4	e 21 29	+12			e 34·1
Berkeley		74.6	41	11 45	+ 2	21 27	+ 9	31 15	Q	34.6
Ukiah		74.8	39	e 11 58	+14	e 21 30	+10		31.00	e 31·2
La Jolla	Z.	75.0	47	e 11 54	+ 9					
Pasadena	5775	75.1	46	i 11 45	- 1	i 21 35	+11	i 11 54	$P_{\mathbf{e}}P$	e 30·3
Mount Wilson	z.	$75 \cdot 2$	46	i 11 47	+ î					
Palomar		75.6	47	e 11 49	+ 1				-	Carrier Co.
Riverside		75.6	46	1 11 48	0			i 11 58	PeP	-
Shasta Dam		76.3	38	e 11 52	Õ		-			122
Haiwee		76.4	44	e 11 54	+ 1			_	_	
Tinemaha		76.7	43	e 11 46	$^{+}_{-}$ $^{1}_{9}$		-	i 11 57	PeP	-
Boulder City		78.4	46	e 12 4	0	e 22 22	+22			-
Overton		79.0	46	e 12 13	+ 6		1.072	e 12 22	PeP	-
Pierce Ferry		79.1	47	1 12 10	+ 2		_	e 12 47	PeP	-
Tucson		79.4	50	i 12 10	+ 1	e 22 14	+ 4	e 23 3	PS	e 33·0
Sitka		82.3	21	e 12 23	- 2	e 22 34	- 6	e 15 32	$\hat{\mathbf{P}}\tilde{\mathbf{P}}$	e 34·3

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1945

	Λ	Az.	P.	0 - C.	s.	O-C.	Suj	op.	L.
	٥		m. s.	8.	m. s.	s.	m. s.	117000 E	m.
Grand Coulee	82.7	34	e 12 22	- 5	-	-		_	*****
Salt Lake City	82.9	43			e 22 54	+ 8	_		e 34.9
Logan	83.5	42	e 12 55	+24	e 23 10	+18	e 23 41	PS	e 35.5
College	85.3	11	e 12 41	+ 1	e 23 6	- 4	e 24 1	PS	e 36·8
Bozeman	86.0	39	~ —		e 23 20	+ 3	e 25 30	3	e 36·2
Florissant N.	97.2	52	32112	-	e 25 12	+15	-	_	
St. Louis N.	97.3	52		Approximation (e 25 11	+13	e 33 5	8	
San Juan	113.1	77	e 19 26	\mathbf{PP}	e 25 38	[+13]	e 29 0	PS	e 53·2
Bermuda	116.5	62			e 28 3	3	e 36 17	SS	e 61.5
Copenhagen	142.0	353	i 19 36	[+ 2]	23 18	SKP	_	-	
De Bilt	146.1	359	i 19 43	[+ 2]	_	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	i 47 54	SSS	e 68·9
Collmberg	146.2	351	e 19 41	10 1	e 23 47	SKP	e 23 17	\mathbf{PP}	
Jena N.	4 4 45 45	352	e 19 52	[+10]					-
Ucele	147.4	2	e 19 45?	[+ 2]	-	-	e 21 10?	3	e 68.9
Cheb	147.5	$35\overline{2}$		¥,		3 - 1		-	e 71·9
Ksara	148-1	304	e 20 3	[+19]	_	-	e 22 42	PP	-
Bucharest	148.3	330	19 543	[+ 9]	31 54	3	· ·		-
Paris	149.3	3	i 19 49	[+3]	-	-	e 21 38	3	e 71.9
Strasbourg	149.5	356	e 19 59	[+12]			-		-
Zürich	150.6	356	e 19 42	[-6]		-			_
Triest N.	151.5	346	e 19 56	[+6]		1000	10000	_	
Clermont-Ferrand	152.4	3	e 19 54	[+ 3]	-			-	e 70.9
Helwan z.	153-1	300	e 20 2	[+10]		-	e 23 48	PP	
Coimbra	155.2	23	e 16 33	9	e 27 34	[+34]		PKP.	74.6
Toledo z.	157.0	17	i 20 11	[+14]	_			-	
San Fernando	159.3	26	e 20 4	[+4]		S 	e 20 52	PKP.	e 76·4
Granada	159.6	20	19 36	[-24]		<u> </u>		PKP.	81.3
Malaga	159.7	22	e 20 6	[+6]	i 26 23	[-41]	i 20 13	PKP	75.9

Additional readings:—
Auckland i=3m.39s, and 4m.14s., S=7m.5s.
Wellington sPP=5m.10s., sPcP=6m.5s., PcSZ=9m.49s., Q=10.9m.

Riverview iN = 14m.29s. Tuscon i = 12m.23s., eSS = 27m.40s.

Tuscon 1 = 12m.23s., Sitka e = 18m.42s.

Logan ePPS = 24m.2s., eSS = 28m.13s.

College e = 14m.43s., and 25m.19s.

Copenhagen 27m.45s, and 43m.6s. Collmberg i=19m.46s, and 19m.50s., 19m.54s., and 20m.16s., e=21m.10s. and 25m.34s.

Helwan eZ = 21m.26s. and 24m.54s.

Coimbra PP? = 21m.37s., e = 24m.34s., PPP? = 25m.54s., e = 33m.4s. and 35m.4s. San Fernando eE = 21m.44s.

Malaga iPPZ = 24m.23s., PPPZ = 28m.13s., iSSZ = 30m.1s., SKKS = 31m.14s.,

PPSZ = 38m.7s.

Long waves were also recorded at La Paz, Chicago, Rapid City, Upsala, Aberdeen, and Ivigtut.

August 30d. Readings also at 1h. (La Paz), 2h. (Pierce Ferry, Boulder City, Palomar, Riverside, Pasadena, Mount Wilson, Haiwee and Shasta Dam), 5h. (Riverview), 6h. (New Delhi, Christchurch, Riverview, near Lick, Berkeley, and Branner), 7h. (Tinemaha, Riverside, Palomar, Tucson, Collmberg, and Tananarive), 8h. (Palomar, Tinemaha, Riverside, Mount Wilson, Tucson and Pasadena), 9h. (near Tananarive), 10h. (Riverview), 13h. (near Sofia and Belgrade), 14h. (Collmberg and La Paz), 15h. (Yalta), 16h. (near Andijan), 21h. (Tucson, Tinemaha, Palomar, Mount Wilson, Pasadena, and

near Bogota).

August 31d. Readings at 3h. (Bucharest), 5h. (Irkutsk), 6h. (Haiwee, Mount Wilson, Palomar, Riverside, Tinemaha and Shasta Dam), 8h. (Collmberg), 9h. (Collmberg, Boulder City, Overton, Pierce Ferry, Grand Coulee, Tucson, Haiwee, La Jolla, Mount Wilson, Pasadena, Riverside, Tinemaha, Shasta Dam, Palomar, Auckland and near Apia), 10h. (Collmberg (2) and Riverview), 11h. (Collmberg, Boulder City, Overton, Pierce Ferry, Tucson, and Alicante). 13h. (Pasadena, Palomar, Tinemaha, Riverside, Tucson, Harvard and near San Juan), 15h. (St. Louis, Boulder City, Haiwee, Mount Wilson, Pasadena, Palomar, Riverside, Tinemaha, Tucson, Shasta Dam, Grand Coulee, Sitka, and near College), 18h. (Angra do Heroismo, Haiwee, La Jolla, Mount Wilson, Pasadena, Palomar, Santa Barbara, Riverside, Tinemaha, Tucson, Boulder City, Overton, Pierce Ferry, Shasta Dam, and Grand Coulee), 19h. (Collmberg), 23h. (Christchurch, Colombo, Kodaikanal, New Delhi, Tananarive, Riverview, Mount Wilson, Pasadena, Palomar, Riverside, Tinemaha, Tucson, Shasta Dam).

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1945

272

Sept. 1d. 22h. 44m. 8s. Epicentre 46° 8S. 165° 8E.

Intensity V in the South Island.

R. C. Hayes.
"Earthquakes in New Zealand during the year, 1945."
New Zealand Journal of Science and Technology, Vol. 27, No. 6, Sect. B, 1946. Wellington, 1947, p. 438. Map of Epicentres, p. 436.

A = -.6660, B = +.1685, C = -.7267; $\delta = +4$; h = -4; D = +.245, E = +.969; G = +.704, H = -.178, K = -.687.

	- 3	/ Table =	. S					450
Monowai Christchurch Kaimata Wellington Bunnythorp		^° 1.6 5.8 5.9 8.5 9.6	Az. 51 58 45 53	P. m. s. 0 52? 1 32 1 30 2 7	O - C. + 3 - 1 0	S. O-C. m. s. s. 1 11? ? 2 25 -15 3 39 - 6 4 31? +19	m. Supp. m. Supp.	L. m. =
New Plymouth Tuai Auckland Riverview Brisbane		9·8 11·5 12·0 17·1 21·8	$\begin{array}{r} 41 \\ 50 \\ 37 \\ 314 \\ 330 \end{array}$	2 25 3 3? 2 54 i 4 2k i 4 55	- 1	4 16 - 1 i 7 14 + 2 9 16? + 24	= = = = = = = = = = = = = = = = = = =	8·2
Perth Honolulu La Plata Tananarive	E. N.	The large Chief Chief Chief Chief	$275 \\ 37 \\ 146 \\ 146 \\ 237$	e 11 47 12 58 13 1 e 17 13	- 2 - 3 PP	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	e 14 22 PP 19 33 PPP 24 19 SKKS	e 34·1 36·2 43·8 e 43·6
Kodaikanal Calcutta Huancayo La Paz Hyderabad	E. N.	96·2 98·0 100·0 100·5 100·7	279 295 121 129 284	12 59 e 19 48 e 13 55 i 13 56 14 0	-32 PPP + 7 + 5 + 8	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	e 17 54 PP i 17 50 PP 18 13 PP	39·8 e 41·2 47·8
Santa Barbara Guadalajara Bombay Pasadena Mount Wilson	z.	104·9 105·3 105·5 105·6 105·7	57 77 281 58 58	e 18 30 e 20 31 e 17 21 i 14 12 i 18 30	PP PPP - 1	e 27 58 PS e 24 42 [-10] i 24 55 [+ 2] e 24 53 [0]	e 25 32 SKKS (33 38) SS e 18 31 PP i 30 18 PKKP	e 47·3 33·6 e 43·7
Branner Palomar Santa Clara Riverside Berkeley	N. Z.	105·8 105·8 105·8 105·9 106·0	53 59 53 58 53	e 28 0 i 14 14 e 14 17 i 14 15 14 12	PS + 3 + 1 - 3	e 28 8 PS e 28 9 PS i 25 11 [+16]	i 18 32 PP i 18 38 PP e 18 44 PP 18 40 PP	e 49·5 e 49·4 e 48·8
Ukiah Fresno Ferndale Tacubaya Tinemaha	N. E.	106·4 106·5 106·9 107·2 107·6	51 54 49 81 55	e 14 32 18 45 e 20 28 e 27 57 e 18 48	PP PP PS	e 28 19 PS 28 4 PS e 29 10 PPS e 28 21 PPS e 28 19 PS	e 18 41 PP ———————————————————————————————————	e 44·4 e 53·8 e 47·9 e 50·6
Shasta Dam Tucson Boulder City Vera Cruz New Delhi	N.	108.0 108.6 108.8 109.2 109.3	50 63 58 83 292	e 18 13 e 14 25 e 15 38 e 14 39	[-16] P	e 28 19 PS e 25 2 [- 4] e 28 2 PS i 28 31 PS 25 6 [- 3]	e 18 53 PP e 18 52 PP e 18 57 PP i 29 16 PPS 25 59 SKKS	e 44·2 e 49·4 51·3
Overton Pierce Ferry Irkutsk Seattle Victoria		109·4 109·4 111·8 113·0 113·1	57 58 324 45 43	e 14 2 e 18 21 19 24 e 29 22 19 44	P [-11] PP PS PP	25 33 [+13] 26 28 {+1}	e 19 9 PP 28 45 PS 29 31 PS	e 51·2 54·9
Salt Lake City Logan Grand Coulee Sitka Butte		113·8 114·5 114·8 114·9 116·8	56 55 46 31 51	e 19 40 e 18 45 e 18 42 e 14 49 e 19 48	PP [+ 3] [- 1] P PP	e 25 16 [-11] i 28 50 PS e 29 25 PS i 26 56 {+17} e 25 42 [+ 3]	e 29 18 PS e 34 56 SS e 19 32 PP e 19 38 PP i 29 55 PS	e 46.8 e 57.1 e 55.9 e 46.9 e 48.1

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1945

	Δ	700	P. 8.	O – C.	S. O-C. m. s. s.	m. s.	L. m.
College Bozeman Rapid City Mobile Tashkent	117.0 117.4 120.8 122.2 122.5	20 e 19 52 e 20 57 e 20 78 20 298 i 20	54 0 23 46	PP PP PP PP	e 25 52 [+13] e 25 46 [+ 5] e 26 1 [+ 8] 30 48 PS 27 31 { 0}	e 29 46 PS i 29 48 PS e 30 25 PS	e 49·9 e 46·3 e 55.6
Saskatoon St. Louis Florissant Chicago Columbia	123·7 125·6 125·6 129·0 129·0	48 20 69 e 19 69 e 19 67 e 21 79 e 21	36 2 0 15	PP [- 2] [- 4] PP PP	30 47 PS i 26 19 [+11] e 26 18 [+10] e 28 23 {+10} e 26 24 [+ 7]	42 4 SSS i 20 54 PP i 20 53 PP e 31 18 PS e 38 35 SS	60.9 i 60.1 i 60.5 e 54.6 e 58.4
San Juan Cincinnati Fort de France Georgetown Pennsylvania	129·6 129·6 129·6 134·3 134·8	106 e 19 73 i 19 115 e 29 77 e 19 74 e 21	12 29 19	[+ 1] [+ 1] PKS [- 1] PP	e 25 58 [-20] i 22 31 PKS i 22 53 PKS e 28 58 {+ 8}	e 21 14 PP i 21 19 PP e 21 51 PP i 22 49 PKS	e 54·0 e 60·9
Philadelphia Fordham Erevan Ottawa Bermuda	136.1 137.4 137.8 138.3 139.2	77 e 19 76 e 19 284 e 19 68 19 93 e 19	15 34 22	$\begin{bmatrix} - & 2 \\ -11 \end{bmatrix}$ $\begin{bmatrix} + & 7 \\ - & 5 \end{bmatrix}$ $\begin{bmatrix} - & 5 \end{bmatrix}$	i 32 20 PS i 32 47 PS 	e 21 55 PP i 22 15 PP e 23 5 PKS 22 12 PP e 22 31 PP	e 64·0 65·4 e 55·8
Harvard Weston Ksara Shawinigan Falls Helwan	139·7 139·9 140·3 140·6 141·1	75 e 19 75 19 269 e 19 68 e 21 261 19	16 34 10	[+20] $[-14]$ $[+3]$ $[-5]$	e 23 19 PKS e 34 47 PPS e 41 22 SS 29 37 {+ 9}	e 22 26 PP 22 19 PP e 22 40 PP e 22 31 PP 22 43 PP	e 72·9 — 67·9
Seven Falls Halifax Yalta Moscow Bucharest	142·1 145·9 146·5 147·1 151·9	68 19 75 19 284 e 19 306 19 281 e 14	44 41 40	[- 8] [+ 3] [- 1] [- 3]	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	22 52 PKS 23 16 PKS 22 49 PP	68·9 68·9 — 45·9
Sofia Ivigtut Belgrade Upsala Triest	153·2 155·7 155·9 157·2 160·7	276 e 20 41 19 278 e 20 316 e 20 277 e 20	49 29a 13	[+12] $[-6]$ $[+33]$ $[+16]$ $[-1]$	e 23 40 PKS 26 34 [-26] e 30 55 {+ 5} e 27 503 [+48] i 31 14 {- 2}	20 23 PKP e 37 41 PPS e 23 27 PP e 24 28 PP	e 76·9 e 86·9 e 67·9
Prague Copenhagen Collmberg Bergen Jena z.	160 · 8 161 · 2 161 · 7 162 · 2 162 · 6	292 e 19 309 i 19 294 e 20 327 e 19 292 e 20	58	[-24] $[-4]$ $[-1]$ $[-11]$ $[+7]$	e 27 10 [+ 5] 28 3 [+57] e 27 6 [0] e 27 22 [+15] e 28 40 PPP	e 23 58 PP e 24 21 PP e 24 43 PP e 24 35 PP	e 67·9 e 91·9 e 72·9
Chur Zürich Strasbourg Basle Neuchatel	163·8 164·5 165·1 165·2 165·5	279 e 20 280 e 20 285 e 20 281 e 21 279 e 20	51 11	[+11] $[-1]$ $[+45]$ $[-2]$	e 31 28 {- 4} e 24 52 PP e 32 33 {+54}		e 77 <u>·9</u>
Marseilles De Bilt Barcelona Uccle Aberdeen N.	165·7 166·3 167·1 167·1 167·2	263 e 21 300 e 20 251 e 20 295 e 20 329 e 20	5a 42 5a	[+35]	e 32 8 {+27} i 45 42 SS e 30 59 {-49} e 31 50 {+ 2} i 31 33 {-16}	e 25 30 PP i 25 6 PP e 24 57 PP e 25 11 PP i 25 5 PP	e 84·9 e 75·2 83·0 e 81·9 79·2
Granada Malaga Z. Tortosa N. Clermont-Ferrand San Fernando E.	167.6 167.6 167.8 168.0 168.1	223 i 20 219 i 20 246 i 20 271 e 20 213 i 20	4 k 12 6		i 31 44 {- 7} i 27 5 [- 5] 31 51 {- 1} e 32 12 {+19} e 26 14 [-56]	i 20 32 pPKP i 25 0 PP 25 20 PP i 25 9 PP i 25 1 PP	82.5 76.5 e 73.9 e 80.9 78.6
Edinburgh Paris Kew Toledo Lisbon Coimbra	168.6 168.6 169.8 169.9 171.1 172.2	327 e 21 286 i 20 302 i 20 231 e 20 206 20 214 20	6 a 6	$\begin{bmatrix} - & 3 \\ - & 3 \end{bmatrix}$ $\begin{bmatrix} - & 3 \\ - & 3 \end{bmatrix}$ $\begin{bmatrix} - & 1 \\ + & 15 \end{bmatrix}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 25 17 PPP e 25 213 PP e 25 213 PP 1 25 19 PP 25 18 PP 26 44 PP	e 80·9 e 87·9 78·9 76·7 76·4

For Notes see next page.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1945

274

```
NOTES TO SEPTEMBER 1d. 22h. 44m. 8s.
Additional readings :-
  Riverview iPPEN = 4m.19s., iPPPZ = 4m.25s., iN = 7m.0s., iE = 7m.7s., iSSNZ = 7m.32s.
  Perth SS = 16m.47s., SSS = 17m.47s.
  Honolulu eS_cS = 22m.4s., eSSS = 29m.28s.
  La Plata PPS?Z = 25m.28s., SSE = 29m.46s., QN = 36m.40s. Tananarive PS = 25m.57s., SS = 31m.3s. Kodaikanal PPE = 16m.36s., SSE = 28m.7s.
  Huancayo eS = 25m.37s., iPS = 27m.5s., eSS = 31m.37s.
  La Paz iPPP=19m.22s., SZ=25m.57s., PSZ=26m.52s.,
                                                               PPS = 27m.46s., iSSZ =
      32m.32s., SSS = 36m.37s., IZ = 43m.16s.
  Hyderabad SN = 25m.27s., PSN = 26m.58s., SSE = 32m.8s.
  Guadalajara eE = 22m.2s.
  Pasadena eZ = 17m.7s., ePSEN = 27m.53s., iPPS = 28m.54s., eSS = 33m.58s.
  Branner ePSE = 28m.10s.
  Santa Clara eSS = 33m.24s.
  Riverside ePKKPZ = 30m.10s., iZ = 30m.16s.
  Berkeley iPSEZ = 28m.2s., iPSN = 28m.12s., iPPS = 28m.52s., iSSE = 33m.58s., iSSN ==
      34m.4s., iSSE = 34m.21s., eSSSSE = 43m.26s., eSSSSN = 43m.46s.
  Ukiah ePPS = 25m.12s., eSSS = 34m.7s.
  Tucson e = 17m.47s., 20m.50s., and 26m.12s., iPS = 28m.33s., e = 29m.36s., PKKP =
      29m.56s., eSS = 33m.48s., eSSS = 37m.48s.
  Boulder City i = 29m.47s.
  Vera Cruz eN = 40m.58s., eE = 41m.1s.
  New Delhi ePKPN = 18m.50s., eN = 21m.24s., 23m.24s., and 26m.21s., SKKSN =
      27m.31s., eN = 34m.7s., 38m.36s., and 41m.44s.
 Overton e = 19m.55s.
 Irkutsk SS = 34m.33s., SSS = 38m.58s.
 Salt Lake City eSS = 35m.48s.
  Logan e = 21m.28s, and 28m.38s.
 Sitka iPS = 29m.248., iPPS = 30m.228., eSS = 35m.328., e = 38m.268.
 Butte eSS = 36m.3s.
 College eSS = 35m.44s.
 Bozeman eSS = 35m.22s.
 Rapid City e = 27m.35s., ePPS = 31m.45s., eSS = 37m.46s., eSSS = 41m.55s.
 Tashkent eS = 28m.25s., PPS = 32m.7s., SS = 37m.10s.
 Saskatoon PPS = 37m.4s.
 St. Louis iZ = 21m.6s., eSKPE = 22m.15s., eE = 25m.13s., iSKKSE = 28m.5s., iPSE =
      30m.54s., iE = 38m.43s. 40m.54s., and 46m.33s.
 Florissant ePP?Z = 20m.43s., eSKP?E = 22m.22s., iSKKSE = 28m.6s., iPSE = 30m.53s.,
     iE = 31m.8s.
 Chicago e = 22m.15s, and 37m.25s, eSS? = 39m.35s, e = 47m.36s.
 Columbia e = 22m.27s. and 31m.22s., ePPS = 33m.24s., e = 44m.27s.
 San Juan i = 28m.22s., ePS = 32m.23s., iSS? = 39m.17s., eSS = 47m.52s.
 Cincinnati eP = 15m.58s., ePS = 31m.28s.
 Georgetown PS = 33m.59s.
 Pennsylvania e = 32m.11s., 33m.54s., and 40m.14s.
 Philadelphia ePPS = 33m.55s., eSS = 40m.7s., eSSS = 45m.0s.
 Fordham iPKP = 19m.30s.
 Ottawa SKP = 25m.28s., PSKS = 32m.22s., PPS = 34m.52s.?, SS = 41m.52s.?, SSS =
      46m.28s.
 Bermuda i = 23m.6s., e = 32m.33s., ePPS = 34m.53s. eSS = 41m.18s.
 Weston eP = 16m.52s., e = 19m.45s.
 Helwan eZ = 25m.43s.
 Seven Falls PSKS = 32m.58s., PPS = 35m.22s., SS = 41m.11s.
 Halifax S = 33m.16s.
 Moscow PKS = 23m.10s., PPP = 26m.13s., PS = 33m.37s., SS = 42m.10s.
 Bucharest eN = 14m.12s.
 Sofia ePKP<sub>2</sub>E = 20m.22s., eSSE = 45m.52s.?, eE = 49m.40s.
 Ivigtut 23m.52s., 31m.5s., 33m.40s., 37m.16s., and 44m.52s.
 Belgrade e = 22m.6s.
 Upsala ePKPN = 20m.25s., ePKS?E = 23m.39s., ePKSN = 23m.50s.?. eSKKSN =
      34m.23s., ePPSE = 37m.31s., SSE = 43m.47s., eSSN = 43m.57s.
 Triest iPKP<sub>1</sub>Z = 20m.36s., iPSKSE = 35m.26s., iSSN = 44m.28s., eSSS = 50m.37s.
 Prague eP = 18m.16s., eSKP = 23m.16s., SKS = 26m.28s., ePPP (\triangle > 180^{\circ}) = 31m.4s.,
      ePS? = 35m.52s.?, ePPS? = 37m.46s., eSS = 45m.22s., eSSS = 50m.52s.
 Copenhagen i = 20m.45s., 30m.45s., 42m.52s., 45m.40s., and 52m.4s.
 Collmberg iPP = 21m.54s., eSKKS = 28m.43s., eS = 29m.55s. ePS = 32m.22s., eSS =
      39m.16s., and other unidentified readings.
 Bergen PKPE = 20m.51s., PKPZ = 20m.54s., eN = 35m.5s., eE = 35m.12s., 38m.12s.,
     and 42m.11s., eN = 44m.56s., 45m.10s., and 50m.17s.
 Jena eZ = 21m.10s.
 Chur e = 32m.12s.
 Zürich e = 21m.11s.
 Strasbourg i = 22m.1s.
 Marseilles ePSKS = 36m.28s., eSS = 45m.52s.
 De Bilt iPKP_{\bullet} = 21m.14s.
 Uccle ePKP, =21m.16s., ePPPEN =29m.6s.? eN =36m.44s.
```

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1945

275

Aberdeen iN = 21m.10s., eE = 28m.2s., iN = 38m.49s., 46m.2s., and 51m.54s. Granada PKP₂ = 21m.14s., PP = 25m.16s., pPP = 25m.52s., PPP = 29m.29s., iSKSP = 35m.34s., SS = 46m.5s., sSS = 46m.53s., SSS = 53m.17s.

Malaga ePKP₂Z = 21m.28s., iPPPZ = 29m.44s., SKKSZ = 32m.10s., SKKKSZ = 33m.14s.

SKSPZ = 36m.8s., PPSZ = 39m.2s., SKS.SKSZ = 45m.46s., QZ = 67m.18s.

Tortosa PKP₂N = 21m.20s., SKPN = 23m.35s., PPPN = 29m.38s., SKSPN = 35m.43s., PPSN = 39m.41s., SSPN = 47m.28s., SSN = 49m.17s., SSSN = 53m.13s.Clermont-Ferrand e = 21m.24s., ePPP? = 29m.14s.San Fernando iPKPE = 21m.3s., PPPE = 29m.0s., eSKKSE = 31m.10s., SSSE = 52m.35s. Edinburgh SS = 46m.78. Paris i = 21m.27s., SKKS? = 31m.51s., PSKS = 35m.46s., i = 37m.26s., SS = 45m.52s.? Kew ePKP₂=21m.25s.?, iZ =22m.51s., ePKS =23m.57s.?, iPPPEZ =29m.18s., ePPP?N $(\triangle > 180^{\circ}) = 31 \text{m.} 19 \text{s.}, \quad \text{eSKKSEN} = 32 \text{m.} 23 \text{s.}, \quad \text{eSKSPE} = 35 \text{m.} 41 \text{s.}, \quad \text{eSSEN} =$ 45m.52s.?, eQEN =81.9m. Lisbon PKPE = 20m.14s.?, N = 22m.45s. and 31m.21s., E = 35m.58s., N = 36m.2s.SSN = 46m.13s., SSE = 46m.40s.Coimbra ? = 24m.38s. and 25m.40s., SKKS = 33m.54s., ? = 36m.28s., PSKS = 37m.24s., ? = 41m.24s., SS = 47m.24s., SSS = 55m.4s. Long waves were also recorded at Lick.

Sept. 1d. Readings also at 0h. (Kew), 7h. (Tucson), 8h. (Auckland), 9h. (Mount Wilson, Riverside and Tucson), 10h. (near Samarkand), 15h. (Huancayo, La Paz and near Tucson), 16h. (near Shasta Dam), 22h. (near Tananarive).

Sept. 2d. 11h. 54m. 5s. Epicentre 34°·4N. 28°·9E. Depth of focus 0·010.

Felt at Cairo. Epicentre 34°·0N. 28°·3E. Depth 70—100km. (B.C.I.S.). Bulletin Météorologique et séismique de l'Observatorie d'Istanbul-Kandilli, Année 1945, Istanbul 1950, p. 112.

A = +.7239, B = +.3996, C = +.5624; $\delta = +1$; h = 0: D = +.483, E = -.875; G = +.492, H = +.272, K = -.827.

		Az. P. m. 8	0 - C. s.	s. o m. s.	-C. s. m.	Supp. L. s. m.
Helwan Ksara Sofia Bucharest N. Yalta	5·8 9·4 3	55 1 1 94 i 1 2 34 i 2 1 349 e 2 2	$ \begin{array}{ccccccccccccccccccccccccccccccccc$	2 7 i 2 28 i 3 54	- 4 1 1 - 3	s. m. 9 PP — 1 5·4
Campulung Belgrade Erevan Prague Chur	$12 \cdot 3 3 \\ 13 \cdot 7 \\ 18 \cdot 9 3$	346 e 2 3 31 e 2 4 60 3 1 31 4 1 15 i 4 1	$ \begin{array}{rrr} 9 & - & 4 \\ 3 & + & 2 \\ 2 & - & 3 \end{array} $	i 5 11 -		5 PP = = = = = = = = = = = = = = = = = =
Cheb Zürich Marseilles Collmberg z. Basle	$20.0 3 \\ 20.3 3 \\ 20.5 3$		9 - 3	e 8 0 - e 8 29 -	10 — - 2 — - 22 — 18 3 - 6 — 14 4	- (e 12·9)
Jena Neuchatel Strasbourg Barcelona Moscow	$\begin{array}{ccc} 20.8 & 3 \\ 21.2 & 3 \end{array}$	28 e 4 46 15 e 4 35 20 i 4 35 98 e 4 45 13 4 45	$ \begin{array}{ccccccccccccccccccccccccccccccccc$	i 8 25 -4 e 8 14 -4 i 8 26 -4 8 44 -4 8 47 -4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7 PP — 6 SSS — 4 PPP —
Clermont-Ferrand Tortosa Copenhagen Uccle Paris	$\begin{array}{ccc} 23 \cdot 3 & 2 \\ 24 \cdot 1 & 3 \\ 24 \cdot 2 & 3 \end{array}$	20 e 5 8		i 8 57 + i 9 5 + i 9 17 + i 9 17 -	- 2 i 5 3 e 5 2	P e 10.9 2 pP 11.5 5 pP 1? pP e 10.9 0 pP e 13.9
De Bilt Granada Upsala Toledo Kew	26·4 2 26·5 3	24 i 5 10 68 i 5 35 47 e 5 28 92 e 5 27 19 i 5 32	a + 6 - 2	i 9 25 + i 9 59 + i 9 52 - e 10 0 + i 10 4	- 5 i 6	

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1945

		Δ	Az.	P.	o – c.	S. m. s.	O – C.	m. s.	p.	L. m.
Malaga San Fernando Bergen Lisbon Samarkand		27·1 28·6 30·2 30·7 30·7	285 284 337 290 69	m. s. e 5 39 e 5 50 6 1 6 8a (e 5 35)	$\begin{array}{ccc} + & 3 \\ + & 1 \\ - & 2 \end{array}$	i 10 13 i 10 31 10 53 i 11 5 e 5 35	+ 8 + 2 - 1 + 3 P	i 6 13 i 6 30 	sP PP — sP	e 13.8 12.8
Edinburgh Sverdlovsk Tashkent Andijan New Delhi	N.	30·8 31·1 32·4 34·7 41·3	324 34 65 67 84	e 6 5 11 e 6 25 e 6 45 7 52	$ \begin{array}{r} - & 4 \\ 0 \\ + & 3 \\ + & 3 \\ + & 15 \end{array} $	11 38 e 11 14 11 35 12 13 i 13 48	$^{+34}_{+6}$ $^{+6}_{+9}$ $^{+4}$	7 5 — 14 24	PP	
Bombay Hyderabad Kodaikanal Calcutta Ivigtut	N. E. N.	41·8 47·2 50·4 52·9 54·4	101 98 107 86 324	e 7 37 8 25 7 57 e 11 19 9 17 a	- 4 - 52 PP - 2	i 14 0 15 11 i 14 51 16 50	$^{+\ 8}_{-\ 63}$ $^{-\ 2}$	$10 & 33 \\ 9 & 51 \\ \hline 17 & 26$	PP PP PS	22·6 —
Irkutsk Shawinigan Falls Weston Harvard Ottawa		55·1 73·0 74·4 74·5 75·4	315 311 311 315	1 9 25 11 22 1 11 30 1 11 30 11 34	+ 1 + 1 + 1 - 1	$\begin{array}{c} 1\ 17 & 6 \\ 20 & 44 \\ e\ 21 & 0 \\ \hline 21 & 21 \end{array}$	+ 8 + 5 + 6 + 7			43.9
Fordham Philadelphia Pennsylvania Georgetown Pittsburgh		76·8 78·2 79·3 80·0 80·8	310 310 312 310 313	i 11 42 i 11 50 i 11 57 i 12 1 e 10 54	$ \begin{array}{r} - & 1 \\ 0 \\ + & 1 \\ + & 1 \\ - & 70 \end{array} $	i 21 26 e 21 34 i 21 52 i 22 0 e 20 56	+ 5 + 5 + 5 - 67	i 22 14 i 12 15 e 27 9	ss pp ss	
San Juan Chicago Cinncinati Saskatoon Florissant		83·8 84·4 84·4 85·5 88·0	288 318 314 335 317	e 12 19 e 12 19 i 12 22 12 33 i 12 40	- 1 - 4 - 1 + 5	e 22 33 e 22 33 i 22 37 22 50 e 23 16	- 6 - 2 + 2	e 23 12 e 12 33 i 12 39 i 12 58	pP pP	e 35·3 e 41·1 e 47·9 48·9
St. Louis Rapid City Mobile Grand Coulee Shasta Dam		88.0 90.6 92.2 93.1 100.7	317 328 310 339 338	i 12 40 i 12 56 i 12 59 i 13 38	+ 3 - 5 - 1	i 23 17 e 23 18 23 27 e 23 54	+ 3 [+14] [+ 5] - 6	i 12 59 i 13 12 i 16 46	PP PP	
Overton Pierce Ferry Boulder City Tinemaha Haiwee		101.6 101.8 102.2 102.6 103.3	330 330 333 333	e 13 45 i 13 44 i 13 46 e 13 52 e 13 52	+ 2 0 + 1 + 5 + 2	e 24_59			PP PP PKKF PKKF	
Tucson La Paz Mount Wilson Riverside Pasadena Palomar	z.	103·7 104·8 105·0 105·0 105·2 105·3	326 260 332 332 332 330	e 17 13 i 14 0 e 13 59 i 13 57	+ 2 + 1 + 1 + 2	e 25 10 e 27 27 i 27 22 i 27 28	$\frac{-}{PS}$	i 18 5 18 18 i 18 17 i 18 17 i 18 23	PP PP PP PP	e 51·4 56·9 e 50·2

```
Additional readings :-
  Belgrade i = 2m.52s., ePP = 3m.43s., eSS = 6m.28s.
  Cheb readings decreased by two minutes.
  Collmberg i = 4m.32s. and 4m.42s., iPP = 4m.52s., iPPP = 4m.56s., i = 5m.44s., 6m.36s.,
      and 8m.47s., iSS = 9m.3s., i = 9m.19s. and 10m.2s.
  Jena eN =4m.47s., iSEN =8m.30s., iZ =9m.2s., iN =9m.8s., eN =10m.15s.
  Barcelona SS = 9m.22s.
  Tortosa SSN = 10m.2s., SSSEN = 10m.29s.
  Copenhagen 9m.24s., i = 9m.50s.
  Uccle ePPEN =6m.1s., iSE =9m.20s., eSS =10m.12s.
  Paris i = 7m.55s. and 10m.59s.
  Upsala ePPN = 6m.24s., iN = 10m.1s., eE = 12m.53s.?, eN = 18m.28s.
  Kew iPP = 6m.20s., iPPP = 6m.44s., iPcPZ = 8m.51s., iSS? = 10m.24s.
  Malaga P_cP = 8m.31s., S_cP = 12m.15s.
  San Fernando iPPPEZ =6m.49s., iSSEZ =11m.16s.
  New Delhi iN =8m.10s., P_cPN = 9m.29s., SSN = 17m.16s., iN = 17m.41s.
  Hyderabad SSN = 18m.48s.
  Kodaikanal SSE = 18m.7s.
  Pennsylvania eSKS = 22m.5s., i = 22m.14s., ePS = 22m.28s., eSP = 22m.44s., eSS =
       27m.21s.
  Pittsburgh i = 11 \text{m.49s.}, ePP = 13 \text{m.34s.}, i = 17 \text{m.53s.}, eS = 20 \text{m.27s.}, e = 23 \text{m.0s.}
```

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1945

277

San Juan eSSS = 31m.3s. Chicago eSS = 23m.0s., e = 27m.36s.Cincinnati esS = 23m.9s. Florissant ePPZ = 16m.6s., epPPZ = 16m.26s., eSKSN = 22m.59s., eSKSN = 23m.52s., isS?Z = 24m.19s., eZ = 24m.53s., eN = 29m.17s.St. Louis $iP_cP?Z = 12m.52s.$, $ipP_cPZ = 13m.10s.$, iZ = 14m.38s. and 14m.47s., ePPZ =16m.6s., eZ = 16m.11s., epPPZ = 16m.26s., eSKSE = 23m.1s., isSKSE = 23m.54s., eE = 24m.4s., esS?E = 24m.19s., eSSE = 30m.13s.Rapid City e = 15m.42s. and 24m.48s. Grand Coulee iSKS = 23m.33s. Overton iPP = 17m.21s., i = 18m.21s.Boulder City i = 16m.52s., eSKS = 24m.23s., i = 29m.47s. and 30m.11s.Tinemaha eZ = 17m.3s., i = 30m.10s.Tucson ipPP = 18m.25s., ePS = 27m.7s., i = 30m.5s., ePKP,PKP = 38m.3s.Mount Wilson eZ = 17m.1s., iZ = 17m.55s., ipPKKPZ = 29m.59s. iPKP,PKPZ = 38m.2s.Riverside eZ = 18m.8s., iPKKPZ = 29m.41s., ipPKKPZ = 29m.58s.Pasadena eZ = 17m.55s., iZ = 28m.19s., iPKKPZ = 29m.40s., ipPKKPZ = 29m.57s.Palomar eZ = 17m.8s., iZ = 18m.13s., iPKKPZ = 29m.40s., i = 29m.58s., iPKP,PKPZ =37m.36s. Long waves were also recorded at Riverview.

Sept. 2d. Readings also at 0h. (near Tananarive), 1h. (Bombay, Calcutta and Andijan), 2h. (La Paz), 3h. (Salt Lake City, Shasta Dam, Tinemaha, Riverside, Pasadena, Mount Wilson, Pierce Ferry, Boulder City, Palomar, Tucson, near Samarkand, Tashkent, Stalinabad, Andijan, and near Bogota). 4h. (near Mizusawa), 8h. (near Samarkand), 9h. (Pierce Ferry), 12h. (Collmberg), 13h. (San Juan), 14h. and 15h. (Collmberg), 17h. (Boulder City, Riverside, Pasadena, Tucson, Mount Wilson, and Tinemaha), 18h. (Collmberg), 22h. (near Andijan, Samarkand and Stalinabad), 23h. (near New Delhi).

Sept. 3d. 12h. 59m. 24s. Epicentre 0°-4S. 20°-5W.

$$A = +.9366 B = -.3502 C = -.0070;$$
 $\delta = -9;$ $h = +7;$ $D = -.350, E = -.937;$ $G = -007, H = +002, K = -1.000.$

		Δ	Az.	Ρ.	0 - C.	s.	0 - C.	Sur	p.	L.
		0		m. s.	8.	m. s.	8.	m. s.		m.
Malaga		39.9	21	e 7 32	- 5	e 14 40	+57		-	24.6
Granada		40.6	22	e 7 40a	3	14 17	+23	9 42	PP	23.5
Toledo		42.8	19	i 8 3	$+$ $\tilde{2}$	e 15 6	+40			
San Juan		48.6	295	e 9 6	$+1\overline{9}$	e 15 46	- 3		-	e 19·8
La Paz		49.6	249	i 8 54	- ĭ					25.0
Clermont-Ferra	nd	50.5	22		_	-		20 36?	SS	
Bermuda	are sed	52.9	313		-	e 17 3	+15	e 20 0	SS	e 21.8
Paris		52.9	19	c 9 20	0	e 16 56?	+ 8			e 24.6
Basle		53.7	24	e 9 24	- 2	-		-		
Chur		53.9	25	e 9 27	0		-		-	_
Zürich		53.9	24	e 9 28	+ 1		-	_	100	,
Strasbourg		54.6	23	e 9 36	+ 4			-	_	1
Triest		54.9	29	e 9 35	0	e 17 15	- 1		9 7 - 	
Uccle		55.2	19	e 17 36	\mathbf{PS}		-	-	•	e 26-6
De Bilt		56.6	19	i 9 48	+ 1	i 17 44	+ 6	e 24 6	SSS	
Helwan	Z.	57.8	54	e 9 52	- 3		-	-		
Jena	N.	57.9	24	e 10 4	$+8 \\ -2$		-	-		-
Collmberg	Z.	58.8	24	e 10 0	- 2		-	1967 - 1969 1967 - 1969 - 1969		e 29·0
Copenhagen	6043	62.0	20	e 9 26?	-58	18 52	+ 4	25 367	SS	
Harvard		62.6	321	i 10 29	+ 1					
Ottawa		66.6	321	e 10 54	0		-			27.6
St. Louis		74.5	310	i 11 40	- 2	e 21 32	+15	e 25 54	SS	
Tucson		90.5	302	i 13 6	+ 1	••••				
Tinemaha	Z.	$96 \cdot 4$	307	e 13 31	- 1			e 17 27	\mathbf{PP}	

Additional readings:—

Copenhagen 23m.51s. Long waves recorded at Huancayo.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1945

278

Sept. 3d. 19h. 30m. 33s. Epicentre 33° 0S. 71° 5W.

Intensity V-VI on North-West Coast of Chile Epicentre as adopted. Suggested depth 60km.

Frederico Greve.

Instituto Seismológico de la Universidad de Chile, 1945. "Lista de Sismos sensibles al Hombre recollectados por media del Servicio de Postales informativas" p. 12. U.S.C.G.S. Seismo. Bull. M.S.I. 123, Washington, p. 42.

$$A = +.2666$$
, $B = -.7969$, $C = -.5421$; $\delta = 0$; $h = +1$; $D = -.948$, $E = -.317$; $G = -.172$, $H = +.514$, $K = -.840$.

		Δ	Az.	Ρ.	6	о-с.	s.	0 - C.	Su	pp.	L.
		•	. 0	m.	s.	s.	m. s.	8.	m. s.		m.
La Plata	E.	11.4	103	i 2 :	37	-10	4 51	- 5	(5.8
	N.	11.4	103	2	47	0	4 57	+ 1	(Section (5.4
	Z.	11.4	103		42	- 5	-	1			5.6
La Paz	57.57	16.7	11	i 4	3	+ 6	(and a la	0.44664			5.0
Huancayo		21.2	351	е 5	7	+18	e 8 43	+ 2			e 10·4
St. Louis		73.4	346	i 11 :	33	- 3	e 21 0	- 5	e 11 45	pP	
Tucson		74.8	327	i 11	44	0	- FA (1)	12		-	,
Palomar		78.6	323	1 12	5 a	0		_			_
Pierce Ferry		$79 \cdot 4$	327	i 12	10	+ 1	(
Riverside	z.	79.4	323	i 12	9 a	0	-			_	
Boulder City		79.7	326	i 12	10	- 1	0.	100	20.24		
Mount Wilson	1	79.9	323	i 12	12a	0	-				-
Pasadena		$79 \cdot 9$	323		12a	0			i 12 26	\mathbf{pP}	
Overton		80.0	327		13	0	*****	-	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	- Table	
Santa Barbar	a z.	80.9	322	i 12	19	+ 2	-	_	•	-	
Haiwee		81.4	324	i 12	20	0	1323	· 7	2017		-
Tinemaha		82.3	324	i 12	24 a	- 1	-	4	****		
Shasta Dam		87.1	324		46	- 3	-		<u>222</u> 3	_	

Additional readings:—
Huancayo e = 5m.53s.
St. Louis esSE = 21m.22s.
Tucson i = 12m.3s. and 13m.1s.
Riverside eZ = 12m.22s.
Mount Wilson iZ = 12m.25s.
Tinemaha eZ = 12m.39s., iNZ = 13m.9s.

Sept. 3d. Readings also at 1h. (Auckland), 3h. (La Paz, Boulder City, Overton, Pierce Ferry, Tucson (2), Mount Wilson, Riverside, and Tinemaha), 5h. and 7h. (Samarkand), 8h. (La Paz), 10h. (La Plata and Collmberg), 11h. (Samarkand), 13h. (Collmberg), 14h. (Collmberg and near Stalinabad), 16h. (La Paz, St. Louis, Tucson, Mount Wilson, Pasadena, Palomar, Riverside, Tinemaha, and Shasta Dam), 18h. (College), 19h. (near La Paz), 22h. (near Bogota).

Sept. 4d. 11h. 14m. 0s. Epicentre 37°·3N. 118°·1W.

$$A = -.3756$$
, $B = -.7034$, $C = +.6034$; $b = -6$; $h = -1$; $D = -.882$, $E = +.471$; $G = -.284$, $H = -.532$, $K = -.797$.

		Δ	Az.	Ρ.	$\mathbf{O} - \mathbf{C}$.	s.	0 – C.	Sur	p.	L.
		•	•	m. s.	s.	m. s.	8.	m. s.		m.
Tinemaha		0.2	211	i 0 0k	-10	i 0 2	-14			
Haiwee		1.2	175	i 0 23k		i 0 39	- 2	****	-	-
Fresno	N.	1.5	247	i 0 27	- 1	i 0 34	-15	 -		-
Lick		2.8	270	e 0 48	+ 1	e 1 23	+ 1	i 0 54	Pg	
Boulder City		3.0	117	i 0 52	+ 2	e 1 27	0	i 0 57	P*	_
Overton		3.0	105	i 0 52	+ 2	e 1 27	0	i 0 59	$\mathbf{P}_{\mathbf{z}}$	
Santa Clara	E.	3.1	271	e 1 35	S*	-		3 (<u>3 (1)</u>)	-	-
Pasadena	27,4700.00	$3 \cdot 2$	181	i 0 52	0	i 1 38	S*		-	
Berkeley		3.3	280	i 0 56	+ 3	e 1 37	+ 2		_	_
Branner		3.3	272	e 0 54	+ 1	e 1 34	- 1	i 1 4	P_{g}	
Pierce Ferry		3.5	109	i 0 59	+ 2	i 1 48	S.	i 1 8	P.	
Shasta Dam		4.8	317	e 1 18	+ 3	e 2 19	+ 7	i 1 26	P.	<u> </u>
Tucson		7.8	128	e 2 0	+ 2	(e 3 35)	+ 7	1 2 33	P.	e 3.6

Additional readings:—
Boulder City i = 1m.38s. and 1m.44s.
Overton i = 1m.38s. and 1m.44s.
Shasta Dam e = 2m.29s.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1945

279

Sept. 4d. 17h. 14m. 5s. Epicentre 46°-8S. 165°-8E. (as on Sept. 1d.).

Intensity V in South Island.

R. C. Hayes.

"Earthquakes in New Zealand during the Year 1945." New Zealand Journal of Science and Technology, vol. 27, No. 6, Sect. B, 1946. Wellington, 1947, p. 438. Map of Epicentres, p. 436.

	F(6)(4)		(4)			6	0 0	O		т.
		Δ	Az.	Ρ.	O C.	s.	O-C.	Sup	p.	L.
		٥	0	m. s.	8.	m. s.	s.	m. s.		m.
Monowai		1.6	51	0 55?	+25	1 18?	+27		-	_
Christchurch		5.8	58	1 29	0				*****	-
Kaimata		5·8 5·9	45	1 34	+ 3	****				
Wellington		8.5	53	2 9	+ 2	3 40 ?	- 5			-
New Plymouth		9.8	41	2 26	+ 2					_
Auckland		12.0	37	2 51	- 4	· ·	2000		-	
Riverview		17.1	314	i 4 la	- 1	i 7 11	- 1	i 4 11	\mathbf{PP}	e 8·2
Brisbane		21.8	330	i 4 55	- 1	i9 0	+ 8		_	e 9·7
Berkeley		106.0	53			e 27 14	PS	e 33 59	SS	e 53.5
Tucson		108.6	63		_	e 30 0	PPS	1000 100 100 100 100 100 100 100 100 10	-	e 51·0
New Delhi	N.	109.3	292			e 28 54	PS			
St. Louis	N.	125-6	69			e 28 8	{+17}	e 31 4	\mathbf{PS}	e 53·9
Cheb		162-1	292				$\{-28\}$			e 69·9
De Bilt		166.3	300	manus.		e 44 55?	SS	-	1	e 87 · 9
Granada		167 -6	223	e 25 35	PP	i 31 53	$\{+2\}$			
Toledo		169.9	231	e 21 31	PKP.	Or Lory (In A. Christel)		-	-	95.9

Additional readings:—
Riverview PEN = 4m.4s., iSN = 7m.14s., iE = 7m.19s., iSSN = 7m.31s.

Brisbane ePE = 4m.58s., eSN = 9m.3s.

Berkeley eN = 28m.11s., eE = 48m.11s., eN = 49m.55s.

St. Louis eSSS?N = 40m.51s. Long waves were also recorded at Tananarive, Sitka, Pasadena, Chicago, Bermuda, San Juan, Huancayo, and other European stations.

Sept. 4d. Readings also at 0h. (Triest, near Basle, Chur, Neuchatel, and Zürich), 1h. (Alicante), 3h. (Helwan, Collmberg, Tucson, Mount Wilson, Pasadena, Riverside, and Tinemaha), 7h. (Wellington, Boulder City, Overton, Pierce Ferry, Tucson, Mount Wilson, Palomar, Riverside, Tinemaha, and Collmberg (2)), 9h. (near Samarkand, Stalinabad, and Tashkent), 10h. (Collmberg), 12h. (La Paz (2), Mount Wilson, Pasadena, Palomar, Riverside, Tinemaha, Tucson, Pierce Ferry, Balboa Heights, near Bogota, and near Leninakan), 15h. (Arapuni, Auckland, Riverview, and Wellington), 16h. (Collmberg (2) and Toledo), 17h. (Toledo), 21h. (Stalinabad, Tashkent, La Plata, and near Tucson).

Sept. 5d. 1h. 33m. 40s. Epicentre 38° 6N. 57° 2E. (as on 1939 Sept. 19d.).

$$A = + \cdot 4244$$
, $B = + \cdot 6586$, $C = + \cdot 6213$; $b = -12$; $h = -1$; $D = + \cdot 841$, $E = - \cdot 542$; $G = + \cdot 337$, $H = + \cdot 522$, $K = - \cdot 784$.

	Δ	Az.	P		O-C.	s.	0-C.
	0	0	m.	s.	s.	m. s.	S.
Samarkand	7 - 7	79	2	40	P		-
Stalinabad	9.1	86	e 2	10	- 4	-	
Tashkent	9.7	70	e 2	22	0		
Sverdlovsk	18.4	6	e 4	20	+ 2	i 7 48	+ 7
Moscow	21.6	329	e 4	54	0	e 8 47	- 2
Helwan	23.0	256	e 5	5	- 2	e 9 20	+ 6

Long waves were recorded at some European stations.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1945

280

Sept. 5d. 21h. 48m. 48s. Epicentre 5° 2S. 152° 4E. Depth of focus 0.005.

A = -.8826, B = +.4614, C = -.0901; $\delta = -1$; h = +7; D = +.463, E = +.886; G = +.080, H = -.042, K = -.996.

1862		Δ	Az.	Р.	0 - C.	s.	0 – C.	Sı	ipp.	L.
Brisbane Riverview Auckland Arapuni Wellington		22·2 28·5 37·6 39·0 41·1	179 183 150 151 155	m. s. i 4 51 i 5 52k 7 27 8 12	s. - 1 + 1 pP + 50 + 1	m. s. i 8 58 i 10 38 i 13 4 13 6 13 47	**************************************	m. s. e 5 7 i 6 10 8 42 7 57	pP pP PP	m. e 14·5 16·2 21·2 19·2
Christchurch Tokyo Hikone Perth Nagano		42.1 42.4 43.0 43.3 43.7	158 345 342 228 344	e 7 59	$^{+}_{-}^{0}_{6}^{0}$	14 5 13 54 1 15 12	$+\frac{3}{21} + \frac{53}{1}$	8 6 i 17 40	ss s	20·9 —
Hukuoka Hamada Sendai Wazima Mizusawa		43.8 44.3 44.5 44.8 45.3	333 336 348 343 348	8 8	+ 4 + 3 - 3 + 2 + 1	14 25 14 37 15 54 e 15 20	- 2 + 3 + 77 - 88	15 27	=	21·1
Sapporo Honolulu Calcutta Irkutsk Colombo	N. E.	49·1 55·4 68·4 70·3 73·4	$350 \\ 60 \\ 297 \\ 331 \\ 278$	e 8 44 e 9 27 10 57 11 42	$^{+}_{-}^{1}_{3}^{1}_{+15}$	e 17 23 e 20 46 21 13	$+\frac{15}{8c8} + \frac{15}{23}$	e 19 23 e 21 29	ScS	e 22·9 — 29·6
Kodaikanal Hyderabad New Delhi Bombay College	E.	76.2 76.3 79.6 81.9 82.4	282 289 301 290 22	i 10 50 11 41 i 12 1 i 12 14 e 12 15	$ \begin{array}{r} -53 \\ -3 \\ -1 \\ 0 \\ -1 \end{array} $	i 20 30 21 25 i 21 56 i 22 27 e 22 25	$ \begin{array}{rrr} -51 \\ + 3 \\ - 1 \\ + 6 \\ - 1 \end{array} $	13 30 14 16 i 22 56 i 28 17 e 27 47	PP PS SS SS	35·7 36·1 e 33·8
Sitka Tashkent Ferndale Ukiah Berkeley	Е.	85·0 88·2 88·3 88·9 89·5	32 311 49 51 53	i 12 28 i 12 48 e 12 50 12 53	$\begin{array}{c} - & 2 \\ + & 3 \\ + & 2 \\ + & 2 \end{array}$	i 22 55 e 23 30 e 23 12 i 23 41 i 23 24	$^{+\ 3}_{+\ 8} \ ^{-\ 11}_{+\ 12} \ ^{-\ 10}$	e 15 45 e 16 32 e 16 12 23 19	PP PP SKS	e 35·1 e 40·2 e 34·9 36·6
Branner Santa Clara Shasta Dam Lick Seattle	E.	89·5 89·7 89·7 90·1 90·6	53 49 53 43	i 12 56 i 12 52	+ 4 0	e 23 27 e 23 31 i 23 23 e 23 25 e 23 37	$ \begin{array}{r} $	e 16 20 e 25 12	PP PS	e 40·8 e 40·8 e 41·0 e 39·9
Santa Barbara Pasadena Tinemaha Haiwee Grand Coulee	z.	$91.2 \\ 92.4 \\ 92.6 \\ 92.7 \\ 92.9$	56 56 53 54 42	i 12 50 i 13 5a i 13 7 e 13 8 e 13 7	$ \begin{array}{cccc} & 9 & \\ & 0 & \\ & 1 & \\ & + & 2 & \\ & 0 & \\ \end{array} $	e 24 3 e 23 40 e 23 56	$\begin{bmatrix} + & 3 \\ + & 8 \end{bmatrix} \\ - & 9 \end{bmatrix}$	e 30 11 i 13 20 i 23 40	ss pP sks	e 37·4 e 43·9
La Jolla Riverside Palomar Boulder City Sverdlovsk		93·1 93·4 95·3 95·3	57 56 57 54 326	e 13 7 e 13 8a i 13 10 i 13 18 i 13 17	$-\begin{array}{ccc} 1 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 &$	i 23 49 ė 24 25 24 34	- [+13] + 9	i 13 16 i 13 18 i 13 32 i 13 31	pP pP pP	
Overton Pierce Ferry Butte Salt Lake City Bozeman		95·6 95·9 97·2 97·7 98·3	53 54 43 50 44	e 13 23 i 13 22 e 13 32	+ 4 + 1 - 0	i 24 4 i 24 8 e 24 24 e 24 12	$\begin{bmatrix} +15 \\ +11 \\ -21 \\ + 9 \end{bmatrix}$	i 17 11 e 29 28 e 26 2	PP PS	e 39·6 i 39·5 e 39·4
Tucson Saskatoon Tananarive Rapid City Leninakan		98.5 100.8 102.3 103.9 107.5	$ \begin{array}{r} 58 \\ 38 \\ 250 \\ 46 \\ 311 \end{array} $	i 13 35 17 54 e 18 23 e 14 20	PP PP PP	e 24 57 24 51 e 24 33 i 24 39	$^{+\ 5}_{-20} \ [+11] \ [+\ 9]$	e 17 27 27 54 27 27 e 28 0 18 19	PPS PPS PPS PKP	e 40·4 42·2 e 50·2 e 48·4
Moscow Florissant St. Louis Ksara Chicago		108·1 114·4 114·5 114·8 115·6		e 19 22 e 18 47 e 19 19 e 16 33	PP [+14] PP	e 25 27	[- 5] [+ 9] [+ 7] [+ 9]	14 28 i 29 16 e 19 26 e 28 37 e 27 33	PS PS PP	e 48·3

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1945

		Δ	Az.	P.	0 -C.	_ s.	o – c.	m. s.	p.	L. m.
	e.	115.6 115.6	336 336	m. s. e 19 35 e 19 48	PP PP	m. s. e 28 43 e 28 59	PS PS		PPS SS	e 57·2
Cincinnati Bucharest Helwan		118·7 119·0 119·4	48 319 301	i 19 55 e 21 8? 19 0	PP [+18]	26 7		20 42	_ PP	e 55·4 51·2
Bergen Copenhagen Sofia Ottawa Belgrade		119·6 120·4 121·6 122·2 122·5	342 335 318 38 321	13 40 i 20 12 e 18 48 18 49 e 20 25	$[\begin{smallmatrix} \mathbf{PP} \\ \mathbf{PP} \\ [+ & 2 \\ \mathbf{PP} \end{smallmatrix}]$	$\begin{array}{c} \mathbf{e} \ \begin{array}{c} 25 \ 55 \\ 26 \ & 31 \\ \\ \mathbf{e} \ & 25 \ & 52 \\ \mathbf{e} \ & 26 \ & 5 \end{array}$	[+22] $[+56]$ $[+10]$ $[+22]$	18 8 1 e 33 12 ? 20 21	PKP PP	60·2 57·2 e 48·5
Shawinigan Falls Jena	Z. N. Z.	122.8 122.9 123.0 123.4 123.9 123.9	43 52 331 35 331 331	e 21 36 i 18 52 e 19 6 e 19 9 e 19 4	$\begin{bmatrix} + & 3 \\ + & 16 \\ [+16] \\ [+18] \\ [+13] \end{bmatrix}$	e 25 32 e 26 9 e 26 7	$\begin{bmatrix} -12 \\ +25 \\ +23 \end{bmatrix}$	e 32 6 e 31 57 i 20 40 e 21 1 e 20 45	PPS PPS PP PP	e 50·2 e 66·7 53·2
Cheb Georgetown Seven Falls Aberdeen Philadelphia	N.	124·1 124·1 124·2 124·4 125·0	330 45 34 343 44	e 20 37	PPP ? ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !	e 32 47 30 21 i 30 40 e 25 55	PPS PS PS [+ 5]	e 39 12? 20 30 i 38 16 e 30 40	PP SSP PS	e 67·2 52·2 60·5 e 49·0
Fordham Edinburgh De Bilt Triest Strasbourg		$\begin{array}{c} 125.5 \\ 125.8 \\ 126.0 \\ 126.1 \\ 127.3 \end{array}$	343 336 325 331	e 20 54 1 18 58 e 19 8	[+ 7] PP [+ 3] [+13] [+ 2]		PS	e 20 46 e 38 12? e 23 32 e 38 42	SS PPP SSP	62·8 62·2
Uccle Chur Zürich Basle Neuchatel		127 · 8 127 · 8 127 · 8 128 · 2 128 · 8	335 329 330 330 330	e 19 2 e 19 0 e 19 2	[+ 2] $[+ 4]$ $[+ 1]$ $[+ 3]$ $[+ 2]$			e 20 54	PP 	e 59·2
Huancayo Paris Halifax La Plata Clermont-Ferranc	z.	129·5 129·6 129·7 130·9 131·6	110 334 33 147 331	e 22 26 22 24	[+ 3] SKP SKP [+ 3]	e 38 52	SSP	e 21 32 i 21 12 e 21 26	PP PP — PP	e 53·1 53·2 e 63·2
Marseilles Bogota La Paz Barcelona Bermuda		132·2 133·7 134·5 135·2 136·1	327 88 119 328 47	e 19 12 e 16 34	[+ 3] [+ 5]	e 22 48	[+ 8]	i 19 28 I i 19 16 a e 22 19	PKP PKP	e 66·2 e 64·7 e 62·6 e 54·6
Tortosa Toledo San Juan Granada Malaga	z.	136·5 139·5 140·2 141·3 142·1	331 67 328	e 19 17 i 19 23 i 19 33	[-3] $[+2]$ $[+9]$	e 40 1	SS SS	i 23 11 e 22 51 e 22 24	PP PKS PP PP	e 58·8 66·8
Lisbon San Fernando Fort de France		142·7 143·2 145·7	336 331 72	i 19 27	[+ 1 [0 [+ 1	23 17 1 i 23 8		i 22 24 	SSP PP	e 67·9
Additional read	am	K8:—								

Additional readings:— Brisbane ePE = 4m.54s. Riverview iN =9m.41s., iZ =10m.28s., isS?N =10m.59s. Auckland PPP=9m.15s., $P_cS=13m.48s.$, SS=14m.59s.Wellington sPZ=8m.12s., sPPZ=9m.47s., $sP_cP=9m.57s.$, iZ=11m.28s., $sS_cP=9m.57s.$ 14m.12s., sS?Z = 14m.42s., SS? = 17m.12s.? sS = 14m.32s..SSE = 16m.39s.,eEZ = 8m.44s., iEZ = 10m.55s.,Christchurch $S_cS = 17m.40s.$ Kodaikanal PSE = 21m.0s., SSE = 25m.12s.Hyderabad PSE = 22m.3s., SSN = 26m.50s.Sitka i=13m.31s., ePPP=17m.48s., e=20m.0s., ePS=23m.52s., e=25m.2s. and 28m.54s., eSSS = 32m.8s.Uklah eSKS =23m.20s., e =24m.42s. and 29m.40s. Berkeley ePPZ=16m.19s., ePPE=16m.37s., ePPN=16m.39s., eE=22m.19s., iPPSE= 24m.39s., ePPSZ = 24m.45s., ePPSN = 24m.54s., e = 29m.51s. Shasta Dam i=12m.59s. Seattle eSKS? = 24m.28s.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1945

282

```
Tashkent eSP = 24m.29s.
Pasadena eE = 23m.39s.
Boulder City iPP = 17m.7s., iSKS = 23m.59s.
Sverdlovsk iPP = 17m.11s., SKKS = 24m.1s., SS = 30m.58s., SSS = 34m.48s.
Salt Lake City e = 30m.24s.
Tucson ePPP=19m.42s., e=23m.7s., iSKS=24m.18s., eSS=31m.53s.
Saskatoon SS = 32m.55s., SSS = 36m.12s.?
Tananarive SSN = 32m.34s., SSSE = 36m.27s.
Rapid City eSS? = 32m.54s.
Moscow PP = 18m.45s., pPP = 18m.59s., S = 26m.20s., PS = 28m.7s.
 Florissant iSKKSE = 26m.32s.
St. Louis iZ = 20m.23s., eSKKSE = 26m.36s., eSE = 27m.27s., iPSE = 29m.18s., iE =
     36m.9s.
Chicago eSS = 34m.48s.
Upsala eSS?E = 35m.24s., eSSS?E = 39m.36s., eE = 40m.54s., eN = 41m.0s.
                                                                                and
     45m.37s.
Helwan PKSZ = 22m.37s., PPPZ = 23m.24s., eSZ = 28m.40s.
Bergen PPSE = 28m.48s., SSEN = 31m.12s.?
Copenhagen PS = 30m.17s., 31m. 26s., SS = 36m.42s., 37m.24s., SSS = 41m.42s.
Ottawa SKKS = 27m.24s., SS = 37m.12s., SSS = 41m.12s.?
Belgrade e = 24m.9s. and 33m.8s.
Pennsylvania e = 26 \text{m.41s.} and 36 \text{m.15s.}, eSS? = 37 \text{m.46s.}
Collmberg ePPP=23m.30s., ePS=30m.41s., eSS=37m.48s. and numerous other
    readings given without phase.
Seven Falls SS = 36m.36s.
Philadelphia eSS = 37m.33s., eSSS = 42m.14s.
Triest iPKS = 22m.32s., eSKKS = 30m.50s., ePS = 34m.0s., eSS = 38m.57s., eSSS =
    42m.36s.
Huancayo e = 22m.31s., i = 22m.45s., ePPP = 23m.36s., ePS = 31m.38s., eSS = 38m.41s.,
    e = 46m.58s.
Paris e = 22m.21s., 23m.3s., and 24m.38s.
La Plata E = 22m.28s., EN = 22m.42s.
Clermont-Ferrand eSKP = 22m.34s.
La Paz PP=22m.4s., iSKP=22m.44s., iSKKS=28m.22s., S?=28m.32s., PPS=
    33m.32s.
Bermuda i = 30 \text{m.41s.}, \text{eSS} = 39 \text{m.14s.}
Tortosa SKPEN = 22m.49s., SKKSN = 29m.1s., PPSN = 34m.44s., SSN = 41m.0s.,
    SSSEN = 49m.12s.?
San Juan i = 19m.36s., c = 25m.3s., and 28m.27s., ePS = 33m.41s., c = 45m.57s.
Malaga iPKP<sub>2</sub>Z = 19m,39s., iPPPZ = 26m.31s., PPSZ = 36m.10s., SSZ = 42m.2s., QZ =
    58m.56s.
Lisbon PKPE = 19m.39s., E = 36m.36s., N = 38m.8s.
San Fernando iPPPZ = 26m.0s., eSSSE = 46m.31s.
    Long waves were also recorded at Ivigtut.
```

Sept. 5d. Readings also at 0h. (Collmberg), 1h. (near Malaga and Granada), 3h. (Tucson, Tinemaha, Palomar and Mount Wilson), 5h. (New Delhi, Christchurch and Wellington), 8h. (near La Paz), 12h. (Tucson, Tinemaha and Palomar), 13h. (Sverdlovsk and Collmberg), 14h. (Brisbane), 15h. (Riverview, Perth, Collmberg (2), Paris, Mount Wilson, Tinemaha, Palomar, Riverside, Boulder City, Tucson, St. Louis, San Juan and Bermuda), 16h. (Toledo), 18h. (Wellington, Christchurch and near Tucson), 19h. (near Tucson and near Ottawa), 20h. (Collmberg, near Erevan and Leninakan), 21h. (Collmberg), 22h. (Collmberg, near Zürich, Basle, and near Tucson), 23h. (Tananarive and La Plata).

Sept. 6d. 1h. 26m. 27s. Epicentre 5°.28. 152°.4E. (as on 5d.) Depth of focus 0.005.

A = -.8826, B = +.4614, C = -.0901; $\delta = -1$; h = +7.

		Δ	Az.	Ρ.	0-C.	8.	O-C.	Su	рр	L.
522000 P0320 005000		0		m. s.	8.	m. s.	8.	m. s.	T. T. T. T.	m.
Brisbane		22.2	179	i 4 51	- 1	i 8 51	+ 4		Y6=3	
Riverview		28.5	183					10 50		i 11.6
Auckland		37.6		7 90	- 10	e 10 41	+ 8	e 10 59	7	e 12·4
			150	7 30	\mathbf{pP}	13 8	+14	-		17.1
Arapuni		39.0	151	-	-	13 33	+17			
Wellington		41.1	155	7 42	+ 3	13 51	+ 4	7 51	\mathbf{pP}	19.6
Christehureh		42.1	158	7 49	+ 2	14 1	79074	0		
Perth		43.3	228		T 2	The state of the s	- 1	8 7	pP	20.2
Honolulu					_	i 17 41	SS	-	-	i 21·2
	5500	55.4	60			e 17 19	+11	annua.	-	e 24·8
Colombo	E.	73.4	278	e 18 33?	3	-	*	-		
New Delhi	N.	79.6	301	-		i 22 12	+15	i 23 7	PPS	

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1945

283

	Δ	Az.	P. m. s.	O – C.	s. m. s.	O – C. s.	m. s.	pp.	L. m.
Bombay E College Sitka Tashkent Ukiah	200	290 22 32 311 51	e 15 20 i 12 28 i 12 48	PP - 2 + 3	e 22 30 i 22 53 e 23 49 e 24 41	+ 4 + 1 + 27 PS	e 24 4 e 23 12	SKS	e 34·1 e 35·1 e 36·4
Berkeley Santa Clara Shasta Dam Pasadena Mount Wilson	89·5 89·7 89·7 92·4 92·5	53 53 49 56 56	e 12 53 e 12 49 e 13 5 e 13 9	$\begin{array}{c} - \\ + \\ - \\ 3 \\ 0 \\ + \\ 4 \end{array}$	e 23 41 e 24 49 e 23 33	+ 7 PS - 3	i 24 51 i 23 23	SKS	e 40·7 e 42·7 e 38·2
Tinemaha Haiwee Grand Coulee Riverside z. Palomar	$92.6 \\ 92.7 \\ 92.9 \\ 93.1 \\ 93.4$	53 54 42 57 57	i 13 6 e 13 7 e 13 7 i 13 9 i 13 11	$\begin{array}{c} + & 0 \\ + & 1 \\ 0 \\ + & 1 \\ + & 2 \end{array}$					
Boulder City Sverdlovsk Overton Pierce Ferry Salt Lake City	95·3 95·3 95·6 95·9 97·7	326 326 53 54 50	i 13 18 i 13 18 i 13 26 i 13 22	$^{+}_{+}\overset{0}{\overset{7}{\overset{1}{1}}}$	e 24 15 i 24 23 e 24 12	$-10 \\ -2 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1$	i 17 6 i 17 9 i 13 43 i 14 17	PP PP pP sP	e 41·1
Bozeman Tucson Rapid City Moscow Florissant	98·3 98·5 103·9 108·1 114·4	44 58 46 327 50	e 13 34 e 14 19	+ 1 P	i 24 15 e 24 40 e 24 53 e 25 41	[+12] $[+10]$ $[+4]$ $[+27]$	i 24 33 e 17 40 	S PP SKKS	e 45.0 e 44.8 e 50.2
St. Louis Chicago Upsala Helwan z. Copenhagen	114.5 115.6 115.6 119.4 120.4	50 46 336 301 335	e 19 56 — e 20 6 i 20 18	PP PP	e 25 40 e 29 19 e 40 15 	[+26] PS SSS PS	e 26 52 e 35 44 	SKKS SS - PPS	e 49·6 e 60·2
Ottawa Collmberg Cheb Seven Falls Aberdeen N	122·2 123·0 124·1 124·2 124·4	38 331 330 34 343	18 49 e 15 51 e 23 6 e 20 33?	[+ 2] P PPP PP	e 25 51 e 24 57 e 30 50	[+, 9] [-,47] — PS	e 20 21 e 20 29 e 32 57 e 33 33	PP PP	51.6 61.6 50.6 e 64.7
Philadelphia Triest Uccle Huancayo Paris	125.0 126.1 127.3 129.5 129.6	$\begin{array}{r} 44 \\ 325 \\ 335 \\ 110 \\ 334 \\ \end{array}$	e 16 48 e 18 33? e 22 32 e 19 5	$\begin{bmatrix} -25 \\ SKP \\ [+3] \end{bmatrix}$	e 26 0 e 32 22 e 22 24	PPS SKP	e 30 36 e 39 2 e 21 13	PS SSP PP	e 59·8 e 58·6 e 54·0
Clermont-Ferrand La Paz Bermuda Tortosa Toledo	131 ·6 134 ·5 136 ·1 136 ·5 139 ·5	331 119 47 328 331	e 19 10 i 19 21 i 22 45 e 19 18	[+4] [+10] SKP [-2]	e 22 25 i 22 23 e 22 53 i 25 48	SKP SKP SKP [-30]	e 21 27 i 21 49 e 39 54	PP PP SS	e 62·6 63·6 e 63·7 e 80·6 57·7
San Juan Granada San Fernando Fort de France	$140.2 \\ 141.3 \\ 143.2 \\ 145.7$	$\begin{array}{r} 67 \\ 328 \\ 331 \\ 72 \end{array}$	e 19 27 20 44 a i 19 30 e 19 35	$[+6] \\ [+80] \\ [+3] \\ [+4]$	e 22 57 e 23 10	SKP	e 34 57 24 16 i 22 36	PPS PP	e 58·0 72·8 e 71·6

```
Additional readings:— Wellington PPZ =9m.13s., PPPZ =9m.59s., Q?Z =17m.15s. Christchurch PPEZ =9m.53s., SSEN =16m.29s., S<sub>C</sub>S =17m.38s. Sitka i =23m.11s. Berkeley eN =28m.6s., eE =28m.11s. Tashkent ePPS =24m.38s. Boulder City i =13m.56s., eSKS =23m.57s. Sverdlovsk eSKS =23m.50s., PS =28m.53s., SS =31m.3s. Moscow SS =33m.51s. Helwan eZ =21m.27s. and 32m.40s. Copenhagen 27m.49s., SS =36m.45s., SSS =41m.45s. Ottawa PPS =31m.57s., SS =37m.3s. Collmberg i =18m.51s., 19m.3s., and 19m.15s., e =21m.42s., 25m.11s., and 28m.33s. Philadelphia eSS =37m.46s., e =48m.50s. La Paz Z =22m.41s.
```

San Juan e = 23m.58s. Long waves were also recorded at Tananarive, Seattle, Columbia, Bergen, De Bilt, and Ivigtut.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

284 1945

September 6d. 14h. 49m. 32s. Epicentre 5°.2S. 152°.4E. Depth of focus 0.005. (as at 1h.).

	Δ	Az. P.	O - C.	S. O-C. m. s. s.	m. Sup	p. L. m.
Brisbane Riverview Auckland Arapuni Wellington	22·2 28·5 37·6 39·0 41·1	179 i 4 5 183 e 5 5 150 6 3 151 7 2 155 7 5	$ \begin{array}{r} $	i 8 54 + 7 i 10 39 + 6 i 12 53 - 1 i 13 34 + 18 i 13 49 + 2	i 5 4 9 i 6 9 i 7 33 9 43	pP i 11.6 pP e 13.8 pP 17.5 pP 19.5 PcP 19.2
Christehurch Perth Honolulu Calcutta Colombo E.	42·1 43·3 55·4 68·4 73·4	158 8 6 228 14 25 60 e 11 5 297 e 12 45 278 11 3	PPS PP PP	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9 42 =	PP 1 20·2 - 1 19·1 - e 25·4
Kodaikanal E. Hyderabad New Delhi N. Bombay College	76·2 76·3 79·6 81·9 82·4	282 (i 12 289 11 49 301 e 12 290 e 12 10 22 —	+ 3	(i 21 27) + 6 21 23 + 1 i 22 16 + 19 i 22 15 - 6 e 22 19 - 7	(14 37) 14 11 —	PP (35·3) PP 37·2 — e 34·2
Tashkent Berkeley Pasadena Mount Wilson Tinemaha	88 · 2 89 · 5 92 · 4 92 · 5 92 · 6	311 e 12 33 53	- 2	i 23 22 + 0 e 23 47 + 13 = =	e 23 8 e 29 34 —	SKS e 40·6 — e 37·7 — =
Haiwee Riverside z. Palomar Sverdlovsk Tucson	92·7 93·1 93·4 95·3 98·5	54 i 13 6 56 i 13 6 57 i 13 13 326 i 13 13 58 e 13 3	- 2 0 - 5	24 18 - 7 e 27 7 PPS	= 17 4	PP e 41.4
Rapid City Moscow Florissant St. Louis Chicago	103.9 108.1 114.4 114.5 115.6	327 e 14 16 50 e 19 26 50 e 19 26 46 e 18 55	PP PP	e 24 52 +22 25 1 [+13] e 26 55 S e 25 11 [-3] e 25 40 [+21]	e 28 59 e 26 57	PP e 49·2 PS e 46·2
Upsala Helwan Bergen Copenhagen Ottawa	115.6 119.4 119.6 120.4 122.2	336 e 21 28 301 e 20 10 342	PP [+4]	e 25 16 [- 3] e 30 4 PS e 29 58 PS 26 11 [+36] 26 4 [+22]	20 5	SS e 53·5 50·5 PP 50·5
Belgrade Collmberg z. Cheb Seven Falls Philadelphia	$\begin{array}{c} 122.5 \\ 123.0 \\ 124.1 \\ 124.2 \\ 125.0 \end{array}$	321 ————————————————————————————————————	PPP	e 27 2 SKKS i 25 13 [-31] 30 16 PS e 25 58 [+ 8]	e 32 58 e 33 50 37 28?	SSP e 72·6 PPS — SS 50·5 PS e 49·5
De Bilt Triest Uccle Huancayo Paris	$\substack{126.0\\126.1\\127.3\\129.5\\129.6}$	336 e 20 47 325 e 20 52 335 e 19 7 110 e 22 7 334 e 18 28	PP [+ 3] PKS	e 32 23 PPS e 30 49 PS e 27 287 SKKS e 22 33 SKP e 22 38 SKP	e 20 54 e 38 7 e 21 10	PP e 60·5 SS e 54·0 PP —
Clermont-Ferrand La Paz Bermuda Tortosa Toledo	131.6 134.5 136.1 136.5 139.5	331 e 21 23 119 i 19 13 47 — 328 e 21 50 331 e 19 19	[+6] PP	e 22 37 SKP 22 52 SKP e 22 28 SKP e 22 53 SKP	e 40 4 i 23 12 e 40 41	SSP e 64.5 — e 64.5 — e 64.5 — 56.1
San Juan Granada Lisbon San Fernando z. Fort de France	140.2 141.3 142.7 143.2 145.7	67 e 19 23 328 e 19 3 336 19 23 331 e 19 13 72 e 19 33	$\begin{bmatrix} -19 \\ -4 \end{bmatrix}$	e 26 4 [-19]	e 22 32	SKP e 65.7 PP 70.8 68.5 PKP

Additional readings :-

Riverview iNZ = 6m.37s., iPPNZ = 6m.51s., isSiNZ = 11m.6s. Auckland i = 13m.23s., S_cS = 17m.24s. Wellington P_cS = 13m.33s., S = 14m.4s. Christchurch SEZ = 14m.6s., SSEN = 16m.34s., S_cSEZ = 17m.30s. Kodaikanal SSE = (25m.40s.), readings increased by two minutes.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1945

285

```
Hyderabad PSN = 22m.6s.
Sverdlovsk SKS = 23m.34s., SS = 30m.50s., SSS = 34m.28s.
Tucson ePP = 16m.38s., e = 21m.17s.
Moscow PS = 27 \text{m.51s.}
Florissant eE = 29m 26s
St. Louis ePS?E = 29m.10s.
Chicago eSS = 35m.1s.
Upsala eE = 25m.40s., 40m.28s., and 45m.9s.
Helwan eZ = 20m.40s, and 21m.34s.
Copenhagen SKKS = 27m.33s., 32m.58s., and 34m.4s., SS = 37m.46s.
Ottawa SS = 37m.28s.?
Collmberg iZ = 25m.8s., eZ = 28m.46s.
Philadelphia eSS = 37m.33s.
Uccle eSKPEN = 22m.19s., ePPS = 32m.41s.?
San Juan e = 20 \text{m.8s.}, 31 \text{m.44s.}, and 33 \text{m.7s.}, eSS? = 41 \text{m.20s.}
San Fernando ePPZ = 23m.29s.
Long waves were also recorded at Ukiah, Santa Clara, Tananarive, Prague, and Buch-
    arest.
```

Sept. 6d. Readings also at 0h. (Christchurch and Collmberg), 3h. (Collmberg, Palomar, Riverside, Tinemaha, Pasadena, Sitka, Auckland, and Riverview), 4h. (Helwan, Collmberg, and Tashkent), 10h. (Collmberg), 11h. (Upsala, Bergen, Collmberg, Pierce Ferry, Boulder City, Palomar, Riverside, Tinemaha, Pasadena, Riverview, and Brisbane), 12h. (Alicante), 15h. (Samarkand), 19h. (Collmberg and Samarkand).

Sept. 7d. 6h. Pacific. Undetermined shock.

```
Brisbane ePZ = 14m.52s., ePN = 14m.55s., eSN = 19m.8s., iN = 22m.50s.
Riverview iN = 16m.0s., 17m.34s., and 20m.17s., iEN = 20m.50s., iE = 21m.57s., eLE =
    24m.24s.
Wellington S? = 19m.55s., eZ = 23m., Q = 30m.?, RZ = 32m.?
Shasta Dam e = 22m.54s.
Auckland e = 23m.?, L = 29m.?
Santa Barbara iPZ = 23m.23s.
Christchurch S = 23m.27s., QEN = 26m.20s., R = 29m.10s.
Pasadena iP = 23m.28s., iZ = 23m.33s., eLZ = 51.3m.
Mount Wilson ePEN = 23m.31s.
Tinemaha iPEZ = 23m.31s.k.
La Jolla ePEZ = 23m.32s.
Haiwee iPEZ = 23m.33s.
Riverside iPZ = 23m.33s.
Palomar iP = 23m.34s., iZ = 23m.39s.
Boulder City iP = 23m.42s., e = 27m.24s. and 28m.30s.
Overton iP = 23m.45s.
Pierce Ferry iP = 23m.45s.
Tashkent eP = 24m.15s., eS = 34m.44s., PPS = 36m.5s., eSS = 40m.37s.
La Paz P = 27m.15s., iZ = 27m.36s.
Collmberg iZ = 29m.29s., eZ = 31m.7s.
San Fernando iP?Z = 30m.13s.
Paris e = 32m.6s.?, e = 33m., eL = 80m.
Sverdlovsk eS = 34m.47s.
St. Louis eE = 39m.27s., eLE = 62m.
Long waves were also recorded at Arapuni and Tucson.
```

Sept. 7d. 15h. 48m. 20s. Epicentre 45°·7N. 26°·8E. Focus at Base of Superficial Layers (as at 1945 March 12d.).

Intensity V at Bucharest, epicentre near Vrancea. Bull. Seism. de l'Observatoire de Bucarest, 1945, Vol. XI, p. 22. Suggested depth 150km.

$$A = +.6255$$
, $B = +.3160$, $C = +.7133$; $\delta = -10$; $h = -4$; $D = +.451$, $E = -.893$; $G = +.637$, $H = +.322$, $K = -.701$.

	Δ	Az.	P.	0-C.	s.	0 - C.	Sup	op.	L.
	0	0	m. s.	s.	m. s.	s.	m. s.		m.
Campalung	1.3	254	i 0 29	+ 7	i 0 46	+ 8		-	_
Bucharest	1.4	198	i 0 30	+ 7	0 47	+ 6		50.15	****
Sofia	3.9	221	i 1 4	+ 5	i 1 36	- 8			_
Belgrade	4.5	262	i 0 58k	-10	i 1 36	-24	i 1 52	SS	-
Valta	5.3	101	i 1 26	+ 7	1 2 26	+ 6			

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

286

1945

O-C. O-C.Supp. L. Az. m. s. m. m. Triest 275 303 Prague 10.6 SS Cheb 300 Collmberg 306 10.8Jena 11.4 303 Chur 12.0282 +23 $12 \cdot 1$ Moscow 30 Zürich 59k12.7284 +1713.3 290 51 +14Strasbourg i 5 + 9 e 3 16 Leninakan 13.3 105 e 5 46 ++-323 Copenhagen 13.5 ---13.8 146 e 6 +21Ksara Erevan 14.1 107 27 e 6 10 +14 \mathbf{PP} e 7.7 Upsala 15.2 34231 -15De Bilt i 3 38k e 8.7 15.6 304 + 9 Uccle 15.8 297 42k \mathbf{PP} e 7.7 + **14** 16.2 PP 166 Helwan 49 k + 44 Clermont-Ferrand 16.6 e 8.6 279i 3 48 +10pP PP 16.8 e 8.0 Paris 289 i 3 53 i 6 58 i 4 18 Barcelona 18.4 264 12 36 + 55 Kew 298 \mathbf{PP} 18.814 18k e 9·2 + Bergen 19.4329 25 PP 9.5 57 44 19.7264 \mathbf{PP} Tortosa 27 18.8 + Aberdeen $21 \cdot 2$ 315 33 SS 18 21.4 310 36 3 Edinburgh Toledo 23.3 267 i 9 pP 23.7 18 1 5 28 Sverdlovsk 50 i 5 10 Granada 24.2 261 16 k 33 15 35 $\mathbf{p}\mathbf{P}$ 5 10.9 Malaga 25.0 261 i 5 21 i 9 45 + \mathbf{PP} e 5 i 6 261 28 i 10 e 13.2 San Fernando 26.4 Lisbon 268 27.4 10 12 \mathbf{PP} 11.9 i 6 19 Tashkent 30.9 82 11 33.9 e 12 Frunse 47 2 New Delhi 42.9 95 i 8 20 pP59 1 14 16 N. 109 i 8 i 15 + Bombay 46.3 3215 Irkutsk 53 18 49.0 46 + 1 62.8 311 18 30 - 7 Seven Falls 42 +1843 10 6 e 19 24 \mathbf{pP} Weston i 10 43 66.1 306 Ottawa 19 30 311 10 45 66.5 68.6 295 e 19 57 Bermuda e 38.0 St. Louis 78.8 e 21 47 315pР e 12 24 e 21 51 San Juan $79 \cdot 1$ 285 \mathbf{pP} 82.0 337 e 12 16 Grand Coulee 91.6 329 Boulder City i 13 $\mathbf{p}\mathbf{P}$ i 13 29 332 + Tinemaha E. 91.8 e 13 2 e 45.5 Tueson 325i 13 11 93.4 \mathbf{pP} i 13 38

```
Additional readings :-
  Sofia iS_gEN = Im.44s.
  Belgrade iP_{\pi} = 1 \text{m.} 5 \text{s.}, iPP = 1 \text{m.} 24 \text{s.}, i = 2 \text{m.} 1 \text{s.}
  Collmberg iZ = 2m.39s., 2m.48s., 3m.0s., 3m.11s., 3m.18s., 3m.28s., 4m.6s., 4m.40s., and
       5m.13s.
  Copenhagen 3m.43s. and 5m.54s.
  Upsala iN = 3m.558., SSN = 6m.148., iN = 6m.268., 6m.328., and 6m.488.
  Uccle iSE =6m.46s.
  Helwan PPPNZ = 4m.13s., SNZ = 6m.49s.
  Paris e = 4m.38s., i = 4m.58s., isS? = 7m.33s.
  Kew ePPPEZ = 4m.36s., iN = 7m.2s., eSSSE = 9m.4s.?
  Bergen PPPEZ =4m.578.
  Tortosa IEN = 4m.30s., PPPE = 5m.8s.
  Edinburgh P_cP = 8m.45s.
  Granada eP_cP = 9m.2s., SS = 10m.33s.
  San Fernando iPPPZ =6m.22s., iSSZ =11m.13s.
  Lisbon PZ = 5m.46s.a, PPE = 6m.23s., N = 9m.30s., E = 9m.46s., SN = 10m.5s.
  New Delhi sSN = 14m.56s., S_cSN = 17m.31s.
  St. Louis is N = 22m.25s, ePS? N = 22m.53s.
  Boulder City ePP = 17m.6s.
  Tucson ePP = 16m.50s.
```

e 13 42

i 13 41

 $\mathbf{p}\mathbf{P}$

 $\mathbf{p}\mathbf{P}$

331

329

e 13 16

i 13 16

94.4

94.7

Z.,

Pasadena

Palomar

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1 945

287

Sept. 7d. Readings also at 0h. (near Berkeley, Branner, Lick, and San Francisco), 1h. (San Juan), 2h. (Haiwee, Palomar, Riverside, Tinemaha, Tucson, Boulder City, Overton Pierce Ferry, and Shasta Dam), 6h. (Mount Wilson, Pasadena, Palomar, Riverside, Tinemaha, Boulder City, Overton, and Pierce Ferry), 7h. and 9h. (near Mizusawa), 11h. (Palomar, Riverside, Tinemaha, Tucson, Boulder City (2), Pierce Ferry, St. Louis, near Berkeley, Branner, Fresno, Lick, San Francisco, and near Triest), 12h. (Palomar, Tinemaha, and near Malaga), 13h. (Arapuni, Auckland, Christchurch, Wellington, Brisbane, Riverview, Honolulu, Tucson, and Tashkent), 14h. (La Jolla, Palomar, Pasadena, near Tucson, Boulder City, and Pierce Ferry), 15h. (near Boulder City, Overton, Tucson, La Jolla, Pasadena, Palomar, and Riverside), 16h. (near Pehpel), 17h. (Collmberg), 18h. and 21h. (2), (near Tucson), 23h. (near Ksara).

Sept. 8d. 3h. 32m. 55s. Epicentre 58°.0S. 147°.0E. (as on 1940, Nov. 17d.). Rough.

Riverview	24	.3 10	i 5 22 a	+ 2	i 9 52	+15	i 5 42	pP	e 11·1
Arapuni	27				(11 17	The state of the s	_	-	11-3
Auckland	27			3	10 20				12.7
Kodaikanal	E. 88	1 293		775.33	e 20 44	?		_	-
Hyderabad	N. 93	8 297	-	****	24 7	$\{-3\}$		-	-
Bombay	97	8 293	e 21 51	3	e 31 30	88			
Helwan	128	3 266	e 19 26	[+17]	e 24 59	PPP	e 38 53	SS	
San Juan	133	4 134	e 23 8	PKS	e 25 13	PPP	e 39 17	SS	e 64·6
St. Louis	138	8 92	e 22 25	PP	e 40 25	SS	e 45 28	SSS	e 64·1
Philadelphia	147	6 107	e 19 47	[+ 3]	e 36 1	PPS	e 22 33	PKS	e 41.3
Triest	149	2 268	e 20 20		- T - <u>T</u> . T				
Ottawa	151	2 96	e 20 0	[+11]	e 30 35	PKKS	e 43 5	SS	71.1
Cheb	152	7 273	e 36 54	PPS	e 45 59	3		-	e 91·1
Collmberg	153	0 275	i 20 9	[+17]	e 24 27	\mathbf{PP}	*****		
Toledo	154		e 20 10	1 + 171	* 9 <u>44</u> 5%			+	82.1

L.

m.

11.1

i 10.9

pP

PP

[+26]267 154.2 e 20 19 Strasbourg Seven Falls 154.998 50 17 155.4 284 2658 [-2]Copenhagen De Bilt 156.9 273 Additional readings :-

Christchurch sP = 6m.13s., sS = 10m.5s.?

Wellington iZ = 7m.8s. and 10m.9s. Riverview iN = 5m.30s., iPPN = 6m.7s., iPPPZ = 6m.20s., iS_cSE = 15m.54s.

Auckland i = 11m.558.

San Juan e = 34m.59s.

St. Louis eZ = 22m.34s., eN = 41m.40s. and 48m.7s.

Collmberg iZ = 20m.21s., eZ = 21m.20s. and 22m.17s.Long waves were also recorded at New Delhi, Sitka, Butte, Tucson, Huancayo, La Paz, and other European stations.

Sept. 8d. Readings also at 0h. (Bermuda), 5h. (Toledo), 11h. (Collmberg and near Pehpei), 14h. (Collmberg), 20h. (near Mizusawa), 21h. (near Tucson), 22h. (near Chur. Zürich, and near Malaga (2)), 23h. (near Malaga (2)).

Sept. 9d. 4h. 2m. 56s. Epicentre 17°-4S. 167°-9E.

$$A = -.9336$$
, $B = +.2002$, $C = -.2972$; $\delta = +2$; $h = +5$; $D = +.210$, $E = +.978$; $G = +.291$, $H = -.062$, $K = -.955$.

	Δ	Az.	P.	O-C.	S. $O-C$.	Supp.	L.
	0	0	m. s.	s.	m. s. s.	m. s.	m.
Apia	19.9	83	i 4 35	- 1	e 8 50 +35		_
Auckland	20.3	164	4 39	- 1	8 47 -19	5 7 PP	10.1
Arapuni	21.7	163	5 4	+ 9	9 16 + 25		10.1
New Plymouth	22.2	167	5 2	+ 2	9 13 + 13	i 5 19 PP	12.2
Riverview	22.2	218	i 4 55k	5	195 + 5	i 5 15 PP	e 11·1

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1945

		Δ	Az.	P. m. s.	O – C.	S. m. s.	O - C.	m. s.	pp.	L. m.
Wellington Christchurch Honolulu Yokohama Shizuoka		24·5 26·4 51·1 59·0 59·1	167 172 43 333 332	5 24 5 36 e 11 32 e 10 4	+ 2 - 4 PP - 36	e 16 25 17 51	$-\frac{1}{3} + \frac{1}{1} - \frac{20}{1}$	6 1 8 54	PP PeP	e 20·7
Hunatu Koti Sendai Mizusawa	E.	59·4 60·4 60·9 61·6	332 327 336 337 337	e 8 30 e 10 14 10 21 e 10 26 10 21	+ 1 + 4 + 4 - 1	16 34 18 25 18 33 18 41 18 46	- 3 - 1 - 2 + 3			27.2
Hukuoka Sapporo Ukiah Berkeley Santa Clara		52·0 54·9 85·4 85·5	324 339 47 49	e 10 23 e 10 52 e 12 44 12 39 e 12 46	- 1 + 9 + 4 - 2 + 5	18 53 e 23 10 e 23 16	+ 5 - 1 - 4 + 4	e 16 10 13 32 e 30 38	pP	e 39·3 38·6 e 41·1
Shasta Dam Pasadena Mount Wilson La Jolla Riverside	Z. Z.	36.6 37.0 37.1 37.2 37.5	46 53 54 53	e 12 42 e 12 46 e 12 49 e 12 52 i 12 46	$ \begin{array}{rrr} $	e 23 10 i 23 16 —		i 16 16	PP =	e 35·8
Palomar Haiwee Tinemaha Sitka Irkutsk	E.	87.6 87.7 88.1 88.2 88.5	54 51 50 27 326	i 12 48 e 12 52 e 12 50 e 12 56 e 12 53	- 3 - 4 + 2 - 3	e 23 22 i 23 20 i 23 25	[+ 4] [- 2] [+ 1]	i 16 27 — e 18 11	PP — PPP	e 37·2
College Victoria Boulder City Colombo Pierce Ferry	Е.	38·7 39·5 90·2 90·2	17 38 52 276 52	e 12 31 e 12 51 13 15 i 13 3	$-26 \\ -13 \\ +11 \\ -4$	e 23 23 e 23 47 e 23 27 23 35	[- 2] - 3 [- 7] [+ 1]	e 16 34	PP —	e 37·1 43·1 48·1
Grand Coulee Tucson Kodaikanal Salt Lake City Logan	E.	91·9 92·0 93·4 94·0 94·4	40 57 280 48 47	e 13 17 e 13 9 e 11 35 e 17 5 e 16 10	+ 6 - 3 PP	e 23 34 e 23 38 e 24 34 e 23 37	$\begin{bmatrix} -10 \\ -6 \end{bmatrix} \\ + \frac{4}{21} \end{bmatrix}$	e 17 38 e 23 59 e 16 41	PP SKS PP	e 39·7 39·4 e 39·7 e 42·1
Hyderabad Bozeman New Delhi Bombay Saskatoon	N. 1	94·6 96·2 98·7 00·1 00·8	286 44 297 286 38	e 13 33 e 13 36	+ <u>9</u> - <u>13</u>	24 0 i 24 14 i 24 19 i 25 27 e 24 34	[+ 6]	e 26 19 32 58 —	PP PS SS	e 35·5 43·9 49·1
Rapid City Tashkent Florissant St. Louis Huancayo	1 1 1	01·1 07·6 09·7 09·8 11·0	$308 \\ 54 \\ 54 \\ 111$	e 18 12 i 14 28 e 19 8 e 18 38 e 22 42	PP PP PKS	e 24 34 i 25 8 e 25 7 e 25 8 e 25 4	[+6] [-4]	e 27 10 e 18 52 e 26 7 e 19 5 e 28 30	PS PP SKKS PP PS	e 39·2 — e 45·9
Tananarive Chicago Sverdlovsk Cincinnati La Paz	1 1 1	$11 \cdot 2$ $12 \cdot 1$ $13 \cdot 8$ $14 \cdot 3$ $15 \cdot 3$	$241 \\ 51 \\ 325 \\ 54 \\ 118$	e 19 23 14 53 e 14 56 e 14 32	PP PP	e 25 19 e 27 7 i 25 27 e 25 36 29 48	S [0] [+ 7]	e 28 54 e 28 54 19 31 e 19 40 i 19 47	PS PS PP PP	e 55·1 54·2
Columbia Pittsburgh Pennsylavania Georgetown Ottawa	1 1 1	$16.8 \\ 17.8 \\ 19.4 \\ 20.1 \\ 20.7$	60 52 52 55 47	e 19 50 e 20 7 e 20 17 e 18 23 18 50	PP PP PP [-30] [-4]	e 29 32 e 25 44 e 32 5 30 8 25 52	$\begin{array}{c} [+\ 2] \\ \text{PPS} \\ \text{PS} \end{array}$	e 36 8 e 31 13 e 35 17 20 3 20 22	SS PPS SS PP PP	6 54·4
Philadelphia Fordham Seven Falls Moscow San Juan	1 1	$21.5 \\ 22.4 \\ 23.8 \\ 26.4 \\ 28.8$	53 52 44 327 80	e 20 31 e 19 3 20 46 21 4 i 19 11	PP [+ 6] PP [+ 1]	e 27 13 e 28 40 26 0 27 57 e 26 52	[- 2] { + 1}	e 30 13 e 20 34 27 43 30 44 e 21 15	PS PP SKKS PS PP	e 59·4 e 54·6 40·1 e 58·1

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1945

```
Supp.
                                             O - C.
                                                              O - C.
                                                                                           L.
                              Az.
                                                                                          m.
                                                       m. s.
                                               8.
                                                                S.
                                                                        m. s.
                                    m. s.
                                                                                PPP
                                                       22
                                                               PKS
                                                                        23
                                                                                         63.1
                                                          30
                                       16
                                             [+5]
Ivigtut
                      129 \cdot 3
                                    19
                                                                                        e 66.5
                                                     e 39
                                    21
                      130.5
                                              \mathbf{PP}
Bermuda
                                                                                PKS
                                                                                       e 60·1
                                    21
                                              \mathbf{P}\mathbf{P}
                      132.5
                             340
Upsala
                             300
                                             [-17]
                      134 \cdot 2
Ksara
                                                       31 44
                                                                PS
                                                                                PKS
                                                                                         64.1
                     135.3
                             348
                                              \mathbf{P}\mathbf{P}
Bergen
                                                                                         58.1
                                                                PS
                                                                                PKS
                                                     1 32 28
Copenhagen
                                            [ + 3]
                     137.5
                                                                             4?) SS
                                                                        (40
                                                                                         40.1
Bucharest
                     138 \cdot 2
                             317
                                  e 21 16
                                              \mathbf{P}\mathbf{P}
                                                                SS
                                                       40 43
                                                                                 PP
                      138.5
                             295
                                  1 19 26k [- 2]
Helwan
                                                                                         67.4
                                                                                 SSS
                                                               PKS
                                                                      i 46
                             351 e 20 57
                                                     i 23 10
                  N. 139.6
Aberdeen
                                                                      e 22 27
                                                                                 \mathbf{P}\mathbf{P}
                                                                                       e 50.9
                             334 e 19 22
                                            [-10]
                     140.7
Collmberg
                                                                                 PP
Sofia
                     140.7
                                       35
                                                    e 29 31
e 29 45
                             321 e 19 34a
                                                                      e 23 13
                                                                                PKS
                                                                                       e 70.4
                                             1+
                                                1]
                     141.4
Belgrade
                                                                      e 22 51
                                                                                 PP
                                                              \{+14\}
                             335 e 19 48
                                            [+15]
                     141.6
Jena
                                                                                PPP
                                                                                       e 82·1
                                                                      e 25 9
                                                     e 29 58
                                                              \{+16\}
                             334 e 21 54
                     141.9
Cheb
                                                                       i 22 53
                                                                                 PP
                                                                                       e 67·1
                                                     e 41 34
                                                                SS
De Bilt
                     142.8
                             342 i 19 36
                                            [+1]
                                                                                 \mathbf{PP}
                                                                                       e 62·1
                             343 e 19 34a
                                                     i 29 50
                     144.2
                                                              {+
                                                                  5}
Uccle
                                                4]
                                                              \{+5\}
                                                                      e 22 48
                                                                                 \mathbf{PP}
                                                     i 29 52
                                                 3]
                                 e 19 41
                                             [+
                     144.5
                             328
Triest
                                                     e 29 49
                                                                                 _{\mathrm{PP}}
                                                                      e 22 46
                             337
                                                3]
                                                                  0 }
                                  e 19 36
                      144.9
                                             [ ---
Strasbourg
                                                              \{-36\}
                     145.6
                             334 e 19 39
                                                 1)
                                                     e 29 18
                                             -
Chur
                                                                                 PP
                                                                       i 24
                                  e 19 38k
Zürich
                     145.6
                             335
                                            [ -
                                                     e 29 19
                                                              \{-36\}
                     145.9
                             336
                                       39
Basle
                                  e 19
                                                     i 22 58
                                             [+1]
                                  i 19 43
                             342
                                                               PKS
Paris
                      146.5
Neuchatel
                     146.6
                             336
                                 e 19 39
                                                31
                                             -
                                                                       i 23 23
                                                                                PKS
                                             [+1]
                     149.0
                             339
                                  e 19 47
Clermont-Ferrand
                                             [+29]
                                                                                 \mathbf{PP}
                                                                                        e 81·1
                                                       20 37
                                                              PKP.
                                                                        24 12
                     154.3
                                    20 23
                             337
Tortosa
                                                                                 \mathbf{PP}
                                                                      e 25 13
                                  e 20
Toledo
                     156.5
                             344
                                             [+ 5]
                                                                                          74 \cdot 1
                                                                                PKP.
                                                                         20 43
                                    20
Lisbon
                     158.6
                             352
                                             [+5]
                                                                                          80.0
                                                                       i 24 22
                                                       30 52 {-14}
                                                                                 \mathbf{PP}
                             341 e 19 34a
                                             [-26]
                     158.9
Granada
                                                                        24 32
                                                                                          86.8
                             341 e 20 38
                     159.6
                                             PKP.
                                                       31 10
Malaga
                                                                       i 24 24
                                                                                 _{\rm PP}
                                                                                        e 77·1
San Fernando
                             346 i 20 6
                                             [+5]
                     160.3
  Additional readings :-
     Auckland i = 7m.4s., P_cS = 13m.30s.
     Riverview i = 4m.59s., iNZ = 6m.49s., iN = 7m.14s., iSN = 9m.8s., iSSE = 10m.4s.,
         iSSN = 10m.13s.
     Wellington P = 5m.16s., i = 10m.9s. and 10m.29s.
    Christchurch pP?E = 5m.58s., iEZ = 6m.52s., sSEN = 10m.40s., Q = 11m.37s.
    Ukiah e = 28m.6s.
     Berkeley eEN = 12m.46s., eN = 13m.35s., eZ = 13m.38s., ePPZ = 16m.12s. and 16m.20s.,
         eSSE = 24m.42s., eN = 24m.53s., eSSSN = 34m.34s., eN = 35m.32s.
     Pasadena eEZ = 13m.27s., iSKSZ = 23m.11s.
     Riverside iZ = 13m.1s.
    Palomar eSKSE = 22m.51s.
     Tinemaha iZ = 13m.11s., eE = 21m.42s.
     Sitka e = 15m.46s., 23m.53s., and 24m.48s.
     Irkutsk SKS = 23m.13s.
    College e = 24m.51s, and 27m.41s.
     Tucson e = 15m.28s., ePPP = 18m.55s., ePS = 25m.28s., e = 26m.16s., eSS = 30m.38s.
    Kodaikanal eE = 14m.43s., iE = 21m.58s., eE = 22m.38s. and 27m.3s.
     Salt Lake City e = 17m.47s., ePS = 25m.57s., e = 28m.50s.
     Hyderabad SN = 24m.45s.
     Bozeman e = 25m.14s.
    New Delhi iSKKSN = 25m.13s.
    Bombay eN = 25m.34s.
    Tashkent ePPP = 21m.13s., SS = 34m.6s.
    Florissant eN = 26m.50s., ePSE = 28m.31s., ePPSE = 29m.45s., eSSE = 35m.3s.
    St. Louis eSKKSE = 26m.14s., eN = 26m.27s., ePSE = 28m.33s., ePPSE = 29m.46s.,
         eSSF = 35m.4s.
     Huancayo eSS = 34m.10s.
    Tananarive N = 44m.49s.
    Chicago eSS = 34m.43s., eSSS = 39m.9s.
    Sverdlovsk iSKKS = 26m.35s., iPS = 29m.11s., iPPS = 30m.5s., SS = 35m.28s.
    Cincinnati e = 18m.40s., epPP = 22m.1s., e = 24m.26s.
    La Paz PPS = 31m.8s., iZ = 36m.54s.
    Pennsylvania e = 33m.48s.
    Georgetown e = 18m.26s. and 19m.2s., 20m.28s., and 20m.31s.
    Ottawa SKS = 23m.19s., PS = 27m.22s., PPS = 28m.22s., SSS = 37m.22s.
    Philadelphia e = 24 \text{m.} 37 \text{s.}, eSS = 37 \text{m.} 37 \text{s.}, eSSS = 41 \text{m.} 45 \text{s.}
    Seven Falls PS = 30m.43s., SS = 32m.52s.
    Moscow S = 28m.57s., SKSP = 31m.53s., SS = 37m.56s.
    San Juan e = 22m, 31s, and 36m, 27s.
```

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1945

290

Bermuda e = 22m.37s. Upsala eE = 22m.40s., eSKKSE = 28m.37s., eSKSP = 31m.46s., e = 33m.4s., eE = 41m.40s., eSSSN = 44m.4s.Bergen PKSZ = 22m.57s., eSSN = 38m.34s. Copenhagen 20m.30s., 22m.14s., and 35m.34s. Helwan iZ = 19m.49s., SKPZ = 22m.55s., iN = 42m.33s.Aberdeen iN = 29m.21s. Collmberg gives also many eZ and iZ readings. Sofia eSKKSE = 31m.30s., phases wrongly identified. Belgrade e = 35m.29s., 38m.6s., and 44m.23s.Jena eP?N = 19m.52s., ePP?E = 22m.54s., eS?N = 29m.48s., eSS?N = 35m.8s.Cheb e = 41m.48, and 45m.348. De Bilt eSSS = 47m.4s.? Uccle e = 24 m. 28 s.Triest eSS = 42m.36s. Strasbourg eSS = 42m.17s. Paris i = 20 m. 38 s.Granada SKSP = 34m.21s., SS = 44m.34s. Malaga epPKP = 20m.50s., PPP = 28m.10s., SKSP = 34m.46s., PPS = 37m,28s. San Fernando iPKP₂Z = 20m.45s., ePPPZ = 28m.6s. Long waves were also recorded at Seattle.

Sept. 9d. 12h. 56m. 22s. Epicentre 14°-0S. 75°-0W. Depth of focus 0-005.

A = +.2512, B = -.9376, C = -.2404; $\delta = -1$; h = +6; D = -.966, E = -.259; G = -.062, H = +.230, K = -.971.

		Δ	Az.	Ρ.	O-C.	s.	0 - C.	Su	pp.	L.
POR EDUCACIONE OPORTORIO PO		0	0	m. s.	8.	m. s.	8.	m. s.		m.
Huancayo		2.0	351	i 0 42	+10	i 1 4	+ 7		-	
La Paz	Z.	$7 \cdot 1$	112	i 1 43	- 1	i 1 4 i 3 2	- 2		*****	3.5
Bogota	4555	18.5	4	i 4 29	+16		77-7		-	
Balboa Heights		$23 \cdot 2$	351	(e 5 6)	+ 4	e 5 6	\mathbf{P}	327.0	****	-
San Juan		33.4	17	e 6 53	+19	e 11 55	+ 5		-	e 17·7
St. Louis		54.3	347	e 9 22	0	e 16 51	- 2	i 9 41	pP	
Tucson		57.4	325	19 44	ŏ	6 10 31		i 10 7	pP	
Palomar		61.7	321	e 10 13	- ĭ	200		i 10 35	pP	
Pierce Ferry		62.0	325	1 10 16	â		- 125	1 10 33	pr	
Boulder City		62.3	324	e 10 18	ŏ		-	e 10 38	pP	
Overton		62.5	325	e 10 21				- 10 50	(Care March	
Riverside		62.6	321		+ 2		2.50	e 10 .52	\mathbf{pP}	
Mount Wilson		63.1		i 10 19	- 1	-		i 10 42	\mathbf{pP}	
Pasadena			321	i 10 23	ŭ		Santa	i 10 44	\mathbf{pP}	-
The state of the s	z.	63.1	321	i 10 23	ō	*****	-	i 10 43	\mathbf{pP}	1
Tinemaha	440	65.1	323	i 10 36	0	-		i 10 58	pP	
Collmberg	Z.	99.5	41	e 13 38	+ 1	-	-	e 18 8	PP	

Additional readings:—
Huancayo i = 49s. and 55s.
Bogota i = 4m.48s., e = 8m.1s. and 8m.44s.
San Juan e = 8m.22s. and 8m.50s. eS? = 14m.19s.
St. Louis iZ = 9m.50s., esS?E = 17m.29s.
Tucson iPcP = 11m.4s.
Palomar isPZ = 10m.45s.
Boulder City e = 13m.22s.
Riverside isPNZ = 10m.48s.
Tinemaha isPZ = 11m.6s.
Collmberg eZ = 19m.2s.

Sept. 9d. Readings also at 0h. (Neuchatel, near Malaga, and near Mizusawa), 1h. (Bogota St. Louis, Tucson, Boulder City, Palomar, Pasadena, Riverside, and Tinemaha), 3h. (Bogota (2), near Samarkand, and Stalinabad), 5h. (near Malaga), 7h. (near Mizusawa), 8h. (near Malaga), 9h. (Haiwee, Mount Wilson, Pasadena, Palomar, Riverside, Tinemaha, Tucson, Pierce Ferry, Riverview, Auckland, near Apia, and near Malaga), 10h. (Riverview), 11h. (near Berkeley, Branner, and Lick), 13h. (near Grand Coulee), 16h. (Auckland and Riverview), 19h. (Collmberg, Helwan, Sverdlovsk, and near Malaga). 21h. (Samarkand).

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1945

291

Sept. 10d. 13h. 57m. 53s. Epicentre 38°-6N. 69°-3E.

Epicentre 38°37'N. 69°20'E. Suggested focal depth 100km. (Stations of the U.S.S.R.).

$$A = + \cdot 2769$$
, $B = + \cdot 7329$, $C = + \cdot 6213$; $\delta = -17$; $h = -1$; $D = + \cdot 935$, $E = - \cdot 353$; $G = + \cdot 220$, $H = + \cdot 581$, $K = - \cdot 784$.

		Δ	Az.	P.	0 - C.	s.	0 -C.	The state of the s	pp.	L.
29 A - 4 A - 3 A - 3 A		0	0	m. s.	8.	m. s.	s.	m. s.		m.
Stalinabad		0.4	263	0 20	+ 7	0 33	+12	_	_	_
Samarkand		2.1	300	0 13	-24			*****		
Tashkent		2.7	359	i 1 49?	+64	· 2 29	+70			
Andijan		3.2	46	i 0 52	0	i 1 29	- 3	-	1200	
Frunse		5.9	41	i 1 27	- 4	2 33	- ž		_	_
New Delhi	N.	12.0	144	-		e 5 3	- 8			
Baku	22.7	15.1	282		12000	6 37		1000		
Sverdlovsk		19.1	345	i 4 22	- 5		+12			
Hyderabad	N.	1. Carlot 124 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	157	5 10	7 7	7 55	- 2	-		
Moscow	1479.6	27.2	320		+ 7	9 14	+ 7	-		
MOSCOW		21.2	320	5 48	+ 1	-	-	•		_
Irkutsk		27.8	49		-	e 10 46	+11	100000	220.00	
Collmberg		40.9	307	e 7 43	3	0 10 10		e 9 27	PP	: 01.0
Tinemaha		104.4	6	e 13 34a	-34			e 9 27	PP	i 21·0
Riverview	E.	104.6	122	e 17 19	2	3325		_		_
Overton		105.2	3	i 13 45	Р'	<u> </u>			100	
OTOLLON		100 2		1 10 40	-		******		-	
Haiwee		105.3	6	i 13 33	P	<u> </u>				93
Pierce Ferry		105.6	2	i 13 45	P P P	Manager 1			12000	
Boulder City		105.7	3	i 13 43	P			Ξ	-	
Mount Wilson		107.2	6	i 13 26 a	P			25g/		12.5
Pasadena		107.3	Ğ	i 13 25 a	P					
		~~· ~			1 - 1	C-12		10 CH		
Riverside	Z.	107.5	6	i 13 28	P		-			
Palomar	Z.	108-2	5	i 13 28a	$_{\mathbf{P}}^{\mathbf{P}}$		主法经验			
Tucson		109.5	Õ	i 13 50	P			. 1/ 00	- 5	0=2
		370000000000000000000000000000000000000	1.00	0 00		1 1000		e 14 29	\mathbf{pP}	-

New Delhi gives also eN = 6m.7s., iN = 7m.9s.Long waves were also recorded at Copenhagen, De Bilt, and Cheb.

Sept. 10d. 15h. 0m. 53s. Epicentre 38°-6N. 69°-3E. (as at 13h.).

Stations of the U.S.S.R. suggest focal depth of 100km.

	Δ	Az.	Ρ.	O-C.	s. o-c.
	0	o	m. s.	s.	m. s. s.
Stalinabad	0.4	263	0 20	+ 7	0 33 + 12
Samarkand	2.1	300	-0.483	9	-0 287 7
Tashkent	2.7	359	i 1 46?	+61	e 2 187 +59
Andijan	3.2	46	e 0 51	- 1	128 - 4
Frunse	5.9	41	1 25	- 6	2 31 - 9

Sept. 10d. 16h. 7m. 17s. Epicentre 38°-6N. 69°-3E. (as at 15h.).

Stations of U.S.S.R. suggest focal depth 100km.

		Δ	Δz .	Р.	0 - C.	s.	0 -c.
0.660.22		0	0	m. s.	8.	m. s.	8.
Stalinabad		0.4	263	0 20	+ 7	0 33	+12
Samarkand		2.1	300	0 157	-22		
Tashkent		2.7	359	i 1 48?	+63	e 2 211	+62
Andijan		3.2	46	0 51	- 1	i 1 29	- 3
Frunse		5.9	41	1 26	- 5	2 32	- 8
Sverdlovsk		19.1	345	i 4 21	- 6	7 55	- 2
Ksara		27.3	270			e 10 11	$-1\tilde{6}$
Collmberg	Z.	40.9	307	e 7 47	+ 1		- 10

Ksara c = 9m.12s. Long waves were also recorded at New Delhi.

Sept. 10d. Readings also at 1h. (Tinemaha and Mount Wilson), 6h. (Auckland), 8h. (Toledo, Collmberg, Tucson, Pierce Ferry, Boulder City, Overton, Palomar, Riverside, Tinemaha, Haiwee, Mount Wilson, Pasadena, Berkeley, and Riverview), 12h. (Malaga and Tucson), 16h. (near Andijan and near Samarkand), 18h. and 21h. (near Tucson), 22h. (near Grand Coulce).

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1945

292

September 11d. 18h. Undetermined shock.

Brisbane iPN = 1m.55s., iPZ = 1m.58s., iSN = 5m.9s., eLN = 7m.9s.Riverview iPZ = 2m.56s., iPPZ = 3m.32s., iSE = 7m.0s. iE = 7m.36s., eLEZ = 9m.0s.Auckland i = 4m.26s., S7 = 6m.20s., L = 7m.Wellington eZ = 5m.? Q = 10m.? R = 11m.? Arapuni e = 7m.? Christchurch SEN = 8m.8s., QN = 10m.5s., RZ = 12m.40s.Palomar iPZ = 10m.48s., Riverside iPZ = 10m.48s. Tinemaha ePZ = 10m.50s. Pasadena iPZ = 10m.54s., eLZ = 37.6m.Boulder City eP = 11m.3s. Pierce Ferry iP = 11m.3s. Collmberg eZ = 17m.24s. and 49m. 24s. Paris ePKP=17m.48s. Long waves were also recorded at Tucson and Huancayo.

Sept. 11d. 19h. 11m. 26s. Epicentre 22°-7S. 179°-4E. Depth of focus 0.080 (as on 1944 May 14d.)

$$A = -.9234$$
, $B = +.0097$, $C = -.3837$; $\delta = -1$; $h = +4$; $D = +.010$, $E = +1.000$; $G = +.384$, $H = -.004$, $K = -.923$.

		Δ	Az.	P.	O-C.	s.	$\mathbf{O} - \mathbf{C}$.	Sur	p.
			0	m. s.	s.	m. s.	8.	m. s.	410400
Apia		12.2	45	e 2 39	- 2	e 4 44	6		1,000
Auckland		14.6	195			5 12	-23	i 5 29	S
Wellington		18.9	192		-	5 32	-78	12 (<u>28) (</u> 122)	
Brisbane		24.3	254	i 4 39	+ 3	i 8 26	+ 8	i 4 49	pΡ
Riverview		27.1	239	i 6 42	\mathbf{pP}	i 9 8	+ 6	i 11 59	$_{ m sS}^{ m pP}$
Santa Barbara		81.1	48	i 11 20 a	0			i 13 15	\mathbf{pP}
Berkeley		81.4	44	e 11 22	+ 1	-	-	e 13 16	pP
La Jolla		81.9	51	i 11 24 a	Ō		-	- 10 10 10 10 10 10 10 10 10 10 10 10 10	
Pasadena		81.9	49	i 11 23a	- 1	i 21 0	+ 7	e 13 17	\mathbf{pP}
Mount Wilson		82.1	49	e 11 24	- ī	7.250			
Palomar		82.4	50	i 11 27a	+ 1	e 20 59	+ 1	i 13 22	pP
Riverside		82.4	49	i 11 27 a	+ 1	e 21 0	+ 2	i 13 21	pP
Shasta Dam		83.1	42	i 11 31	+ 1	i 21 2	- 2	i 11 50	$P_{c}P$
Haiwee		83.2	47	i 11 31	+ 1	-		i 13 31	pP
Tinemaha		83.5	47	i 11 33a	‡ i	e 21 6	- 2	i 13 32	\mathbf{pP}
Boulder City		85.2	49	i 11 41	+ 1	i 21 18	- 7	e 13 34	\mathbf{pP}
Overton		85.8	49	i 11 44	+ 1			i 13 40	\mathbf{pP}
Pierce Ferry		85.9	49	i 11 44	0	-	-	i 13 39	pP pP
Tucson		86.2	53	i 11 45	0	i 21 22	-12	i 13 41	\mathbf{pP}
Grand Coulee		89.4	37	e 11 59	- 1	e 21 38	-25		
Florissant	E.	104.0	54	2 <u>3.42.</u>	<u> </u>	e 23 39	-27		-
St. Louis	E.	104.1	54	· ·	: 	e 23 40	-27	e 26 40	88
San Juan		118.9	80			e 23 51	[0]	e 28 46	PS
Collmberg		149.6	344	e 18 43	[0]	1960 or 1970 (1970)	_	e 20 53	pP

Additional readings :-Brisbane iE =7m.10s. Berkeley epPN = 13m.20s., esPZ = 14m.36s.

Pasadena iZ = 13m.21s., isPZ = 14m.37s., iZ = 21m.54s.

Palomar isPNZ = 14m.37s.

Riverside is PZ = 14m.44s.

Shasta Dam ipP = 13m.26s., i = 21m.13s., eSP = 21m.59s.

Boulder City iPP = 15m.6s., i = 21m.33s., eSP = 21m.51s.

Overton i = 14m.43s.

Tucson e = 12m.48s, and 21m.43s.

Collmberg i = 18m.50s., 19m.0s. and 19m.15s., e = 19m.34s., i = 21m.4s.

Sept. 11d. Readings also at 1h. (Moscow and near Bogota), 2h. (Tucson), 9h. (Riverview), 10h. (Shasta Dam), 12h. (Copenhagen, Collmberg, Triest, Bucharest, Belgrade and Sofia), 13h. (Collmberg), 14h. (Balboa Heights), 15h. (near Triest), 17h. (Cape Girardeau, Collmberg, near Sofia, Belgrade, and near Tashkent, Frunse and Andijan), 19h. (near Samarkand), 21h. (Grand Coulee), 23h. (near Lick, Branner. San Francisco and Berkeley).

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1945

293

Sept. 12d. 0h. 51m. 23s. Epicentre 2°-6N. 15°-7E.

Intensity VII at Ouesso (Middle Congo); V-VI at Moadhi and Batouri (Cameroons); and V at Carnot (High Sanga).

V at Carnot (High Sanga). Epicentre 20°N. 16°E. (Strasbourg). 2°N. 15°E. (Gutenberg).

Macroseismic radius 400 - 450kms.

Enquête du Chef du Service Météorologique du Gabon.

$$A = +.9617$$
, $B = +.2703$, $C = +.0450$; $\delta = -5$; $h = +7$; $D = +.271$, $E = -.963$; $G = +.043$, $H = +.012$, $K = -.999$.

		Δ	Az.	P.	0 - C.	s.	O – C.		pp.	L. m.
Helwan Ksara Granada Malaga Toledo	Z.	30·9 36·3 38·7 41·2	28 30 335 334 337	m. s. i 6 20k e 7 11 7 25 a i 7 46 i 7 50	$ \begin{array}{r} & 0 \\ & 4 \\ & 2 \\ & + 19 \\ & + 2 \end{array} $	m. s. e 11 35 e 13 4? e 13 25 14 27	$ \begin{array}{r} 8. \\ + 11 \\ + 16 \\ \hline 0 \\ + 25 \end{array} $	m. s. 7 31 7 46 e 9 22	PP PPP	e 20·6 e 20·6
Belgrade Triest Chur Clermont-Ferranc Neuchatel	ì	42·3 42·9 44·4 44·4 44·9	358 354 348 352	i 8 5 a i 8 2 e 8 13 e 8 15 i 8 17	+ 8 - 1 + 1 - 1	e 14 22 e 14 30 =	+ 3 + 3 =	e 16 56	<u>ss</u>	e 32·9 =
Zürich Basle Erevan Leninakan Strasbourg		45.0 45.3 45.6 45.7 46.3	353 353 32 30 353	e 8 18 a i 8 20 e 8 23 e 8 27 e 8 29	- 1 - 1 - 1 + 3	e 15 27	_ _ +11	e 8 46	<u>'</u>	=
Cheb Paris Jena Collmberg Uccle	N.	47·4 47·4 48·3 48·6 49·0	358 348 357 358 350	i 8 38 e 8 57 i 8 46 e 8 50 a	$-0 \\ + 12 \\ -1 \\ 0$	e 18 9 — e 15 55	s _c s = 0	e 24 1 i 10 29 i 10 28	PP PP	e 31 · 6 e 24 · 6 e 25 · 6
De Bilt Copenhagen Moscow Bombay Sverdlovsk	E.	50·1 53·0 55·9 58·1 64·8	352 358 15 70 26	i 9 0 a i 9 18 a i 9 41 i 10 40	+ 1 - 3 - 1 - 3	i 16 52 e 17 26 e 18 1 i 19 6	$\begin{array}{c} - & 2 \\ - & 3 \\ + & 3 \\ - & 17 \end{array}$	e 10 57 17 10 9 56 —	PP PPS pP	e 26·6 30·6
San Juan La Paz Pierce Ferry Boulder City Tinemaha	z.	81·4 84·8 119·4 120·0 121·8	289 254 314 314 317	e 12 23 12 35 i 17 36 e 17 32 i 17 26	+ 3 - 2 ?	e 22 29 = =	- 2 -	i 17 47 e 28 59 i 18 56	PKP	e 39·0
Haiwee Palomar Riverside	z. z. z.	$^{122 \cdot 1}_{122 \cdot 8}_{122 \cdot 8}$	$\frac{316}{312}$	i 18 59 i 17 16 i 17 18	[+ 2]			i 18 56 i 18 57	PKP PKP	=

Additional readings:—
Helwan PPPZ = 7m.55s., ScSE = 16m.42s.

Granada PP = 9m.1s. Malaga e = 9m.37s. Belgrade e = 11m.8s.

Jena iN = 9m.29s., eN = 12m.32s.

Collmberg i = 8m.57s., e = 13m.17s., and 14m.4s.

Copenhagen 19m.16s. Tinemaha eZ = 20m.32s.

Long waves were also recorded at Tananarive, Tortosa, Barcelona, Huancayo, Pasadena, Tucson and Riverview.

Sept. 12d. 16h. 29m. 20s. Epicentre 40°-0N. 20°-0E. (as on 1940 February 23d.).

$$A = +.7219$$
, $B = +.2627$, $C = +.6402$; $\delta = +1$; $h = -2$; $D = +.342$, $E = -.940$; $G = +.602$, $H = +.219$, $K = -.768$

	Δ	Az.	P.	$\mathbf{O} - \mathbf{C}$.	s.	O-C.	Supp.	L.
A Code A Code of Code	•	0	m. s.	s.	m. s.	8.	m. s.	m.
Sofia	3.7	42	i 0 58	- 2	i 2 5	S.	i 1 11 P*	
Belgrade	4.8	5	e 1 23a	+ 8	i 2 1	11	e 1 33 P*	
Bucharest	6.3	44	e 1 36	0	i 2 51	+ 1	i 1 54 P*	(b)
Campulung	6.4	31	0 40?	-58	-	-	8 40? PcP	-
Triest	7.3	323	e 1 46	- 4	i 3 14	- 1	e 2 17 P*	i 4·3

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1945

294

		Δ	Az.	P. m. s.	O – C.	8. m. s.	O - C.	m. s.	pp.	L. m.
Chur		10.2	315	e 2 32	V-9-00		~~~		of Association	1999
Zürich		11.1			+ 1	CH 1	9			
			315	e 2 42	- t	e 4 45	- 4		-	
Basle		11.7	314	e 2 54	+ 3	e 5 16	+12	e 3 18	\mathbf{PPP}	
Neuchatel		11.8	311	e 2 52	- 1	e 4 52	-14			
Collmberg		12.3	339	e 2 58	- 1	i 6 21	+63	i 3 14	\mathbf{PP}	i 7·4
Strasbourg		12.3	319	e 3 5	+ 6	e 5 31	+13			-
Jena		12.4	334	e 3 9	$^{+}_{+}$ $^{6}_{8}$	0 0 01	1 10	e 3 12	\mathbf{PP}	e 7·4
Helwan	z.	13.7	134	e 3 22	+ 4	e 6 10	+18	6 3 12		
Ksara		14.1	111	e 3 21	T 3	24,500				e 6.8
	**				- 2					e 7·0
Tortosa	N.	14.9	280	e 5 13	1	-		-	$\overline{}$	e 9·7
Paris		15.3	311			e 6 49	SS		2000 ()	_
Uccle		15.4	320			e 6 55	SSS	-		e 9.0
De Bilt		15.8	325			e 7 0	SS			e 9.7
Copenhagen		16.5	345			e 7 15	+17	-	-	8.2
Toledo		18.4	277	i 4 17	- 1	0. 10	T. A.	4 46	PPP	0.2
Tologo		10 4	2	1 7 1,				4 40	LLL	
Granada		18.6	270	e 4 41	+20	e 8 23	+37	<u>-2.11</u>		-
Malaga		19.4	270	i 4 27	- 3	i 4 52	PP		***	
Moscow		19.6	32	e 4 28	- 4	e 8 8	0	-	-	
Upsala		19.9	356	e 4 387	$+$ $\bar{2}$	e 8 16	+ ĭ	e 8 26	9	e 10.7
Sverdlovsk		31.2	44	6 17		11 19	-10°			CIUI
-5 TOLULO TUR		M	**	0 1		11 10	10	-		

Additional readings :-

Jena eN = 3m.42s.

Sofia iS*N = 2m.18s., $iS_*E = 2m.23s.$

Belgrade i = 2m.34s., $iP_gS_g = 2m.48s.$, $iS_g = 2m.57s.$

Bucharest eE = 1m.57s., iP_gN = 2m.13s., iSE = 2m.54s., iS*N = 3m.21s., iS_gE = 3m.36s. Triest $iS_gS_g = 3m.43s$.

Collmberg eZ = 3m.3s., iZ = 3m.6s. and 3m.10s., iPPPZ = 3m.18s., iZ = 3m.22s., 3m.26s., 4m.51s., and 5m.57s., iSS = 6m.53s.

Long waves were also recorded at Cheb.

Sept. 12d. Readings also at 0h. (Tashkent and Collmberg), 1h. (San Fernando, Malaga and Samarkand), 7h. (Pasadena, Riverside, Palomar, Haiwee and Tinemaha), 8h. (Collmberg, Palomar, Tinemaha, Riverview and Brisbane), 9h. (near Ottawa), 10h. (Brisbane), 11h. (near Apia), 12h. (near Mizusawa), 14h. (near Granada), 15h. (St. Louis, Tinemaha, Haiwee, Boulder City, Pierce Ferry, Palomar, Tucson (2) and Tacubaya), 19h. (Balboa Heights, Brisbane, and near Ottawa), 20h. (St. Louis, Tucson, Pierce Ferry, Grand Coulee, Boulder City, Palomar, Tinemaha, Riverside, Pasadena, Shasta Dam, Christchurch, Auckland, Riverview and near Andijan), 21h. (Pierce Ferry, Boulder City, Palomar, Tinemaha, Riverside, Pasadena, Christchurch, Riverview, Brisbane), 23h. (Auckland and Wellington).

Sept. 13d. 11h. 17m. 5s. Epicentre 33°.8S. 70°.5W. Focus at base of superficial layers.

Epicentre in Cordilleras. Intensity VIII at Rancagua; VII at Curico. The belt of maximum intensity extends from Juncal to Bulnes, and includes the sea coast from Putaendo to Quillota (32°-36°S.). Macroseismic area includes Copiapo and Osorno. Macroseismic radius 800km.

Frederico Greve:

Determinacion del Coeficiente de Seguridad Antisismico para las Diferentes Zonas de Chile, p. 16.

$$A = +.2780$$
, $B = -.7850$, $C = -.5537$; $\delta = +9$; $h = +1$; $D = -.943$, $E = -.334$; $G = -.185$, $H = +.522$, $K = -.833$.

		Δ	Az.	P.	$\mathbf{O} - \mathbf{C}$.	s.	O-C.	Suj	pp.	L.
			0	m. 6	8.	m. s.	s.	m. s.		m.
La Plata	N.	10.4	99	2 3	3 + 3	i 4 27	+ 1			5.6
La Paz		17.4	8	i 4	5k + 3	i 7 22	+10	i 4 33	\mathbf{pP}	9.8
Huancayo		$22 \cdot 1$	348	e 4 5	The second secon	e 8 56	6	e 5 22	pP	e 9.5
Bogota		38.4	355	i 7 2	1 + 1	e 13 17	+ 5	i 7 44	pP	e 23.9
Balboa Heights		$43 \cdot 4$	348	i 8	1 0		_		_	_
Fort de France		49.1	13	184	6 0	e 15 46	- 2			
San Juan		52.1	6	i 9	7 - 2	i 16 16	$-1\bar{3}$	i 11 6	$\mathbf{p}\mathbf{p}$	i 21.7
Tacubaya		59.6	329	e 10	4 + 1	e 18 4	- 5	1 10 30	pP	
Bermuda		66.0	6	e 11	1 + 16	i 19 44	+15	e 11 21	pP	i 27.9
Mobile		66.3	344	10 4		19 27	- 6		-	

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1945

295

	△ A	z. P. m. s.	0 – C.	s. o-c.	Sdpp.	L.
Columbia Georgetown Cape Girardeau N. Philadelphia Cincinnati	68·2 3 72·6 3 72·9 3 73·5 3	m. 8. 2 e 10 57 6 i 11 25 5 e 11 26 8 i 11 30 9 i 11 30	8. - 2 - 1 - 2 - 1 - 2	m. s. s. e 19 45 -11 i 20 41 - 6 e 20 43 - 7 i 20 52 - 5 i 20 52 - 7	m. s. i 11 20 pP i 11 49 pP e 11 49 pP e 11 55 pP i 11 53 pP	e 27·9 e 30·5
Pittsburgh St. Louis Pennsylvania Florissant Weston	74·4 3 74·5 3	3 i 11 38 4 i 11 36 5 i 11 37 4 i 11 34 0 i 11 44	+ 2 0 0 4 0	i 20 59 - 8 e 20 58 - 9 i 21 1 - 7 i 21 2 - 8 i 21 19 - 4	e 14 24 PP i 12 1 pP i 11 59 pP i 11 58 pP 12 7 pP	i 30·3
Harvard Tucson Chicago Ottawa La Jolla	76·8 3 79·0 3		- 1 - 1 - 1 - 1 + 1	e 21 16 - 8 i 21 20 - 4 i 21 27 - 7 21 51 - 6 e 22 3 - 1	i 12 8 pP i 12 8 pP i 12 12 pP 22 52 PS i 12 30 pP	e 32·7 e 31·0 33·9
Palomar Shawinigan Falls Seven Falls Riverside Pierce Ferry	80·0 3 80·5 80·5 3	3 i 12 7k 9 12 7 0 12 11 2 i 12 11k 26 i 12 11	- 1 + 1	i 22 3 - 2 22 1 - 7 22 8 - 5 e 22 13 0 i 22 10 - 4	i 12 27 pP i 12 35 pP i 12 35 pP	36·9 —
Boulder City Mount Wilson Pasadena Overton Santa Barbara	81·0 3 81·0 3 81·1 3	26 e 12 12 22 e 12 14 22 i 12 14 26 i 12 15 21 i 12 19	$\begin{array}{c} + & 0 \\ + & 1 \\ + & 2 \\ 0 \end{array}$	e 22 11 - 5 e 22 18 0 i 22 16 - 2 i 22 17 - 2 e 22 28 - 2	i 12 35 pP e 12 38 pP i 12 37 pP i 12 38 pP i 12 42 pP	c 38·8 c 43·0
Haiwee Rapid City Salt Lake City Tinemaha Christchurch	83·0 3 83·4 3	30 e 12 25 23 i 12 25k	$\begin{array}{ccc} + & 1 \\ + & 2 \\ & 0 \\ + & 1 \end{array}$	e 22 32 - 2 i 22 35 - 4 e 22 34 - 9 e 22 39 - 4 22 43 - 5	i 12 47 pP e 13 0 pP i 12 49 pP 12 54 pP	e 34·4 e 35·3 e 42·8 38·5
Wellington z. Logan Santa Clara Arapuni Berkeley	84·2 3 85·5 3 85·7 2	23 12 29 31 e 11 55 22 i 13 1 27 e 16 55 7 22 12 39	$^{-34}_{+25}$ $^{\mathrm{PP}}_{+1}$	$egin{array}{cccccccccccccccccccccccccccccccccccc$	12 55 pP 112 21 pP 28 557 SS 13 3 pP	38·9 40·6 36·9 35·8
Auckland Bozeman Ukiah Butte Shasta Dam	87·2 3 87·5 3 88·1 3	27 12 457 33 e 13 3 22 e 13 9 33 e 12 50 24 i 12 47	$^{+}_{+19}^{2}_{+23}^{+23}_{-2}$	$egin{array}{cccccccccccccccccccccccccccccccccccc$	24 27 PS e 13 28 pP e 16 11 PP i 13 13 pP i 13 11 pP	39·9 e 36·4 e 36·8 e 41·1
Saskatoon San Fernando Grand Coulee Malaga Granada	92·1 92·2 93·4	89 e 13 37 17 e 13 32 29 e 13 6 17 i 13 38 17 13 53k	pP - 2 pP pP	$egin{array}{cccccccccccccccccccccccccccccccccccc$	e 16 53 PP i 13 30 PP 17 38 PP	e 41.5 e 54.4
Victoria Toledo Ivigtut Tortosa Riverview	95·6 96·4 98·9	27 e 13 49 5 i 13 20 11 — 17 i 21 18 5 e 18 39	PP - 3 pPP	e 23 47 [- 3] e 23 53 [- 2] 23 51 [- 9] 24 13 [+ 1] i 25 8 SKKS		45·9 e 58·9 e 47·3
Clermont-Ferrand Paris Kew Sitka Uccle	104·7 104·8 106·0 3	14 — 11 e 17 55? 17 e 18 18? 29 e 18 49	PP PP PP	e 24 33 [0] e 27 19 PS e 24 35 [- 5] i 24 39 [- 7] e 24 45 [- 4]	e 28 37 PPS e 25 431 S i 27 43 PS	e 46.9 e 49.9 e 49.4 e 44.1
Aberdeen De Bilt Triest Cheb Collmberg	108·0 109·6 110·9	32 — 39 e 17 51 48 i 19 19 43 e 20 8 42 i 18 32	[-33] PP PPP [0]	i 27 58 PS e 24 52 [-3] i 34 48 SS e 23 37 ? e 28 49 PS	e 19 11 PP 1 25 45 SKKS e 28 55 PPS e 18 57 PP	e 42·9 e 57·9

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1945

296

O - C.

O - C.

Supp.

L.

m.

Ρ.

m. s.

Az.

```
Prague
                      112 \cdot 1
                               43
                                                     e 25 55? SKKS
                                                                                  _{\rm PS}
                      112 \cdot 3
Bergen
                               30
                                                                      e 38
                                                                                 SSS
                                                                           55?
                                                                                         64.9
Belgrade
                      113.5
                                                                 ss
                                                                                  \mathbf{p}\mathbf{p}
                                                                           52
                                                                                       e 67.4
Copenhagen
                      113.5
                                                                 _{\mathrm{PS}}
                                                                           41
                                                                                  SS
Helwan
                  z. 115·0
                                  i 18 40a
                                            [+2]
                                                      25
                                                          30
                                                                        19 52
                                                             [+7]
                                                                                  \mathbf{PP}
College
                      115.0
                             332
                                  e 19 32
                                               PP
Upsala
                  E. 117.7
                              34
                                                    e 25 27
                                                               -
                                                                        29 37
                                                                                  _{\mathrm{PS}}
                                                                                       e 56.9
                              68 e 20 21
Ksara
                      120 \cdot 2
                                               PP
                                                    e 30 18
                                                                PS
Moscow
                     127 \cdot 1
                              42
                                  19
                                       0
                                             - 1]
                                                      31 4
                                                                _{\rm PS}
                                                                        19 27 pPKP
Leninakan
                     128 \cdot 4
                              62
                                  e 19 23
                                             [+19]
                      128.7
                                  e 19 10
Erevan
                                       6
Grozny
                      130.3
                              59
                                  e 19
Baku
                      132.8
                              63
                                             [+6]
                                    19 19
                                                                                  SS
Sverdlovsk
                     139.8
                              40
                                  e 15 17
                                                      40 25
                                                                      i 19 52 sPKP
                                                                88
Colombo
                  E. 141.7
                             127
                                    19 27
                                                                      e 22 32
                                                                                 PP
Kodaikanal
                  E. 142.4
                             120 e 17 24
                                                    e 27 39
                                                             SKKS
Bombay
                  E. 144·1
                             105 e 19 29
                                                    i 29 35 SKKS
                                                3]
                                                                      i 22 52
                                                                                 PP
Hyderabad
                             112
                     147.8
                                    19 44
                                            [+5]
                                                      30 33 SKKS
                                                                        23 23
                                                                                 PP
                             65 e 19 48
                     149.8
Andijan
                                            [+6]
Frunse
                     151.3
                              61 e 19 54
                                            [+10]
New Delhi
                  N. 152.0
                              92
                                 i 23 24
                                              \mathbf{PP}
                                                    e 33 38
                                                                PS
Calcutta
                  N. 158.0
                             115 e 20 15
                                           pPKP
                                                                                 PP
Irkutsk
                     161 \cdot 2
                              10 e 19 57
                                                      26 39
                                                0]
                                                             [-18]
                                                                        24 16
                                                                                 PP
  Additional readings :-
    La Plata iPZ = 2m.36s., SEZ = 4m.31s., N = 4m.40s.
    La Paz isPN =4m.53s.
    Huancayo i = 5m.46s.
    Bogota i = 8m.19s., e = 12m.27s.
    San Juan i = 10m.43s., iPPP = 12m.13s., i = 16m.49s., iSS = 20m.5s.
    Tacubaya iPPEN = 12m.15s., esSN = 18m.43s.
    Bermuda ePP? = 13m.16s., ePPP = 15m.1s., isS = 20m.16s., eSS = 24m.1s., e = 27m.6s.
    Columbia ePP = 13m.26s., ePPP = 15m.10s., esS = 20m.20s., e = 20m.48s., and 24m.10s.
    Georgetown sS = 21m.23s.
    Cape Girardeau esSN = 21m.25s.
    Philadelphia ePP = 14m.16s., isS = 21m.30s., eScS = 22m.3s., eSS = 25m.32s.
    Cincinnati iPP = 14m.9s., iPPP = 16m.3s., isS = 21m.28s., iPS = 21m.57s.
    St. Louis iN = 13m.27s. and 13m.48s., ePPN = 14m.17s., iPPPZ = 16m.18s., iSEN =
         21\text{m}.28., iPSN = 21\text{m}.30\text{s}., isSEN = 21\text{m}.40\text{s}., ipPS?N = 21\text{m}.48\text{s}., iE = 21\text{m}.58\text{s}. and
         22m.20s., iSSN = 25m.55s., iSSSN = 28m.14s.
    Pennsylvania e = 21 \text{m.} 22 \text{s.}
    Florissant iZ = 13m.47s., iPPZ = 14m.15s., eSN = 20m.55s., iPSN = 21m.31s., isSN =
         21m.47s., iSSN = 25m.59s.
    Weston SS = 26m.13s.
    Tucson e = 14m.30s., i = 15m.5s., isS = 21m.50s., e = 26m.21s. and 32m.21s., ePKP,PKP
         =39m.6s., ePKP,PKP,PKP=59m.4s.
    Chicago ePP = 15m.5s., e = 16m.31s., eS = 21m.20s., i = 21m.50s., isS = 21m.55s., i = 21m.55s.
         22m.25s., e = 26m.8s.
    Ottawa e = 12m.4s., SS = 27m.12s.
    Palomar i = 12m, 30s., isPZ = 12m, 42s., iPPNZ = 15m, 31s., iNZ = 15m, 54s., i = 22m, 36s.,
        eSKP.PKPZ = 42m.10s.
    Riverside iPPZ = 15m.38s.
    Pasadena iNZ = 12m.22s., isPZ = 12m.46s., iZ = 13m.13s., iPPEZ = 15m.15s., iZ =
         22m.36s., iEN = 22m.44s., eQEN = 34m.42s., ePKP,PKPZ = 39m.4s., iSKP,PKP =
        42m.11s.
    Rapid City i=14m.11s., ePP=15m.35s., ipPP=16m.2s., e=20m.13s., esS=23m.12s.,
        eSS = 26m.31s., e = 27m.40s., eSSS = 31m.38s.
    Salt Lake City ePP = 15m.48s., e = 19m.58s., esS = 23m.5s., eSS = 28m.13s.
   Tinemaha iZ = 12m.38s., isPZ = 12m.59s.
   Christchurch sP?EZ = 13m.3s., EZ = 13m.37s., PPEZ = 16m.4s., SS = 23m.25s., PSE =
        24m.15s., SSEN = 28m.24s., SSSEN = 32m.2s., QEN = 35m.0s.
   Wellington iZ = 14m.0s., pPPZ = 16m.15s., PPPP?Z = 20m.7s., ScS? = 23m.0s., sS =
        23m.26s., PSZ = 23m.55s., sSS?Z = 28m.55s.?, QZ = 34.9m.
   Logan iPP = 14m.58s., isS = 22m.36s., eSS = 27m.42s.
   Berkeley eNZ = 16m.14s., eE = 16m.20s., ePPPZ = 18m.15s., eP ePPNZ = 23m.50s., eN = 26m.20s., eE = 26m.27s., eSSE = 29m.8s.
                                                                       ePPPZ = 18m.20s..
   Auckland i = 13m.55s. and 14m.40s., sS = 23m.53s., SS = 29m.5s.?, Q = 35.9m.
   Bozeman ePP = 16m.22s., iS = 23m.1s., e = 23m.50s.
   Ukiah i = 23m.19s., eSSS = 33m.5s.
   Butte ePP = 16m.1s., isS = 23m.25s., e = 28m.6s.
   Shasta Dam iPP = 16m.45s., ipPP = 17m.38s., iS = 23m.23s., ePS = 23m.45s., ePKKP =
        29m.57s.
```

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1945

297

```
San Fernando ePPPZ = 18m.46s., cPSE = 24m.35s., iSSE = 28m.53s.
Grand Coulee ePP = 17m.3s., i = 17m.28s.
Malaga iS = 24m.48s. and 25m.48s.
Riverview iPSZ = 27m.15s., iZ = 27m.42s., iSSPZ = 32m.53s., iE = 33m.25s.
Paris e = 34m.11s.
Kew eSKKS?E = 25m.15s.?, eSP?EZ = 27m.15s., ePSE = 27m.39s., ePPSEZ = 28m.38s.,
    e=31m.18s., eSSEN=32m.58s., eSSS?Z=33m.58s., eSSSNZ=37m.15s., eQ=
    41.9m.
Sitka e = 20 \text{m.0s.} and 21 \text{m.27s.}, i = 25 \text{m.21s.}
Uccle eSEN = 26m.5s.
De Bilt eS = 26m.20s., eSS = 33m.52s.
Triest ipP?Z = 20m.8s., iSKP?E = 26m.36s.
Collmberg eZ = 19m.37s., 19m.54s., 20m.44s., 21m.17s., 21m.35s., 22m.33s., 23m.24s.,
    29m.55s., 30m.26s., 33m.13s., and 34m.55s.
Prague e = 29m.43s. and 32m.55s.
Belgrade ePPP = 22m.21s., e = 27m.11s., eSSS = 39m.5s.
Copenhagen 25m.12s., 26m.20s. and 27m.7s., SS = 35m.7s., SSS = 41m.7s.
Helwan pPKPZ = 22m.7s., SN = 27m.19s., sSN = 28m.7s., sPSN = 30m.3s.
College e = 25m, 56s, and 34m, 59s.
Upsala eN = 25m.31s, and 46m.25s.
Moscow PP = 20m.49s., PPP = 21m.15s., PS = 31m.15s., SS = 37m.49s.
Sverdlovsk ePP = 22m.19s., pPS = 33m.9s., SSS = 45m.31s.
Kodaikanal eE = 18m.24s., 23m.34s., and 25m.9s.
Bombay iE = 26m.2s., ePSKSE = 33m.12s.
Hyderabad PKP2N = 20m.19s., SKSPE = 33m.30s., SSN = 42m.54s.
New Delhi eN = 34m.30s., iN = 36m.56s.
```

Sept. 13d. 21h. 40m. 37s. Epicentre 17°.4S. 167°.9E. (as on 9d.).

```
A = -.9336, B = +.2002, C = -.2972; \delta = +2; h = +5; D = +.210, E = +.978; G = +.291, H = -.062, K = -.955.
```

		Λ	Az.	Р.	$\mathbf{O} - \mathbf{C}$.	s.	0 - C.	Suj	pp.	L.
			I INSCAN	m. s.	s.	m. s.	В.	m. s.		m.
Brisbane		17.0	230	i4 0	- 1	i 7 19	+ 9		-	i 9·4
Auckland		20.3	164			7 293	-54			8.8
		21.7	163		-	9 231	+32		****	10.4
Arapuni		22.2	218	i 5 0 a	0	i9 6	+ 6	i 5 17	pP	e 10·7
Riverview Wellington		24.5	167	5 20	- 2	10 3	+23	5 29	pP	12.4
Christchurch		26.4	172	STATE OF THE PARTY	 :	10 12	0	11 28	SS	13.9
Riverside	Z.	87.5	53	e 12 52	+ 1			-	Bridge 1	
Palomar	z.	87.6	54	e 12 52	+ 1					9.45
Tinemaha	z.	88 - 1	50	e 13 1	+ 7	-	****	e 13 24	\mathbf{pP}	-
Tueson	1993	92.0	57	i 13 20	$\begin{array}{c} + & 7 \\ + & 8 \end{array}$	-	-	_	*****	
Collmberg	Z.	140.7	317	e 19 33	[+1]		-		_	-
Chur		145.6	334	e 19 43	[+ 3]		(201 3)	-	_	#17 2
Zürich		145.6	335		[+17]		-		_	-
Basle		145.9	336		[+4]		-		_	7.5.5

Additional readings:—
Riverview eZ = 5m.54s., iZ = 7m.17s. and 9m.16s., iN = 9m.47s. Wellington PP = 6m.56s., Q = $11 \cdot 4$ m. Christchurch QN = 11m.33s.

Riverside iZ = 12m.58s. Long waves were also recorded at Pasadena.

Sept. 13d. Readings also at 1h. (Huancayo and Collmberg), 4h. (near Tacubaya), 7h. (Collmberg and Shasta Dam), 8h. (near Andijan and Samarkand), 9h. (La Paz, St. Louis, Florissant, Boulder City, Overton, Pierce Ferry, Tucson, Palomar, Pasadena, Riverside, Tinemaha, Riverview, Christchurch and near Andijan), 10h. (Collmberg (2) and St. Louis), 12h. (Brisbane and Collmberg), 20h. (near Stalinabad), 21h (Belgrade, Cheb, Collmberg, Pittsburgh and near Tucson), 23h. (Collmberg, Boulder City, Pierce Ferry and near Mizusawa).

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1945

Sept. 14d. 2h. 2m. 21s. Epicentre 7°-1N. 37°-7W.

			·7852, ·612,		- ·6069, C ·		28; δ= 097, H=	= -5; -075,	h = +7 $K =99$		
	Fort de France San Juan Bermuda Bogota La Paz	z.	24 · 2 29 · 9 35 · 5 36 · 3 38 · 2	296 319 268	m. s. e 5 20 i 6 20 e 6 55 i 7 7	O-C. + 1 + 8 - 5 + 1	S. m. s. i 9 40 i 10 51 e 12 1 e 12 57 i 13 24		m. s. 5 52	PP	e 12·2 e 14·6 24·7
	Lisbon San Fernando Huancayo Malaga Granada		40.7 41.0 42.0 42.3 43.1	40 243 41	i 7 47	+ 3 + 1 - 4 + 1 + 7	13 49 e 14 1 e 14 1 e 14 8 14 33	$^{-6}_{+2}^{-13}_{-11}_{+3}$	9 20 i 9 12 e 9 35 8 4 8 40	PP	
	Toledo La Plata Weston Fordham Philadelphia		44.4 45.9 46.0 46.6 46.8	$\frac{203}{325}$	e 8 12 8 20 e 8 22 i 8 31 e 8 31	$ \begin{array}{rrr} $	e 14 44 15 15 e 15 6 i 15 15 i 15 16	- 5 + 4 - 6 - 6 - 8	18 27 18 35 e 18 32	ss scs	23·4 19·4 21·7 e 19·5
	Georgetown Tortosa Columbia Seven Falls Pennsylvania		47.5 47.8 48.1 48.9 49.0	$\frac{39}{310}$	$\begin{array}{c} \mathbf{e} \ 8 \ \ 43 \\ \mathbf{e} \ 8 \ \ 44 \\ \mathbf{e} \ 8 \ \ 47 \\ \mathbf{e} \ 10 \ \ 45 \end{array}$	+ 1 + 2 + 1 - 3 PP	i 15 31 15 35 i 15 39 i 15 47 i 15 56	- 3 - 3 - 6 + 1	e 16 21 e 19 12	pP SS	e 21·7 e 21·7 e 19·2 19·7
	Shawinigan Falls Pittsburgh Ottawa Clermont-Ferran Mobile		$\begin{array}{r} 49.5 \\ 50.2 \\ 50.4 \\ 52.1 \\ 52.6 \end{array}$	$329 \\ 319 \\ 326 \\ 36 \\ 303$	e 8 49 e 8 57 e 9 16	- 5 - 3 - 5 + 2	15 51 e 16 11 16 9 i 16 35 16 51	-11			21·7 e 21·7 e 24·3
	Cincinnati Paris Kew Ivigtut Neuchatel		52.7 53.6 53.9 54.5 55.1	$315 \\ 32 \\ 28 \\ 353 \\ 36$	i 9 17 9 21 e 9 22? e 9 32	- 1 - 4 - 5 - 4	i 16 44 16 52 i 16 55 16 59	$ \begin{array}{c} - & 2 \\ - & 6 \\ - & 7 \\ - & 11 \\ - & - \\ \end{array} $	i 10 23 i 17 25?	P _c P ss	e 24·2 e 23·7 e 24·2 22·7
	Basle Cape Girardeau Ucele Chicago Zürich	Е.	55.7 55.8 56.0 56.2	$\begin{array}{r} 36 \\ 311 \\ 31 \\ 317 \\ 36 \end{array}$	e 9 40 e 9 43 e 10 4 e 9 45 e 9 38	$^{+\ 3}_{+\ 23}$ $^{+\ 2}_{-\ 6}$	e 17 24 e 17 23 i 17 21 e 17 27 e 17 28	- 2 - 3 - 7 - 3 - 5	e 22 39 ? c 21 46	 ss	o 23·9
	De Bilt Strasbourg Chur St. Louis Aberdeen		56·3 56·4 56·5 56·7 57·1	$\begin{array}{r} 30 \\ 34 \\ 37 \\ 312 \\ 22 \end{array}$	i 9 49 9 49 e 9 45 e 9 44	+ 4 + 4 - 1 - 4	e 17 44 e 17 39 e 16 59 i 17 36 i 17 44	$^{+10}_{+3}$ $^{-38}$ $^{-4}$ $^{-1}$	e 11 57 e 10 5 i 23 46	PP SSS	e 24.7 e 25.7 e 26.2 i 24.1 i 25.7
	Triest Cheb Jena Collniberg Copenhagen	E. Z. Z.	58.6 59.7 59.7 60.6 62.5	34 34	e 9 53 e 10 32 e 10 22 e 10 13 e 10 33	$^{-\ 8}_{+\ 23} \ ^{+\ 13}_{-\ 2} \ ^{-\ 2}_{+\ 5}$	i 18 1 e 18 39 e 19 39 i 18 54	$^{-3}_{+20}$	e 12 17 e 14 27 e 12 48 12 59	PP PPP PP	e 28·7
	Belgrade Upsala Rapid City Helwan Saskatoon		62·7 67·6 67·6 68·3 71·5	$\frac{27}{315}$	e 10 27 k e 19 36 î e 11 1 i 11 6 a	- 2 + 0 + 1	c 18 57 e 19 48 c 19 51 20 6 e 20 24	$ \begin{array}{r} 0 \\ - 2 \\ - 6 \\ 0 \\ - 19 \end{array} $	i 10 38 c 13 46 20 27	PP PS	e 30·9 e 27·7 e 29·2
	Tucson Ksara Bozeman Salt Lake City Logan		$72.0 \\ 72.5 \\ 73.3 \\ 73.4 \\ 73.5$	57 316 311	e 11 25 e 11 277 e 12 10 e 11 58 e 11 2	$ \begin{array}{r} -3 \\ -35 \\ +35 \\ +22 \\ -34 \end{array} $	c 20 44 c 21 1 i 21 48 c 21 1 c 20 23	- 5 + 7 PPS - 4 - 43	e 14 5 e 25 28 e 25 51 e 29 1	PP SS SSS	e 33·7 e 32·5 e 30·6 e 32·0
¥	Butte Pierce Ferry Overton Boulder City Moscow		74·4 74·8 75·2 75·5 75·9	306 e	11 41 2 11 50 2 11 46 2 11 49	- 3 + 4 - 2 - 1	e 21 22 e 21 29	+ 6 = - 3	e 25 37 i 11 56 i 11 59 i 11 51 12 11	1000000000 J	e 34·1
					والمراوي والمحالة والمحار	en a range en en en en en en en en en	CONTRACTOR CONTRACTOR				

Continued on next page.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

299

1945

		Δ	Az.	Р.	0 - C.	s.	O-C.	Suj	pp.	L.
		0	0	m. s.	s.	m. s.	s.	m, s,		m.
Palomar		77.1	302	e 11 55	- 2	e 21 46	0	i 11 59	P_cP	
La Jolla	Z.	77.4	302	e 12 5	+ 7	_	_	-		_
Riverside		77.5	303	i 11 59	0	-		i 12 18	P_cP	
Haiwee	Z.	78.0	305	i 12 6	+ 4	-	-			
Mount Wilson		78.1	303	e 12 8	+ 6	_			-	-
Pasadena		78.2	303	e 12 7	+ 4	e 21 57	0	i 22 43	PS	e 36·9
Tinemaha		78.2	306	e 12 6	+ 3	170 OT 15 OCO 1	-		1752731	NEW 2007 (1994)
Grand Coulee		78.9	318	e 12 6	- 1	Total Control		e 12 18	PcP	
Erevan		79.5	50	e 12 13	+ 3	-	-	Trace all - in Section	_	_
Santa Barbara	Z.	79.5	304	i 12 14	+ 4					_
Grozny		80.4	47	e 12 17	+ 2			-	-	
Santa Clara		81.2	307	e 12 15	- 4		and a			e 36 · 2
Berkeley		81.4	307	e 12 18	→ 2	e 22 26	- 5	i 33 39?	Q	35.7
Tananarive		87.8	109	-	garages.	e 32 30	888			e 41.0
Sitka		88.1	327		-	i 23 27	-10	e 24 23	PS	e 36·4
Sverdlovsk		88.7	33	i 12 59	+ 2	i 23 50	+ 7	25 1	PS	
College		92.0	337			e 23 50	[+6]	e 24 58	$_{\mathbf{PS}}^{\mathbf{PS}}$	e 37 · 2
Bombay	E.	106.8	68			e 23 399		I 6		
New Delhi	N.	108.0	57	emina.	-	e 28 6	PS	_	-	e 58·2
Kodaikanal	E.	113.2	76	****		e 31 55	8			200
Christchurch	0.000	135.0	211	37 46	?	e 40 4	SS	61 9	Q	65.5
Riverview		$152 \cdot 2$	196	-		e 44 15	SSP	_	_	e 74-8

Additional readings :-

Fort de France PPP = 6m.1s.

La Paz 8PZ = 8m.16s., PPZ = 8m.48s., $P_cPZ = 9m.42s.$, pSZ = 14m.2s., 8SZ = 14m.44s., SSZ = 16m.6s.

Lisbon Z = 9m.45s., QE = 17m.3s.

San Fernando eSSZ = 16m.40s.

Huancayo iPPP =10m.6s., eSS =16m.51s.

Malaga PP? = 9m.528., $iP_cP = 9m.588.$

Granada sS = 15m.9s.

La Plata E = 8m.51s., SZ = 15m.21s.

Philadelphia e = 9m.30s.

Tortosa $P_cPN = 9m.55s.$, PPN = 10m.52s., PPPN = 11m.35s., $P_cSN = 14m.9s.$, PSN = 10m.52s.

15m.55s., SSN = 19m.7s., SSSN = 20m.51s.

Cincinnati iPP = 11m.18s., ePPP = 12m.14s.Kew ePPP?Z = 12m.11s., eSSS? = 20m.19s.?, eQ = 22m.9s.

St. Louis ePPPE = 12m.54s., eSE = 17m.31s., iN = 17m.59s., iSSE = 21m.28s.

Cheb eSS=22m.57s.

Collmberg iZ = 10m.19s, and 10m.44s, eZ = 11m.19s, 12m.10s, and 14m.3s, ePPPZ =

14m.33s., eZ = 15m.57s., 20m.51s., 22m.57s., and 23m.57s. Copenhagen 13m.47s., 20m.29s., and 24m.27s.

Rapid City eSS = 23m.55s.

Tucson i = 11m.33s., eSS = 25m.36s.

Bozeman e = 15m.30s., eSSS = 29m.32s.

Logan e = 13m.43s, and 24m.22s. Pasadena iZ = 13m.5s., iSEN = 22m.3s.

Berkeley iSS? = 28m.46s.

Sitka eSS = 29m.21s. Sverdlovsk SKS = 23m.25s.

Christchurch PSE = 49m.44s., SSEN = 53m.55s., readings wrongly identified.

Long waves were also recorded at Barcelona, Bergen, Seattle, Wellington, Arapuni, and Auckland.

- Sept. 14d. Readings also at 1h. (Christchurch), 3h. (Berkeley), 4h. (Grand Coulee), 8h. (San Juan), 17h. (Belgrade, near Sofia, Bucharest, and Campulung), 19h. (La Paz), 20h. (St. Louis, Palomar, Tucson, Riverside, Tinemaha and near Mizusawa), 22h. (Sitka and near Tucson).
- Sept. 15d. Readings at 3h. (near Mizusawa), 6h. (Pasadena, Tinemaha, Tucson, Palomar, Riverside, Christchurch, Arapuni, Wellington, Auckland, Riverview and near Stalinabad), 14h. (Collmberg, Riverside, Palomar and Tucson), 15h. (Tinemaha, Palomar and Tuscon), 16h. (Pasadena, Riverside, Tinemaha, Palomar, and Tuscon), 19h. (Cape Girardeau), 20h. and 21h. (near Tucson).
- Sept. 16d. Readings at 1h. (Boulder City, Pierce Ferry, Overton, Tucson, and near Granada), 3h. (Shasta Dam), 4h. (Tinemaha, Riverside, Pasadena, and near Tucson (2)), 5h. (Collmberg (2)), 17h. (near Mizusawa), 23h. (Shasta Dam, near Lick, Branner, San Francsico and Berkeley).

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1945

300

Sept. 17d. 0h. 47m. 35s. Epicentre 16° 2N. 100° 6W.

$$A = -.1767$$
, $B = -.9444$, $C = +.2773$; $\delta = +1$; $h = +6$; $D = -.983$, $E = +.184$; $G = -.051$, $H = -.273$, $K = -.961$.

		Δ	Az.	Ρ.	$\mathbf{O} - \mathbf{C}$.	s.	0 - C.	Su	pp.	L.
		0	0	m. s.	8.	m. s.	8.	m. s.		m.
Tacubaya		3.5	23	1 0	+ 3	$(1 \ 44)$	+ 4	Art State of	3	1.7
Puebla		3-6	38	0 57	- 1	1 35	- 7			1.7
Oaxaca		3.8	77	0 50	-11	(1 24)	-23	-		1.4
Guadalajara	N.	5.2	330	-			3	e 2 45	S	1.5
Vera Cruz	2.7.8	$5 \cdot 2$	54	1 15	- 6	e 2 5 2 8	-14		_	2.3
Tucson		18.5	332	e 4 18	- 1	e 7 43	- 1		_	e 8-9
Palomar	Z.	22.5	324	e 5 0	2	-	_			-
Pierce Ferry	33/5/	23.1	332	i 5 9	+ ī					-
Riverside	Z.	23.3	323	e 5 2	- 8					
Boulder City	1576	23.4	331	e 5 14	+ 3	e 11 58	\mathbf{L}	===	100	(e 12·0)
Overton		23.7	332	e 5 18	+ 4	-	-			
St. Louis		24.1	21	e 5 26	+ 8	e 9 35	+ 1			1200
Florissant		24.2	21	e 5 20	+ ĭ	· e 9 35	Ô	*****		*****
Haiwee		25.2	326	e 5 32	+ 3			_	_	_
Tinemaha		26.0	326	e 5 37	+ 1					
San Juan		33.0	80			e 11 55	- 2			e 16.8

Additional readings :-

Tucson i = 4m.38s. and 4m.48s., e = 5m.8s.

Palomar iZ = 5m.17s, and 5m.51s.

Pierce Ferry i = 5m.23s. St. Louis eN = 5m.52s., eE = 9m.59s., 10m.33s., 10m.48s., and 11m.10s., eSS?E = 14m.39s.

Florissant eE = 9m.53s., eSS?N = 14m.36s.

Long waves were also recorded at Huancayo and other American stations.

Sept. 17d. Readings also at 5h. (near Andijan, Stalinabad and Tashkent), 8h. (near Mizusawa), 14h. (Auckland, Christchurch, and Riverview), 15h. (Tortosa), 19h. (near Tucson), 21h. (near Stalinabad (2) and near Tucson), 22h, (La Paz).

Sept. 18d. 11h. 9m. 10s. Epicentre 41° 8N. 138° 6E. (as on 1941 April 2d.).

Uncertain.

$$A = -.5608$$
, $B = +.4944$, $C = +.6641$; $\delta = -4$; $h = -2$; $D = +.661$, $E = +.750$; $G = -.498$, $H = +.439$, $K = -.748$.

		Δ	Az.	P. m. s.	0 – C. s.	S. m. s.	0 – C. s.	m. s.	pp.	L. m.
Mizusawa	E.	3.3	144	e 0 54	+ 1	1 42	+ 7	0 - 1	-	_
Andijan	=23	48.6	292	e 9 39	+52			*****	-	-
Sverdlovsk		50.2	316	e 9 31	+31	i 17 11	+60	2 <u>-44</u>		_
Tashkent		50.5	294			i 16 59	+43		-	-
Baku		63.8	301			e 19 54	+43	-		_
Collmberg	Z.	75.9	327	i 12 8	+18		_	e 15 27	\mathbf{PP}	-
Pasadena	Z.	76.8	56	e 11 51	- 4	-	-	1000 12 200 Jan 10	-	-
Riverside	z.	77.3	56	e 11 55	- 3	_	-		-	-
Palomar	5550	78.1	56	i 11 59k			-	_		
Tucson		82.5	55	e 12 25	- 1	******		-	-	e 41.0

Additional readings :-

Collmberg iZ = 12m.20s.

Pasadena eZ = 12m.4s. Tucson e = 12m.36s.

Long waves were also recorded at De Bilt, Paris, and Triest.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1945

301

Sept. 18d. 22h. 37m. 56s. Epicentre 42° 8N. 115° 6W.

$$A = -.3180$$
, $B = -.6637$, $C = +.6770$; $\delta = -.5$; $h = -.3$; $D = -.902$, $E = +.432$; $G = -.293$, $H = -.611$, $K = -.736$.

			24 40							
		Λ	Δz.	Р.	O-C.	S.	$\mathbf{O} - \mathbf{C}$.	Su	pp.	L.
		0	•	m . s.	8.	m. s.	s.	m. s.		m.
Shasta Dam		5.5	250	e 1 25	0	e 2 18	-12	-		and the same of
Tinemaha		6.0	200	i 1 30	- 2	i 2 33	-10	i 1 43	P*	
Overton		6.3	172	i 1 43	+ 7	i 3 9	S*	i 1 51	P*	_
Pierce Ferry		6.8	169	i 1 45	+ 1	i 2 58	- 5	i 2 0	P*	G
Boulder City		6.8	170	i 1 43	- 1	i 2 55	- 8	i 1 58	P*	
Haiwee		6.9	196	i 1 41	- 4	i 2 56	- 9	i 1 57	$\mathbf{P}_{\mathbf{g}}$	
Mount Wilson		8.8	194	i 2 9	- 2	e 3 55	+ 2	i 2 30	P*	-
Pasadena		8.9	194	i 2 15	$+$ $\tilde{3}$	i 3 58	+ 3	i 2 31	P*	-
Riverside		8.9	189	i 2 10	- 2	e 3 56	+ 1	i 2 32	P*	-
Santa Barbara	z.	8.9	202	-	-	e 4 5	+10		-	-
Palomar		9.5	187	i 2 18	- 2	i 4 14	+ 4	i 2 44	P*	-
Tucson		11.2	159	e 3 16	+32	e 4 30	-22	-	-	e 5·2
Collmberg	z.	76.2	30	e 18 59	3	_				-

Additional readings ;—

Overton i = 2m.43s.

Boulder City e = 2m.37s.

Tucson e = 3m.26s. and 5m.2s. Long waves were also recorded at Grand Coulee and Salt Lake City

Sept. 18d. Readings also at 1h. (Collmberg), 2h. (Tashkent), 3h. (Palomar, Pasadena, Tinemaha, Tucson, Boulder City, Grand Coulee, Overton, Pierce Ferry, Shasta Dam, Sitka, College, Bermuda, St. Louis, San Juan, Copenhagen, De Bilt, Collmberg, and Paris), 7h. (Berkeley, Branner and near Lick), 10h. (Palomar, Tinemaha and Tucson) 13h. (Collmberg), 16h. (near Shasta Dam, near Andijan (2) and Stalinabad (2)), 19h. (Collmberg), 20h. (Collmberg and near Tucson), 21h. (near Tucson), 22h. (New Delhi, Leninakan, and near Andijan).

Sept. 19d. 6h. 48m. 0s. Epicentre 35°.7N. 4°.6W.

Intensity V at Penon de Velez (Spanish Morocco); III at Rute in Spain.

Boletín del Observatorio del Ebro, 1945.

Resumen de las Observaciones solares meteorológicas y sismológicas efectuadas durante el año 1945, p. 194. Tortosa 1946. Epicentre as adopted.

$$A = +.8113$$
, $B = -.0653$, $C = +.5810$; $\delta = +3$; $h = 0$; $D = -.080$, $E = -.997$; $G = +.579$, $H = -.047$, $K = -.814$.

		Δ	Az.	P.	O-C.	S.	$\mathbf{O} - \mathbf{C}$.	Su	pp.
		•		m. s.	s.	m. s.	s.	m. s.	8275
Malaga		1.0	9	i 0 15	- 6	i 0 32	- 2	e 0 24	Sz
Granada		1.7	28	0 35a	+ 4	0 59	+ 5	_	-
Almeria		$2 \cdot 1$	56	0 16	8		-		_
Toledo	Z.	$4 \cdot 2$	6	e 1 12	+ 5		53036	e 1 27	P_g
Alicante		$4 \cdot 2$	50	1 4	- 3		-	_	-

Additional readings;— Malaga SP = 21s., SSS = 42s., i = 45s. and 53s.Toledo e = 1m.30s.

Sept. 19d. 10h. 40m. 49s. Epicentre 29°-5N. 84°-0E.

Very rough.

$$A = +.0911$$
, $B = +.8670$, $C = +.4899$; $\delta = -1$; $h = +2$; $D = +.995$, $E = -.105$; $G = +.051$, $H = +.487$, $K = -.872$.

		Λ	Az.	P.	O-C.	s.	O-C.	Suj	pp.	L.
			0	m. s.	8.	m. s.	s.	m. s.		m.
Dehra Dun		5.2	281	e 1 32	P*	i 1 53	7	e 1 41	$P_{\mathbf{z}}$	-
New Delhi	E.	6.0	262	i 1 29	- 3	i 2 15	-28	1 44	P*	-
Calcutta	N.	7.9	149	e 3 42	S	(e 3 42)	+12	i 4 54	L	(i 4·9)
Hyderabad	N.	13.0	204	3 5	- 4	e 5 52	+17	6 13	ss	
Andijan	GW.	14.7	323	e 3 39	+ 8		-			

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1945

302

		Δ	Az.	P.	O-C.	S.	0 - C.	Su	pp.	L.
3886 5986		0	0.	m. s.	8.	m. s.	8.	m. s.	2,500	m.
Bombay		14.7	226	e 3 38	+ 7	e 6 9	- 7		-	7 . 2
Stalinabad		15.5	310	3 39	- 3	6 37	+ 2			
Tashkent		16.8	319	i 3 59	+ 1	i 7 16	$+1\bar{1}$			_
Colombo	E.	22.8	192	4 59	- 6					-
Irkutsk		$27 \cdot 3$	28	e 6 17	+29	e 11 9	+42	17112		
Baku		29.8	301		_	e 11 10	+ 3		200000	
Moscow		41.9	323	e 8 10	+16	0 11 10	1 3	30.02	276	-
Helwan	N.	45.4	285	0 0 10	1 10	e 15 1	3			
Collmberg	z.	56.0	314	e 9 51	4- 8	e m	3	0.19 1	pp	-

Additional readings and notes:— New Delbi S.E. = 2m 378

New Delhi S.E = 2m.37s.

Calcutta records S as P and L as S. Bombay iSN = 5m.49s.

Collmberg iZ = 9m.58s., eZ = 10m.28s. and 20m.56s., e = 21m.37s. Long waves were also recorded at Copenhagen and De Bilt.

The state of the s

Sept. 19d. 12h. 28m. 2s. Epicentre 42°.5N. 144°.4E. Depth of focus 0.005.

A = -.6013, B = +.4305, C = +.6731; $\delta = -4$; h = -3; D = +.582, E = +.813; G = -.547, H = +.392, K = -.740.

							- 32			
		Δ	Az.	76-35-7 TO 5	O-C.	s.	o-c.	Su	pp.	L.
8201		0	. 0	m. s.	S.	m. s.	8.	m. s.		m.
Sapporo		2.3	284	0 37k	0	-		-	-	
Hatinohe		2.9	228	0 27k	-18	0 56	-23			
Mori		2.9	262		ő	1 17	- ž		_	
Mizusawa		4.2	218	1 4	+ ĭ	1 49	- 3			7/2/2
Sendai		5.0	214	1 14	Ö		—"			
Onahama		6.2	207	1 25k	- 6	2 30	-11	-		0-11-12
Mito		6.8	208	1 33	- B					
Utunomiya		6.9	213	1 45	+ 4	-	-			233
Tukubasan		7.1	210	1 48	- 1 A			-		
Nagano		7.5	$\tilde{2}\tilde{2}\tilde{2}$	1 56	+ 7	3 35	+21			
Tokyo		7.7	210	1 53	+ 1	3 14	- 5		-	77
Wazima		7.7	231	2 1	+ 9	3 27	+ 8	-	-	
Mera		8.4	207	ĩ 59	- 3	3 37	4 1			
Shizuoka		8.9	214	2 7	2	3 43	- 5			
Kyoto		10.1	225	2 22	$\frac{1}{3}$	0 40			-	1
			250056		= *		55-52	-00-0 0		
Toyooka		10.2	230	2 14	-12	4 9	-11		man.	/ wheel
Owase		10.6	220	2 32	+ 1			-		
Koti		12.4	227	2 55	7.11	5 15	+ 2		-	-
Hukuoka		14.1	236	3 16	$-\frac{1}{2}$	<u> </u>				
Irkutsk		28.5	305	5 50	- Ī	10 33	0		-	_
College		43.3	35	i 7 58	+ 1	e 14 15	_ 4	e 8 17	nD	a 10.7
Sitka		50.6	44	18 54	Ô	e 15 51	-12		$_{\mathbf{PP}}^{\mathbf{PP}}$	e 19.7
Andijan		52.3	295	e 9 9	+ 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		e 10 54	FF	e 28·5
Tashkent		54.1	297	19 17	- 3	e 16 29 i 16 50	William Control		-	
New Delhi	N.	55.1	280	10 11	- 0		0	91 10	90	
III DENERGALISADA DESCRIPTOR DE	24.6	19101101				i 17 4	0	21 19	SS	-
Stalinabad		55.8	294	i 9 31	- 2			****	-	_
Hyderabad	N.	60.8	268	e 10 13	+ 5	18 7	-11	-		
Grand Coulee		63.8	48	e 10 24	- 4	e 20 12	8	mining.	-	-
Bombay		64.0	273	1 10 29	Õ	e 20 12 i 18 59	Ó	e 10 46	\mathbf{pP}	
Moscow		$64 \cdot 3$	323	10 28	– 3	19 0	- ž			
Shasta Dam		66-1	57	i 9 42	-60	e 18 11	-73			
Baku		67.0	305	10 51	+ 3	19 38	+ 3			
Saskatoon		67.6	40	10 01		Apr. 200.				24.0
Grozny		67 . 7	309	10 57	+ 4	e 19 4 19 43	-38		- 500	34.0
Berkeley	z.	67.8	59	i 10 43	-10°	 *3	*			
Upsala		69.0	335	e 11 1	۵	0 10 50				
Bozeman		69.5	47	4.4 0.0	1.95	e 19 59	. 0	-		e 34·0
Brisbane	Z.	70.1	172	e 11 29 i 11 9	+25	e 20 7	+ 2			e 33·7
Leninakan	424	70.4	308	the second of th	+ 2	-		Pennin		-
Tinemaha				e 11 12	+ 3	- 00 10	-		-	
Tucmone		70.8	58	i 11 12	0	e 20 19	- 1	i 11 26	\mathbf{pP}	-

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1945

303

		Δ	Az.	Ρ.	0 -C.	III A CANADAN TO CONTRA	o – c.		pp.	L.
Haiwee Santa Barbara Bergen Pasadena Mount Wilson	z.	71.6 71.6 72.1 72.7 72.8	58 60 341 59 59	m. s. i 11 17 i 11 18 i 11 21 i 11 22 i 11 22a	** 1 + 2 + 2 - 1 - 1	m. s. e 20 34 20 38 i 20 47 e 20 47	*** + 5 + 3 + 5 + 4	m. s. i 11 39 i 11 35 i 11 38	sP pP pP	m. e 37·0 e 30·6
Riverside Overton Boulder City Copenhagen La Jolla		73·3 73·5 73·6 74·0 74·1	59 56 56 335 60	i 11 26 i 11 29 i 11 28 i 11 30 a e 11 32	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	e 20 56 e 20 56 i 21 0 e 21 3	+ 2 + 4 + 4 + 6	i 11 38 i 11 44 i 11 46 i 14 29	pP pP PP	
Palomar Pierce Ferry Rapid City Riverview Aberdeen	N.	74·1 74·1 74·7 76·2 76·8	59 56 44 174 343	i 11 31 a i 11 35 i 11 44 k i 18 2	+ 1 + 1 + 1	i 21 3 i 21 28 i 21 27	$^{+\ 6}_{+\ 6}$	i 11 44 i 11 41 e 14 18 i 11 57	pP pP PP	e 41·2 e 35·9
Bucharest Collmberg Prague Jena Tucson	z.	77.4 77.5 78.0 78.3 78.6	320 332 330 332 57	11 40 i 11 48 e 12 1 e 12 11 i 11 57	$ \begin{array}{r} -10 \\ -2 \\ +8 \\ +16 \\ +1 \end{array} $	e 21 58 e 21 43 e 22 1	+23 + 3 +18	e 14 54 e 22 15 1 12 19	PP PS 	33.0 45.0 e 39.0 e 36.7
Cheb De Bilt Belgrade Ksara Sofia		78·7 79·4 79·7 79·8 80·0	332 336 323 307 320	e 11 58 e 12 2k e 12 7? e 12 6	- 3 + 4 + 2	e 22 0 e 21 58 e 22 0 e 22 4 e 22 0	$^{+12}_{+3}_{+2}$ $^{+5}_{-1}$	e 34 30	Q =	e 41·0 e 39·0 e 41·3 e 41·5
Uccle Strasbourg Triest Zürich Chur		80·8 81·6 81·9 82·3 82·4	337 333 328 332 331	e 12 7 a e 12 17 e 12 15 a e 12 16	- 1 - 3 - 8 - 1	e 22 19 (i 22 17) e 22 25 e 22 27	$-1 \\ -4 \\ 0 \\ +1$	e 25 28 e 12 51	ss pP	e 40·0 e 43·3 e 31·6
Basle Paris Neuchatel Auckland Florissant	z.	82·5 83·1 83·2 83·7 85·0	332 336 332 156 40	e 12 16 i 12 21 e 12 20 e 12 29	- 1 + 1 - 1 - 1	e 22 29 e 22 33 e 22 223 e 22 53	$^{+}_{0}^{2}_{-17}^{0}$	i 15 31 - i 12 44	PP PP	e 40·0 41·0
Arapuni St. Louis Helwan Cape Girandeau Wellington	E.	$85.1 \\ 85.2 \\ 85.3 \\ 86.6 \\ 87.8$	156 40 307 41 158	e 12 30 i 12 32k e 13 36	$-1 \\ +1 \\ +59$	e 32 58? e 22 48 22 52 e 37 58?	SSS - 6 - 3 - Q	i 12 46 12 58	pP pP	e 41·0 — 43·0
Christchurch Fordham Tortosa Toledo Granada		89·3 90·1 90·9 93·2 95·5	160 29 334 337 336	 e 13 54 e 13 7 26 7	+56 - 1 PS	e 22 58? i 23 21 23 55 e 24 32	$\begin{bmatrix} -35 \\ +4 \\ +8 \\ +25 \\ \end{bmatrix}$	i 23 42 24 25	SKKS PS	e 52·0 e 47·0 51·0
Lisbon Malaga San Fernando San Juan Huancayo La Paz	N.	95.7 96.2 97.0 113.2 134.1 142.0	341 336 337 33 62 58		- 1 - 1 PP [- 8]	24 23 23 49 e 24 50 e 27 15 e 33 5 26 5	- 5 [- 3] +10 PS PPS [-21]	i 17 13 i 17 19 e 34 34 e 39 31 i 22 37	PP PP SS SS PP	49.6 55.0 e 51.8 e 53.0 73.3

Additional readings:—
College =8m.27s. and 18m.0s.
New Delhi iN =17m.34s., $S_cSN = 19m.34s$.
Grand Coulee iP =10m.27s., i =10m.42s., e =13m.33s.
Shasta Dam i =18m.29s.
Upsala eSE =19m.54s.?
Tinemaha isPZ =11m.35s.
Pasadena isPZ =11m.45s.
Mount Wilson isPZ =11m.44s.
Riverside isPZ =11m.44s.
Boulder City e =21m.36s.
Copenhagen 16m.13s., pS =21m.29s., 27m.10s. and 29m.28s.
Palomar isPEZ =11m.52s., iE =12m.15s., iN =21m.38s.
Riverview ePSZ =22m.12s.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1945

304

Collmberg ePPPZ=16m.50s., ePSZ=22m.52s., eSSZ=27m.40s., and many other unidentified readings.

Prague eSS = 26m.52s, and 31m.4s.

Jena eN = 22m.23s.

Tucson i = 12m.29s. and 12m.43s., iPP = 15m.36s., ePPP = 17m.0s., e = 17m.26s. and 22m.13s.

Triest eS = 32m.20s.

Paris eS = 23m.1s., ePS = 23m.58s.?

Florissant iPPZ = 15m.48s., ipPPZ = 16m.1s

St. Louis iZ=13m.16s. and 13m.33s., eZ=14m.17s., ePPZ=15m.39s., epPP?Z= 16m.3s., eZ = 16m.53s., ePPPZ = 17m.34s., eZ = 18m.6s. and 18m.15s., iSN =22m.55s., isSN = 23m.22s., iPS?E = 23m.49s., eSSN = 28m.31s.

Helwan sPZ = 13m.12s., PPZ = 15m.49s., PSN = 24m.0s.Tortosa iE = 24m.16s.

Malaga eP?=14m.0s., SKS=20m.7s., PPP=20m.54s., SKKKS=24m.39s., record having been wrongly interpreted.

San Juan e = 40m.5s.

Huancayo e = 23m.9s. and 49m.23s.

La Paz iSKP = 23m.3s.

Long waves were also recorded at Honolulu, Ukiah, Bermuda, and Clermont-Ferrand.

- Sept. 19d. Readings also at 4h. (Collmberg), 5h. (Collmberg, Samarkand, near Andijan, Stalinabad, and Tashkent), 6h. (near Alicante (2)), 7h. (New Delhi), 11h. (Bombay, Samarkand, and near Tucson (2)), 13h. (near Samarkand), 17h. (Overton, Pierce Ferry, and near Tucson), 18h. (Boulder City, Pierce Ferry, Tucson, St. Louis, Mount Wilson, and Palomar), 20h. (near Tucson), 22h. (Collmberg, Strasbourg, Chur, Basle, Zürich, and near Triest).
- Sept. 20d. Readings at 2h. (Haiwee, La Jolla, Mount Wilson, Pasadena, Palomar, Riverside, Tinemaha, Boulder City, Overton, Pierce Ferry, Shasta Dam, and Collmberg), 3h. (near Almeria, Granada, and Malaga), 4h. (Boulder City, Overton, Pierce Ferry, Collmberg, and near Mizusawa), 5h. (Baku, Erevan, Andijan, Leninakan, Sverdlovsk, Grozny, Helwan, Ksara, and Collmberg), 7h. (near Andijan), 10h. (near Dehra Dun), 12h. (New Delhi), 13h. (La Paz), 14h. (near Triest), 20h. (near Tucson), 22h. (near Berkeley, Branner, Lick, and San Francisco).
- Sept. 21d. Readings at 0h. (near Berkeley, Branner, Lick, and San Francisco), 1h. (Mount Wilson, Palomar, Tucson, and Riverside), 7h. (Mount Wilson, Tucson, and Tinemaha), 8h. (Alicante and Collmberg), 13h. (La Paz), 15h. (near Pehpei), 21h. (near Ottawa), 23h. (Auckland).

Sept. 22d. 9h. 9m. 56s. Epicentre 3° 2S. 148° 2E.

A = -.8486, B = +.5262, C = -.0555; $\delta = +9$; h = +7; D = +.527, E = +.850; G = +.047, H = -.029, K = -.998.

		Δ	Az,	Ρ.	o - c.	S.	O - C.	Suj	op.	L.
		0	0	m. s.	8.	m. s.	s.	m. s.	· -	m.
Brisbane		24.6	169	i 5 22	- 1	i 9 53	+11		-11.52	5555
Riverview		30.6	175	e 6 14	- 4	i 11 25	121 1.021	2 0 00	- 70	
Auckland		41.5	147			The second secon	+ 5	i 6 20	pP	e 14·3
Arapuni		42.8			+ 2	13 54	-13	9 29	\mathbf{PP}	19.1
the state of the s			148	0.10		14 34	+ 8	18 4	SSS	20.1
Wellington		44.8	151	8 13	- 4	15 4	+ 9	8 54	\mathbf{sP}	22.1
Christchurch		45.6	155	8 28	+ 4	15 7	+ 1	10 1	\mathbf{PP}	22.2
Honolulu		58.2	63	e 10 1	$+$ $\frac{1}{3}$	i 18 7	+ 8			The second secon
Calcutta	N.	63.7	297	e 13 6	PP		7 0	e 22 2	SS	e 24·5
Irkutsk		66.5	333				S_cS		-	******
Colombo	2.44			i 10 51	- 3	19 39	- 5	-	Mineralli	_
Colombo	E.	68.9	278			16 4	1	-	-	-
Hyderabad	N.	71.7	289		Week and	20 50	+ 5		2000	(administration)
Kodaikanal	E.	71.7	282	$(11 \ 11)$	-15	(20 21)	-24	$(13 \ 41)$	\mathbf{PP}	191.53
New Delhi	N.	75-0	301	e 14 1	PP		- 44	$(13 \ 41)$	FF	(34.5)
Bombay		77.2	The second secon				Ŏ.		-	-
			290	e 12 0	$^{+}_{+}$ $^{3}_{8}$	e 21 47	0	-		_
Andijan		81.4	312	e 12 28	+ 8	e 22 35	+ 4	_	****	-
College		82.1	23	_		e 22 30	- 8	e 23 26	PS	e 33·9
Tashkent		83.8	312	e 12 26	- 6	22 42	-13	e 16 5	\mathbf{PP}	6 33 9
Sitka		85.5	32	e 12 39	_ 9	Target and the last of the las	-10		6.0	0.50
Ukiah		90.9		0 12 33			· - *.	i 23 29	ScS SS	e 35·3
			51	- 10 -		e 23 37	[-1]	e 30 19	22	e 37·8
Sverdlovsk		91.3	327	e 13 5	- 4	i 24 7	+ 1	16 43	\mathbf{PP}	

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1945

```
Supp.
                                                                                           L.
                                      P.
                                             O-C.
                             Az.
                                                                        m. s.
                                                                                           m.
                                    m. s.
                                                                                          43.1
                                                               [+
                                                                   9]
                       91.3
Victoria
                                                                                 SKS
                              53
                       91.6
Berkeley
                                                                                 SSP
                                               S
                       91.8
Santa Clara
                       91.9
Shasta Dam
                                                                                 SKS
                       94 \cdot 3
Grand Coulee
                                              + 1
                       94.7
                                    13 25
Tinemaha
                  z.
                                                                                  \mathbf{P}\mathbf{P}
                                                                                       e 38.9
                       94.8
Pasadena
                              56
                                                                                  PP
PP
                                                                       e 17
                                                                            15
                                  i 13 24
                              56
                       94.9
Mount Wilson
                                                                       e 17
                                  e 13 25
                              56
                                              _
Riverside
                       95.5
                                                                                  \mathbf{PP}
                                                                       e 17 22
                                  i 13 29
                              57
                       95.9
Palomar
                                                                                  \mathbf{P}\mathbf{P}
                                                               [+6]
                                              +16
                             310
                                    13 57
Baku
                       98.4
                                                                       e 30 54
                                                               [+10]
                                                     e 24
                                                          31
                              43
                       98.7
Butte
                                                                                        e 30·5
                                               PP
                                                                 PS
                                                     e 26
                                                           6
                              48
                                  e 17 20
                       99.6
Logan
                                                                       e 33
                                                                                        e 40·0
                                                                 PS
                                                     e 26 29
                              44
                       99.8
Bozeman
                                                                                       e 42.6
                                                                       i 18
                                                                                  PP
                                                     e 25 36
                                  e 13 46
                              58
                      101.0
Tucson
                                                                                   SS
                                                                                          42.1
                                                                       e 32 28
                                                     e 23
                              37
                      101.8
Saskatoon
                                              PP
                                  e 18 0
                             310
                      102.5
Erevan
                                              PP
                                  e 18
                             311
                      103.0
Leninakan
                                                       24 48
                                              + 5
                             327
                                  e 14 12
                      104.1
Moscow
                                                                                  _{\rm PS}
                                                              \{+11\}
                                                     e 25 45
                                              PP
                                  e 18 34
                      105.5
                              45
Rapid City
                                                                 _{PS}
                                             [+15]
                                                     e 28
                                                          15
                                  e 18 49
                      110.3
                             305
Ksara
                                                                                  \mathbf{PS}
                                                                                       e 57·1
                                                                 S
                                                     e 27
                                                          46
                             336
                      112 \cdot 1
Upsala
                                               \mathbf{PP}
                                                                SSS
                             318
                                    20 47
                      114.8
Bucharest
                                                                                 PPP
                                  e 19 43
                                               PP
                     114.8
                             301
Helwan
                                                                                       e 47.8
                                                                       e 19 46
                                                                                  \mathbf{PP}
                                                     e 25 40 [+ 4]
                                             [+36]
                                  e 19 21
                              48
                      116.2
Florissant
                                                                       e 25 56 SKKS e 47.8
                                               PP
                                                     e 25 38 [+ 1]
                                  e 19 47
                              48
                     116.4
St. Louis
                                               PP
                             334 e 19 48
                      116.8
Copenhagen
                                                                       e 49 28
                              43
                      117 \cdot 2
Chicago
                                                               [+391]
                                                                       e 38 45
                                                     e 26
                                                          23
                                  e 23 34
                             320
                      118.3
Belgrade
                                                                                       e 68·1
                                                     e 25
                                                               [-18]
                                                                       e 20
                                                                                  \mathbf{PP}
                                             [-11]
                                  e 18 40
                      119 \cdot 2
                             329
Collmberg
                                                                       e 39
                                                                            58
                                                           35
                             328
                      119 \cdot 2
Prague
                                                                                       e 62·1
                                                                       e 38
                                                                             43
                                                     e 28
                                                           43
                             329
                                  e 24
                      120.3
Cheb
                                                                       e 40
                                                                            31
                                                          18) [-39]
                                                    (e 25
                                              SKS
                                  e 25 18
                     122.0
                             324
Triest
                                                                                  SS
                                                                                       e 56·1
                                                              [+26]
                                                                       e 37
                                                     e 26
                                  e 23
                                              PPP
                      122.4
                             334
                                         4?
De Bilt
                                                                                  PS
                                                                                         49.1
                                                                       e 30 40
                                                              \{+3\}
                                                          38
                                              PP
                                  e 21
                              34
                                         6
                      123.1
Ottawa
                                                                                          56.1
                              31 e 23 52
                                              PPP
                      124.8
Seven Falls
                                                                                       e 61·1
                                  e 23 37
                                              PPP
                             332
                      125.9
Paris
                                                                                       e 52·1
                                                                       e 31 2
                                                     e 26 50
                                                              [+401]
                                             \mathbf{SKP}
                                  e 22 35
                              40
                      126.4
Philadelphia
                                                                       e 20 51
                                                                                  \mathbf{PP}
                                                                + 1}
                                                     e 28 0
                                             [+6]
                                  e 19 12
                              39
                      126.8
Fordham
                                                                                 PPP e 55.1
                                                              \{-28\}
                                                                       e 24 24
                                                     e 28 18
                                             [+ 8]
                                  e 19 28
                             111
                      134 \cdot 2
Huancayo
                                                                SSP
                                                                       i 23 42
                                              \mathbf{PP}
                                                       40 54
                      135.7
                             328
Toledo
                                                                                       e 74.0
                                                     e 44 32
                                    23
                                              SKP
                             326
                      137.4
Granada
                                                                                 PPP
                                                                                       e 65.7
                                                              {+10 }e 25 22
                                                     e 29 17
                                  e 23 4
                                              SKP
                      137.7
                              42
Bermuda
                                                                                  \mathbf{PP}
                                                                       e 22 27
                                  e 19
                              86
                                             [+4]
                      137.8
Bogota
                                                                                         74.1
                                                                                 pPP
                                                                         22 44
                                    22
                                              \mathbf{PP}
                             326
                  z. 138·2
Malaga
                                                                                 SKP
                                                                                         69.1
                                                       26 36 [- 2]
                                             [+4]
                                        33
                                    19
                      139 \cdot 1
                             120
La Paz
                                                                                         71.4
                                                                         30 33
                             327 e 25 26
                                              PPP
                      139.4
San Fernando
                                                                                  \mathbf{PP}
                                                                       e 23 24
                                                                                       e 59·5
                                             [ + 2] + 7]
                                                              [ + 3]
                              63 e 19 38
                      143 \cdot 2
San Juan
                              66 e 19 53
Fort de France
                      148.9
```

Additional readings:— Riverview iPPNZ=7m.23s., iPPPN=7m.38s., iE=12m.7s. and 13m.4s., iSSE=13m.25s., iN=13m.36s., iE=13m.50s.

Auckland i = 17m.28s. Wellington iZ = 8m.20s., $sP_cPZ = 10m.13s$., PPP = 10m.34s., SS = 18m.29s., Q = 20m,14s. Christchurch EZ = 16m.43s., SS = 18m.51s., QN = 19m.15s.

Honolulu e = 13m.14s. Kodaikanal PSE = (20m.46s.), SSE = (24m.56s.), readings decreased by 3m.

College e = 27m.22s. Tashkent SKS = 22m.56s., ePS = 23m.36s., SS = 28m.42s.

Sitka e = 27m.54s. Sverdlovsk iSKS = 23m.35s., PS = 25m.9s., SS = 30m.14s.

Berkeley iE = 25m.22s. and 30m.25s., eQN = 37m.28s.

Grand Coulee e = 18m.4s. Pasadena iZ = 14m.3s., ePPZ = 16m.29s., eZ = 18m.8s., iEZ = 25m.57s., eE = 31m.0s. Mount Wilson eZ = 16m.45s.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1945

306

Riverside eZ = 16m.38s. Tucson eSKS = 24m.42s., ePS = 26m.48s., ePPS = 27m.48s., eSS = 32m.42s.Upsala eN = 34m.46s., eE = 37m.20s., eN = 46m.4s.?, Helwan eZ = 20m.25s. and 24m.33s. Florissant eSKKSE = 26m.54s., eSN = 27m.36s.ePSE = 29m.33s., 30m.58s., eE = 32m.40s., 33m.30s., and 34m.6s., eN = 35m.14s., eSSSE = 40m.33s.St. Louis eE = 20m.47s., eSN = 27m.39s., ePS?E = 29m.42s., ePPSN = 30m.33s., ePPPS?E = 31m.1s., eE = 32m.41s., eSSSE = 40m.31s.Collmberg eZ = 20m.44s., 21m.15s., 21m.55s., 22m.29s., 23m.48s., and 32m.10s. Ottawa e = 22m.12s. Philadelphia eSS = 37m.47s., eSSS = 42m.52s.Fordham eSS = 38m.9s. Huancayo e = 22m.57s. and 23m.36s., eSS = 39m.55s. Bermuda eS = 36m.7s., eSS = 40m.27s.Malaga ePPZ = 25m.2s., PPPZ = 28m.10s., PPS?Z = 37m.54s., QZ = 68·1m. La Paz iZ = 23m.26s. and 24m.40s., SKKSZ = 29m.28s. San Juan ePPS = 35m.40s., eSS = 41m.30s., eSSS = 46m.11s.Long waves were also recorded at Tananarive, Seattle, Columbia, Lincoln, Harvard, Bergen, Clermont-Ferrand, and Tortosa.

Sept. 22d. Readings also at 1h. (Auckland), 3h. (Collmberg, St. Louis, Tucson, Palomar, Riverside, Pasadena, Mount Wilson, and Tinemaha), 6h. (near Sofia), 8h. (San Juan), 9h. (Tucson and near Boulder City), 10h. (Ksara and Helwan), 17h. (near Tucson), 18h. (near Sofia, near Stalinabad and near Tucson), 22h. (Collmberg and Mizusawa), 23h. (Tucson, Tinemaha, Palomar, Riverside, Pasadena, and Mount Wilson).

Sept. 23d. 9h. 57m. 48s. Epicentre 48°-0N. 114°-2W.

Scale VI at Bigfork, Prairie Ranger Station, De Borgia, Elmo, and Polson, Bovill. and Mullaw; V at Dixon, Kila, Missoula, Whitepine, and Avery; IV at Anaconda, Canyon Creek, Columbia Falls, Great Falls, and Helena.
United States Earthquakes.
U.S.C.G.S. p.9. Washington, 1947. Epicentre as adopted.

A = -.2753, B = -.6126, C = +.7409; $\delta = 0$; h = -5; D = -.912, E = +.410; G = -.304, H = -.676, K = -.672.

		Δ	Az.	Р.	$\mathbf{O} - \mathbf{C}$.	s.	O-C.	Suj	op.	I.
1992 1480		0	•	m. s.	8.	m. s.	8.	m. s.	45000	m.
Butte		2.3	151	i 0 40	0	i 0 55	-14	-	-	i 1 · 1
Bozeman		3.2	137	i 0 53	+ 1					i 1.5
Grand Coulee		3.2	269	e 0 49	- 3	i 1 40	+ 8		*****	* * *
Victoria		6.2	279		-	e 3 15	S*	4		4.2
Saskatoon		6.4	47	e 1 39	+ 1		_	777- 32	-	4.0
Logan		6.5	164	e 1 27	-12	e 2 46	- 9			e 3·3
Salt Lake City		7.4	166	e 2 30	$\mathbf{P}_{\mathbf{g}}$	e 3 2	-16	-	-	e 3.7
Rapid City		8.6	113	e 2 4	- °5	e 3 52	+ 4	1 2 33	P*	e 4.2
Shasta Dam		9.4	222	i 2 18	Ö	e 4 50	8*			0 4 2
Tinemaha		11.3	197	e 2 55	+ 9	i 6 4	+70	(<u>=</u>)		
Overton		11.4	181	i 2 51	+ 4	e 5 27	+31		22-21	i 5.8
Pierce Ferry		11.9	179	i 2 57	+ 3	i 6 7	+58		_	100
Boulder City		12.0	183	i 2 53	- 2	e 6 12	+61			
Haiwee		12.2	195	e 3 9	$+1\bar{1}$	<u> </u>	10 <u>20</u>			
Mount Wilson		14.1	193	e 3 23	0		-	_		-
Pasadena		14.2	194	i 3 24	0		0.5			i 7·5
Riverside		14.2	191	i 3 24	0	10.00		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1 3
Palomar		14.8	189	1 3 32	Ŏ		_			
La Jolla	Z.	15.3	190	e 3 39	ŏ					
Tucson		16.0	170	e 3 45	- š	i 6 56	± 10			e 8·0
St. Louis		19.7	109	e 4 28	- 6	e 8 17	+ 7	e 9 7	SS	i 10.2
Ottawa		26.3	81	e 5 36	- š			65 1	1313	11.2
and the second second second										

Additional readings :-

Grand Coulee i = 59s., 1m.5s., and 1m.44s.

Boulder City e = 5m.31s.

Pasadena iZ = 3m.29s. Tucson i = 3m.49s., 3m.58s., and 5m.19s.

Long waves were also recorded at other American stations,

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1945

307

Sept. 23d. 15h. 34m. 23s. Epicentre 40°·1N. 118°·8E.

Felt at Peking. Annales de l'Institut de Physique du Globe de Strasbourg 2e partie Séismologie Tome X, Strasbourg, 1951, p. 34.

> A = .-3695, B = +.6722, C = +.6416; $\delta = +3$; h = -2; D = +.876, E = +.482; G = -309, H = +.562, K = -.767.

	0.0513748757	Δ	Az.	Р.	o -c.	s.	o –c.	Suj	pp.	L.
Vladivostok Hukuoka Toyooka Sumoto Osaka		10·3 11·3 13·5 14·0 14·4	69 122 105 109 107	m. s. i 2 33 2 50 i 3 4 e 2 44 e 4 11	s. + 1 + 4 - 11 - 38 + 44	m. s. i 4 39 6 8 7 39 7 20 8 43	* P * P * P * P * P * P * P * P * P * P	m. s.		(6·1) (7·3) (8·7)
Pehpei Irkutsk Sapporo Mizusawa Mera		14·4 15·7 17·1 17·2 17·4	$229 \\ 326 \\ 71 \\ 86 \\ 103$	e 3 19 3 47 4 2 e 4 5 4 2	- 8 + 3 + 2 - 4	e 6 42 6 59 8 11 7 26 8 2	$^{+33}_{+20}_{+59}_{+12}_{+43}$		=	e 7·2
Calcutta Frunse Andijan New Delhi Tashkent	N.	$31.2 \\ 32.9 \\ 35.0 \\ 35.9 \\ 37.1$	245 290 286 265 289	e 7 19 e 6 45 e 6 57 e 7 3 e 7 12	PP + 7 + 1 - 1 - 2	e 12 33 13 1				15·1 = =
Stalinabad Hyderabad Bombay Kodaikanal Colombo	N. E.	38·2 41·5 44·7 47·1 48·0	285 249 256 243 237	e 6 23 7 59 i 8 22 e 7 54	-60 + 9 + 6	14 9 i 15 14 e 15 4 15 36	$^{+\ 2}_{+\ 20}_{-\ 24}_{-\ 5}$			23·7
Grozny Moscow College Ksara Copenhagen		53·4 53·4 55·9 64·3 66·0	$300 \\ 317 \\ 31 \\ 293 \\ 324$	e 9 23 9 22 e 10 48? e 10 48?	$^{+}_{-}\overset{2}{\overset{9}{_{-}}}$	16 58 e 17 34 e 19 21 e 19 43	$\begin{array}{r} - & - & - & - & - & - & - & - & - & - $		= = e	27·0 32·1
Sofia Belgrade Collmberg Prague Jena	z. N.	67·7 68·2 68·4 68·4 69·3	$308 \\ 311 \\ 320 \\ 318 \\ 319$	e 11 37 e 20 4 i 11 3 e 11 31	$^{+36}_{-3} \\ ^{+20}$	e 20 2 (e 20 4) e 21 25 e 18 44	$+\frac{4}{0}$ -83	e 14 25	PP e	33·6 37·6 35·9 32·6
Triest Zürich Basle Neuchatel Grand Coulee	1.7	71·5 73·1 73·5 74·2 78·5	315 319 319 319 36	i 20 47 e 11 32 e 11 35 e 11 34 e 12 2	- S - 1 - 6 - 2	(i 20 47)	+ 4 =		= e	34.8
Riverview Toledo Tinemaha Haiwee San Fernando	z. E.	79·4 85·0 87·0 87·9 88·6	$153 \\ 320 \\ 43 \\ 43 \\ 319$	11 46 i 12 50 i 12 53	- 52 + 2 0	e 23 9 e 23 44	+ 2 + 2 + 2	e 31 37 15 58 —	PP 	38·4 — 47·0
Mount Wilson Pasadena Overton Boulder City Pierce Ferry		89·3 89·4 89·6 89·9	44 41 41 41	e 13 0 i 12 58 i 13 0 i 13 1 i 13 2	+ 1 - 1 0 0			=	= e	47·5 —
Riverside Palomar Ottawa Tucson St. Louis		89 ·9 90 ·6 93 ·9 94 ·6 97 ·3	44 44 11 41 23	e 13 0 i 13 5 e 13 19 e 13 21 e 13 40	- 2 - 2 - 3 + 4			e 16 4	P P = e	43·6 42·7

Additional readings:—
Pehpei eP = 3m.22s.

Kodaikanal eE = 9m.44s., 17m.26s., and 18m.38s.

Sofia eN = 21m.37s.?

Belgrade e = 21m.4s., 33m.17s., and 35m.2s.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1945

308

Collmberg ePPPZ=16m.10s., ePSZ=22m.7s., eSSZ=26m.31s., and many other unidentified iZ readings.

Grand Coulee e = 12m.44s. Pasadena iZ = 13m.4s.

Palomar iZ = 13m.11s and 13m.17s.

Long waves were also recorded at Huancayo, Bermuda, San Juan, and many other American and European stations.

Sept. 23d. 17h. 20m. 34s. Epicentre 17°.5N. 105°.2W.

$$A = -.2502$$
, $B = -.9209$, $C = +.2989$; $\delta = 0$; $h = +5$; $D = -.965$, $E = +.262$; $G = -.078$, $H = -.288$, $K = -.954$.

					0.5-01 -0-00					
		Δ	Az.	Ρ.	O-C.	s.	0 - C.	Su	D.	L.
		-		m. s.	s.	m. s.	S.	m. s.		m.
Guadalajara		3.6	29	0 42	-16	-		-	_	1.3
Tacubaya		6.0	71	i 1 41	+ 9	i3 6	S*			3.4
Tucson		15.5	$34\overline{2}$	i 3 39	- 3	e 6 49	+14		-	e 7·5
La Jolla		18.8	328	i 4 24	+ ĭ					0.0
Palomar		18.9	329	î 4 27 k	$+$ $\hat{3}$		5015 0	-	+	
Riverside		19.7	329	i 4 34k	0					
Pierce Ferry		20.1	340	i 4 37	- i	i 10 53	L		-	(i 10·9)
Mount Wilson		20.2	329	e 4 40	+ î		1			(1 10 0)
Pasadena		20.2	329	e 4 40k	+ 1	(e 8 20)	- 1		-	e 8.3
Boulder City		20.3	338	i 4 40	Ô	e 8 17	- 6			i 10.6
Overton		20.6	339	i 4 44	+ 1	12 <u>222</u>				i 11·2
Santa Barbara		21.3	327	i 4 52	+ 2	-			-	
Haiwee		21.7	333	i 4 56k	+ 1					
Tinemaha		22.7	333	i 5 6k	+ 2	7522				
Salt Lake City		23.9	349	e 5 14	$\frac{+}{-}\frac{2}{2}$	e 9 25	- 5		-	e 11·7
Lincoln		24.4	16	-	· 	e 10 36	+57		-	e 13·0
Logan		24.8	349	e 4 52	-33		V 200	-		e 10.4
St. Louis		24.8	29	i 5 22	- 3	i 9 39	- 7	i 5 48	PP	e 11.6
Florissant		$24 \cdot 9$	29	e 5 23	- 3	i 9 40	- 7	i 10 51	SS	e 11.8
Berkeley	z.	$25 \cdot 2$	328	e 5 33	+ 4	1			_	
Rapid City		26.5	4	e 5 45	+ 4	e 9 42	-32	187.3 76		e 13·5
Columbia		$27 \cdot 2$	48			o 10 57	+32			e 16·4
Shasta Dam		27.5	332	i 5 50	0		7-		1=3	-
Grand Coulee		32.4	344	i 6 33	- 1	-	-	***** **		
San Juan		37.1	83		_	0.22	_	e 16 8	Q	e 17.8
Harvard		37.9	43	e 7 21	+ 1		-		-	
Weston		38.0	43	i 7 22	+ 1		-	-	-	(- 11

Additional readings:—
Tucson i = 3m.45s., 3m.50s., 4m.8s., and 4m.24s., iS = 6m.52s.

Palomar iZ =4m.35s.

Pierce Ferry i =4m.49s.

Pasadena iNZ =4m.45s. Boulder City i =5m.21s.

Overton i = 4m.56s, and 5m.11s.

Salt Lake City e = 6m.43s.

Logan e = 5m.40s, and 9m.3s.

St. Louis iZ = 5m.31s.

Long waves were also recorded at Huancayo, La Paz, and some other American stations.

Sept. 23d. Readings also at 1h. (near Malaga), 2h. (Collmberg and near Grand Coulee), 3h. (near Andijan and Stalinabad), 4h. (Collmberg near Tacubaya and near Tashkent), 7h. (near Cape Girardeau, Florissant, St. Louis, and Pittsburgh), 8h. (Bermuda, Philadelphia, St. Louis, Tucson (2), Palomar (2), Pasadena, Riverside (2), Tacubaya, Huancayo, and La Paz), 11h. (Auckland, Christchurch, and Riverview), 12h. (Belgrade, Bucharest, Sofia, and Triest), 13h. (Shasta Dam), 15h. (Granada, Palomar, Riverside, Tucson, and near Samarkand), 17h. (Collmberg), 18h. (Tashkent, near Andijan, and Stalinabad), 20h. (near Tucson), 21h. (Collmberg and Huancayo), 22h. (New Delhi).

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

309 1945

Sept. 24d. 12h. 35m. 19s. Epicentre 7°-2S. 155°-3E. Depth of focus 0.020. (as on 1943 Oct. 17d.).

> A = -.9014, B = +.4146, C = -.1245; $\delta = -8$; h = +7; D = + .418, E = + .909; G = + .113, H = - .052, K = - .992.

		Δ	Az.	Р.	O-C.	s.	O-C.		pp.	L.
Brisbane Riverview Auckland Arapuni Wellington		20·3 26·8 34·5 35·9 38·1	185 187 154 151 155	m. s. i 4 24 a i 5 29 a 12 3 9 41	- 1 + 2 PeP	m. s. i 8 15 i 10 1 (12 3) e 11 41? i 12 51	s. +17 +11 +13 -31 + 6	m. s. i 8 52 i 5 48 16 44 15 41? 15 41?	sS SS SS SS	e 12·7 20·3 21·3
Christchurch Kodaikanal New Delhi College Bombay	E. N.	$ \begin{array}{r} 39 \cdot 2 \\ 79 \cdot 4 \\ 83 \cdot 1 \\ 83 \cdot 2 \\ 85 \cdot 2 \end{array} $	$^{160}_{282} \\^{300}_{20} \\^{290}$	= = 8 45	<u>-</u>	12 40 e 24 33 i 22 16 e 22 13 i 22 45	$^{+rac{9}{3}}_{-rac{1}{11}}$	15 49 e 29 45 i 22 53	ScS	19·1 33·7 e 38·1
Berkeley Andijan Victoria Pasadena Mount Wilson	z.	$88.4 \\ 89.3 \\ 89.6 \\ 91.1 \\ 91.2$	$\begin{array}{r} 52 \\ 311 \\ 41 \\ 56 \\ 56 \end{array}$	e 11 32 e 12 42 i 12 45 k i 12 46 k	$-63 \\ + 3 \\ -3 \\ -2$	e 23 0 e 23 17	$-\frac{13}{2}$	i 13 3 i 13 9 i 13 9	pP pP	e 40·7
Tinemaha Haiwee Tashkent Riverside Palomar	z.	$91.4 \\ 91.6 \\ 91.7 \\ 91.8 \\ 92.1$	53 54 311 56 57	i 12 47 e 12 55 e 12 51 i 12 47k i 12 50k	$ \begin{array}{rrr} $	23 13	[+ 7]	e 16 45 24 12 i 13 11 i 13 19	SeS pP pP	
Boulder City Overton Pierce Ferry Tucson Sverdlovsk		94·1 94·4 94·8 97·1 98·5	54 53 54 58 326	i 12 59 e 13 8 i 13 2 e 13 16 13 20	$ \begin{array}{rrr} - & 2 \\ + & 5 \\ - & 2 \\ + & 1 \\ - & 1 \end{array} $	e 25 56 24 36	PS + 4	i 13 25 i 13 37 i 13 27 e 13 38 23 48	pP pP pP SKS	e 43·1
St. Louis Bucharest Ottawa Copenhagen Collmberg	E. Z.	$113.5 \\ 122.4 \\ 122.6 \\ 123.4 \\ 126.1$	$\begin{array}{r} 50 \\ 319 \\ 39 \\ 336 \\ 333 \end{array}$	e 18 34 i 18 43	$\begin{bmatrix} -\frac{3}{3} \\ -\frac{3}{0} \end{bmatrix}$	e 24 52 31 413 e 25 53	The second secon	e 28 43 33 413 	PS SS pPKP	e 51·3 56·7 55·7
Triest Zürich La Paz Basle San Juan		$129.3 \\ 130.9 \\ 131.0 \\ 131.7 \\ 138.1$	327 331 119 331 70	e 22 9 e 22 6 e 21 14	pPP pPP PP	e 40 39 = e 22 35	- - pPP	e 22 10 e 31 3	pPP	e 65·9
Toledo Malaga San Fernando	z. z.	$142.6 \\ 145.3 \\ 146.3$	$\frac{333}{331}$	e 19 12 i 19 19 a i 19 27	[-2] $[-6]$	e 22 27 i 22 57	PP PP	i 22 48 e 20 5 i 20 7	PP pPKI pPKI	: =

Additional readings :-Riverview iE=10m.6s. and 10m.19s., iN=10m.26s., iE=10m.36s. and 10m.51s.,

iN = 10m.55s., iE = 11m.58s.Auckland PP = 12m.35s. Readings wrongly identified.

Wellington i = 13m.26s., $P_cS = 14m.54s.$, i = 17m.6s.

Christchurch iN = 13m.12s. Pasadena isP = 13m.19s.

Tashkent SS = 28m.49s.

Riverside is PZ = 13m.19s. Palomar iZ = 12m.55s.

Boulder City i = 13m.55s., iPP = 17m.5s.

Overton iPP = 17m.26s.

Pierce Ferry i = 14m.0s., iPP = 16m.52s.

Tucson i = 17m.8s. and 17m.36s.

Sverdlovsk PS = 25m.11s.

St. Louis eE = 29m.23s. and 29m.56s.

Copenhagen 51m.11s. Collmberg iZ = 19m.4s., eZ = 21m.21s., 22m.15s., 23m.17s., 27m.47s., 29m.11s., 30m.23s., and 31m.11s.

Malaga PP?Z = 19m.43s., Z = 22m.57s.

San Fernando iPPZ = 19m.45s.

Long waves were also recorded at Uccle and De Bilt.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1945

310

Sept. 24d. Readings also at 0h. (Collmberg (2) and Kodaikanal), 1h. (Copenhagen, Collmberg, Triest, Belgrade, and Bucharest), 4h. (near Mizusawa and near Tucson), 5h. (near La Paz), 9h. (near Tucson), 10h. (near Mizusawa), 11h. (near Stalinabad), 12h. (near Samarkand), 13h. (near Berkeley and Branner), 14h. (La Paz and near Andijan), 15h. (near Fresno, Berkeley, San Francisco, Branner, and Lick), 16h. and 17h. (San Juan), 18h. (Collmberg, Tucson, Palomar, Riverside, Mount Wilson, and Tinemaha). 19h. (La Plata, Riverside, Tucson, St. Louis, near Berkeley, San Francisco, Branner, and Lick), 21h. (near Tucson).

Sept. 25d. Readings at 4h. (near Andijan), 9h. (Harvard), 11h. (near Bogota), 12h. (Collmberg and Ksara), 15h. (San Juan, Huancayo, Copenhagen, and De Bilt), 18h. (Tucson, Mount Wilson, Riverside, Palomar, and Tinemaha), 19h. (Shasta Dam, near Fresno, Lick, Branner, San Francisco, Berkeley, and near Tucson), 20h. (Palomar, Tinemaha, Mount Wilson, Pasadena, Riverside, Tucson, near La Paz (2), and near San Juan), 21h. (La Paz), 22h. (Tinemaha, Pasadena, Riverside, Tucson, and Grand Coulee).

Sept. 26d. 3h. Undetermined shock.

College e = 40 m. 46 s., eL = 44 m. 51 s.Sitka eP? = 41m.25s., i = 44m.32s., iL = 47m.50s. Grand Coulee eP = 43m.28s. Shasta Dam eP = 43m.39s. Tinemaha iPZ = 44m.22s., iZ = 44m.39s.Haiwee eP = 44m.30s., iZ = 44m.45s.Boulder City eP = 44m.45s., e = 44m.53s. Pierce Ferry iP = 44m.49s. Palomar iP = 44m.50s., ipP? = 45m.6s. Pasadena iZ = 44m.50s., eLZ = 58.9m. Overton eP = 44m.56s., e = 45m.34s.Riverside eZ = 44m.568. Tucson iP = 45m.26s., e = 46m.10s., iPP = 47m.8s., i = 47m.27s., eL = 62m.13s. St. Louis ePZ = 46m.24s., eSE = 53m.38s., eE = 57m.48s., eLE = 61m.23s. Ottawa eZ = 46m.50s., L = 66m.Collmberg iZ = 49m.9s, and 49m.20s. Florissant eSE = 53m.35s. Long waves were also recorded at Copenhagen.

Sept. 26d. 13h. 42m. 4s. Epicentre 42° · 0N. 20° · 5E. (as on 1941 Sept. 13d.).

Intensity VII at Prizren; VI at Brod, Dragas; V at Skoplje; and IV at Peck.

Beograd 1950, p. 37 and p. 23.

Epicentre 40°13'N. 20°43'E (Belgrade) Macroseismic radius 43km. Annuaire de l'Institut séismologique de Beograd, microséismique et macroséismique 1945,

> A = +.6982, B = +.2610, C = +.6666; $\delta = -4$; h = -2; D = +.350, E = -.937; G = +.624, H = +.233, K = -.745.

		Δ	Az.	Ρ.	O-C.	s.	O-C.	Su	pp.	L.
. 3 . 5		0	0	m. s.	s.	m. s.	S.	m. s.		m.
Sofia		2.2	72	i 0 40	+ 2	i 1 3	3	i 0 48	$\mathbf{P}_{\mathbf{z}}$	
Belgrade		2.8	359	e 0 46	- 1	1 27	+ 5	i 0 50	P.	-
Bucharest	E.	4.8	58	e 1 16	$+$ $\bar{1}$	e 2 24	s•	420 DE 400 E E		
Triest	SAMP:	6.1	309	i 1 36	$+$ $\tilde{2}$	i 2 30	-15		P.	-
Prague		9.1	335	e 2 247	+10	e 4 22	1 00	i 1 42	P-	
7 7 7 P W Y			000	C 2 211	7.10	0 4 22	+22	110	-	e 4 · 9
Chur		9.2	305	e 2 19	+ 3	. 4 9	0	- 1 00	aaa	
Cheb		$\tilde{9} \cdot \tilde{9}$	328	0 2 10	O	e 4 3	0.0	e 4 23	SSS	
Zürich		10.1	306	. 9 99		e 4 56?	S*		-	
Collmberg	194			e 2 28	0	e 4 30	+ 5			20 mm
	Z.	10.6	333	i 2 34	- 2	i 5 0	SSS	i 2 41	\mathbf{PP}	i 5.8
Basle		10.7	306	e 2 37	- 1	c 4 41	+ 2		-	
*		40.0	en en en			A00000000000000	to com			
Jena		10.9	328	e 3 4	PPP	c 4 49	+ 5			e 6·1
Neuchatel		10.9	302	e 2 39	- 1		25.0			e 6·1
Strasbourg		11.1	311	e 2 59	PPP	e 5 10	SSS			
Besancon		11.6	302	e 2 58	+ 8	e 4 46	$-\widetilde{15}$			223
Uccle		14.2	314	e 3 34	+10	U X 20	10		-	
				THE RESERVE	1 A V	134-15-4	-	-		A 7.1

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1945

311

		△ Az.		Ρ.	O-C.	s.	0 - C.	Su	pp.	L.
		0	0	m. s.	S.	m. s.	8.	m. s.		m.
Paris		14.4	304	-	-	e 6 35	SS		_	7.9
Ksara		14.6	119	e 3 41	PP					e 8.5
Copenhagen		14.7	341	e 3 31	0	i 6 30	+14		-	8.1
Moscow		17.7	33	4 10	0	e 7 31	+ 5	2 2 2	-	-
Upsala		18.0	355	e 4 13	0	e 7 32	0	200	25000	e 9·4
Toledo	z.	18.6	271	e 4 21	0	· .		e 4 29	\mathbf{PP}	
Baku		22.1	84	e 5 12	+13					
Sverdlovek		20.5	46	o 8 10	1. 9	0,000	-	12.2.2		251.51

Additional readings:— Sofia iS₈EN = 1m.12s.

Belgrade 0m.58s., iS, =1m.29s

Bucharest iE = 1m.54s.

Collmberg iPPPZ = 2m.44s., iZ = 2m.47s., 3m.0s., 3m.30s., 4m.0s., and 5m.11s., iSSZ = 5m.24s., iZ = 5m.28s.

Long waves were also recorded at De Bilt.

Sept. 26d. 14h. 27m. 5s. Epicentre 19°-8N. 65°-6W.

$$A = +.3890$$
, $B = -.8575$, $C = +.3367$; $\delta = -1$; $h = +5$; $D = -.911$, $E = -.413$; $G = +.139$, $H = -.307$, $K = -.942$.

	△ Az	. P. m. s.	0 – C. s.	S. O-C. m. s. s.	m. s.	L. m.
San Juan Fort de France Bogota Balboa Heights Columbia	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1024 e138 e40 e43	- 4 - 3 - 3 - 1 - 3	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	e 1 50 P* i 4 14 PP	i 0·8
Georgetown Fordham Harvard Pennsylvania Ottawa	21·5 336 22·1 343 23·2 356 23·4 336 26·9 344	e 5 0 1 5 11 e 5 15	+ 1 + 1 + 2 + 4	e 9 1 +14 e 9 9 +11 f 9 25 + 7 e 9 35 +14 (9 557) -25	i 5 27 PP e 6 24 ?	9.9
Shawinigan Falls St. Louis Florissant Chicago Huancayo	$27 \cdot 3$ 356 $28 \cdot 4$ 317 $28 \cdot 6$ 317 $28 \cdot 8$ 324 $33 \cdot 1$ 198	5 58 e 6 1 e 8 8	+ 1 + 1 + 5	e 10 56 +11 e 11 3 +15 e 11 13 +22	i 6 40 PP e 6 43 PP	e 14·0 e 12·7
La Paz Rapid City Tucson Pierce Ferry Overton	$36 \cdot 2$ $39 \cdot 5$ 316 $42 \cdot 2$ 297 $45 \cdot 3$ 302 $45 \cdot 7$ 303	i 7 37 i 7 57 i 8 22	$^{+}_{+}$ $^{6}_{3}$ $^{+}_{+}$ $^{1}_{3}$	e 14 20 + 43 =	i 9 9 PP e 9 50 PP i 8 33 7	e 20·7 e 21·1
Boulder City Palomar Riverside z. Mount Wilson z. Haiwee	45.9 302 47.4 298 47.8 299 48.4 299 48.5 302	i 8 39 i 8 42 i 8 46	+11 + 1 + 1 0		e 10 58 PPP i 8 49 1 e 8 58 1	
Pasadena Tinemaha Grand Coulee Shasta Dam Toledo z. Copenhagen Collmberg z.	$egin{array}{cccccccccccccccccccccccccccccccccccc$	i 8 49 e 9 4 e 9 13 e 9 39	$\begin{array}{r} + & 2 \\ - & 3 \\ - & 3 \\ - & 3 \\ - & 4 \end{array}$	e 20 0 + 8	i 8 58 i 9 5 i 9 = = = = = = = = = = = = = = = = = =	e 26·1

Additional readings :-

Fort de France e = 3m.2s. and 3m.8s.

St. Louis iZ = 6m.10s., eZ = 6m.15s., iZ = 6m.31s., eSSSE = 12m.40s.

Rapid City i = 8m.9s.

Tucson i = 8m.36s.

Pierce Ferry e = 8m.54s. Boulder City i = 9m.14s.

Long waves were also recorded at other American and European stations.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1945

312

Sept. 26d. Readings also at 0h. (San Juan and near Samarkand), 1h. (near Tacubaya), 2h. (near Mizusawa and near Samarkand), 3h. (near Samarkand), 4h. (near Tacubaya), 8h. (Tinemaha, Riverside, Palomar, Tucson, and near Tacubaya), 9h. (Tinemaha, Mount Wilson, Riverside, Palomar, Tucson, St. Louis, Fort de France, near San Juan, New Plymouth, Wellington, near Kaimata, Christchurch, and Monowai, and near Andijan), 10h. (Collmberg (2)), 11h. (Collmberg, near Tashkent, Andijan, Samarkand and Stalinabad), 12h. (near Andijan), 15h. (San Juan), 17h. (Palomar, Riverside, Mount Wilson, and Pasadena), 18h. (Christchurch, Riverview, and Balboa Heights), 19h. (Andijan and near Tucson), 20h. (near Andijan), 21h. (near Tucson), 23h. (Collmberg).

Sept. 27d. 23h. 8m. 58s. Epicentre 14°.9S. 173°.3W. (as on 1942 Nov. 26d.).

Intensity IV at Apia. Annales de l'Institut de Physique du Globe de Strasbourg 2e partie, Séismologie, Tome X, 1951, p. 35.

A = -.9599, B = -.1128, C = -.2569; $\delta = +13$; h = +6; D = -.117, E = +.993; G = +.255, H = +.030, K = -.967.

Apia Auckland Arapuni Wellington Christchurch		$_{1 \cdot 9}^{\circ}$ $_{24 \cdot 2}^{\circ}$ $_{25 \cdot 0}^{\circ}$ $_{28 \cdot 2}^{\circ}$ $_{30 \cdot 9}^{\circ}$	Az. 54 204 202 199 199	P. m. s. i 0 31	O -C. - 3 	8. m. s. (9 27) 10 2? (11 2? 11 17		m. Sur	р. — Q	L. m. 11.0 12.0 12.0 15.6
Mount Wilson Palomar	z. z. z.	$39.1 \\ 71.7 \\ 71.8 \\ 72.1 \\ 72.1$	24 46 46 47 46	i 11 27 i 11 28 i 11 29 e 11 29	$\begin{array}{c} \\ + & 1 \\ + & 2 \\ + & 1 \\ + & 1 \end{array}$	e 13 33	+ 2			e 16·2 e 32·5
Shasta Dam Boulder City Pierce Ferry Tucson Grand Coulee		72·8 74·9 75·6 76·0 79·1	38 46 47 51 34	e 11 33 e 11 45 i 11 50 i 11 51 i 11 52	$^{+}_{+}^{1}_{0}$ $^{-}_{16}$	c 21 34	<u>=</u>	e 14_39	PP	e 34·8
Florissant St. Louis Philadelphia Seven Falls San Juan	Е.	$93.9 \\ 93.9 \\ 105.6 \\ 109.3 \\ 110.6$	52 52 53 44 75	e 13 22	+ 1	e 24 2 e 24 0 e 24 58 e 25 20 e 25 17	$\{-8\}$ $[+5]$ $[+5]$ $[+11]$ $[+2]$	e 24 38 e 24 36 e 33 42 (e 28 42)	s s Ps	e 44·0 e 43·6 e 48·4 54·0 e 28·7
Collmberg Paris Bucharest Strasbourg Zürich	z.	143·4 146·1 146·4 146·5 147·3	$353 \\ 334 \\ 357 \\ 358$	e 19 37 e 19 45 20 23 e 19 48 e 19 48	$[+1] \\ [+4] \\ [+20] \\ [+6] \\ [+5]$	26 29 —	[-47	e 22 44	PP =	
Basle Ksara Triest Clermont-Ferrand Toledo Malaga	z.	147.5 147.6 148.9 149.1 153.5 156.2	$358 \\ 310 \\ 349 \\ 5 \\ 18 \\ 22$	e 19 47 e 19 57 i 19 55 e 19 44 e 20 5 i 20 9a	$[+4] \\ [+14] \\ [+9] \\ [-2] \\ [+12] \\ [+13]$	e 21 10 e 27 44 26 49	PPP [-12]	e 22 57 = e 24 2	PP — PP	72.0

Additional readings and note :-

Auckland S is given as Q.

Grand Coulee e = 12m.9s. Florissant eE = 26m.8s., eSS?E = 30m.57s.

St. Louis eSKS?E = 23m.25s., eSS?E = 30m.56s.

Collmberg e = 20 m.9s.

Malaga PKP₂Z = 20m.27s., PPZ (△ >180°) = 28m.51s.

Long waves were also recorded at Riverview, Sitka, De Bilt, Uccle, and Copenhagen.

Sept. 27d. Readings also at 0h. (Auckland, Christchurch, and Wellington), 5h. (Tashkent near Andijan and Stalinabad, Berkeley (2), Branner (2), Fresno (2), Lick (2), San Francisco, and near Santa Clara), 6h. (Ksara), 7h. (Palomar and Tucson), 8h. (Andijan, Tashkent, Erevan, Leninakan, Moscow, Ksara, and near Malaga (3)), 9h. (Collmberg and near Tananarive), 10h. (Riverview, Malaga, and near Bogota), 19h. (near Tucson), 20h. (Andijan, Tashkent, near Samarkand, Stalinabad, and near Tucson), 21h. (Bucharest), 22h. (near Andijan, Stalinabad, and Tashkent).

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1945

Sept. 28d. 22h. 24m. 4s. Epicentre 41°·8N. 126°·8W.

U.S.C.G.S. gives epicentre 41°·7N. 126°·9W. Bulletin of stations of N. California gives epicentre 41°·9N. 126°·7W.

A = -.4479, B = -.5987, C = +.6641; $\delta = +8$; h = -2; D = -.801, E = +.599; G = -.398, H = -.532, K = -.748.

		Δ	Az.	P. m. s.	O – C.	s. m. s.	o – c.	m. s.	pp.	L. m.
Ferndale Shasta Dam Ukiah Mineral San Francisco	E.	$\begin{array}{c} 2 \cdot 3 \\ 3 \cdot 5 \\ 3 \cdot 8 \\ 4 \cdot 2 \\ 5 \cdot 2 \end{array}$	$123 \\ 107 \\ 133 \\ 108 \\ 138$	e 0 37 i 0 54 e 1 0 i 1 3 3 e 1 22	- 3 - 3 - 1 + 1	i 1 4 i 1 36 i 1 42 i 1 51	- 5 - 4 - 5 - 6	$\begin{array}{c} $	Pg Pg	e 2·2 e 2·3
Berkeley Branner Santa Clara Lick Seattle		5 · 8 5 · 8 6 · 6	$^{137}_{139}_{138}_{36}_{27}$	1 19 i 1 26 e 1 27 i 1 30 (e 1 24)	$ \begin{array}{r} - & 2 \\ - & 1 \\ - & 2 \\ - & 2 \\ - & 17 \end{array} $	i 2 30 i 2 41 e 2 36	- 6 - 3 + 3 - 7	e 1 50 e 2 7	$\frac{\overline{P_g}}{P_g}$	e 2·8 e 2·7 e 1·4
Victoria Fresno Tinemaha Grand Coulee Haiwee	N.	7·1 7·4 8·1 8·3 8·9	$^{18}_{131}_{122}_{39}_{127}$	1 46 e 1 52 i 2 6 i 2 3 i 2 18	- 2 0 + 4 - 1 + 6	$\begin{array}{c} 3 & 17 \\ e & 3 & 18 \\ e & 3 & 40 \\ \hline i & 4 & 11 \end{array}$	$+ \frac{7}{0} + \frac{5}{16}$	e = 2	= s•	i 3·8 i 4·8
Santa Barbara Mount Wilson Pasadena Riverside Overton		$9.2 \\ 10.2 \\ 10.2 \\ 10.8 \\ 10.9$	140 135 136 133 114	i 2 24 i 2 32 i 2 30 i 2 36 e 2 21	$^{+}_{-} ^{8}_{1} \\ ^{-}_{-} ^{3}_{3} \\ ^{-}_{-} 19$	i <u>4</u> 26	- <u>1</u>			
Boulder City Butte Logan Salt Lake City Palomar		11·0 11·1 11·2 11·3 11·5	118 63 85 90 134	e 2 40 e 3 34 e 2 6 e 2 44 e 2 50	$^{-2}_{+51} \\ ^{-38}_{-2} \\ ^{-2}_{+2}$	e 4 25 e 5 37 e 4 13	$-\frac{22}{48} \\ -\frac{41}{41}$	e <u>4</u> 13	PP =	e 6·3 i 4·8 e 5·0
Pierce Ferry Bozeman Tucson Sitka Saskatoon		11.5 12.0 15.9 16.7 17.2	115 66 122 344 46	i 2 50 e 2 50 i 3 48 i 3 53 3 53	$^{+}_{-}^{2}_{5}$ $^{+}_{-}^{1}_{4}$ $^{-}_{-}^{10}$	i 5 10 e 6 52 i 7 9 7 8	$ \begin{array}{r} $			e 6.6 e 6.2 e 7.7 i 8.1 8.9
Rapid City Lincoln College Florissant St. Louis		17·4 22·6 26·0 27·8 28·0	75 83 339 85 85	i 4 59 i 4 59 e 5 39 e 5 52 i 5 53	- 1 - 4 + 3 - 1 - 2	e 7 24 i 9 12 e 10 15 e 10 37 e 10 37	+ 5 + 5 + 9 + 2 - 1			e 12·4 e 11·6 e 13·9
Cape Girardeau Chicago Cincinnati Tacubaya Mobile	E.	28.9 29.1 32.0 32.4 32.8	86 77 81 126 97	e 6 5 e 6 5 i 6 29 6 34	$^{+}_{-}^{2}_{\stackrel{1}{0}}$	e 11 3 e 10 56 11 44 12 14	$+\frac{10}{2} + \frac{2}{20}$	i 7 2 7 16 e 7 13	PP PP	e 14·5 e 18·8
Honolulu Vera Cruz Pennsylvania Columbia Ottawa		33·1 34·4 36·4 36·6 36·7	241 121 75 87 67	e 7 48 e 7 6 (e 7 7)	PP - 2 - 3 0	e 12 8 i 12 29 e 12 53 (e 13 1) 12 56	$^{+}_{+10}^{9}_{+3}$ $^{+}_{+8}$	e 15 8 24	SS PP	e 13.8 e 18.1 e 14.0 e 13.0 17.9
Georgetown Shawinigan Falls Philadelphia Fordham Seven Falls		37·6 38·4 38·6 39·2 39·6	77 64 75 73 63	i 7 19 7 26 i 7 27 i 7 32 7 37	$^{+}_{+}$ $^{1}_{+}$ $^{+}_{1}$ $^{1}_{+}$ 2	i 13 13 13 25 e 13 22 i 13 39 13 41	+ 5 + 5 - 1 + 7 + 3	i 8 47 e 8 58 i 8 59 9 6	PP PP PP	18.9 18.9 e 16.0 i 20.5 19.9
Harvard Ivigtut San Juan Vladivostok Bergen		40·3 49·3 56·2 69·8 70·9	70 39 95 310 23	e 7 37 e 8 57 e 9 44	- 3 + 4 0	e 17 29 e 21 42 e 20 41	+ 3 - 4 PS + 5	e 9 13 19 38 e 12 2 e 26 7 e 28 28	PP SS PP SSS	e 22·9 23·9 e 27·7 35·9

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1945

314

```
O - C.
                                                                             Supp.
                              Az.
                                                               O - C.
                                                                                           m.
Aberdeen
                                                                PPS
                                                                       i 28
                                                                                           33.2
                                                                                  SSS
Edinburgh
                               31
                                                                 P8
Upsala
                                                                -10
                                                                                         e 36.9
                       76.4
Irkutsk
                                                                                   _{PS}
Copenhagen
                       76.9
                                                                                   _{PS}
De Bilt
                       77.6
                                                                                  SSS
Uccle
                                        6 k
                       78-4
                                                     e 21 59?
                                                                                   SS
                                                                                         e 32.9
                                                     e 22
e 23
Paris
                       79.3
                                                  3
2
                               32
                                    12 12
                                   e
                                                           15
                                                                + 6
                                                                                        e 38.9
                                   i 12 19
Collmberg
                               25
                       80.9
                                                           26
                                                                 PS
                                                                                  PP
                                                                                         e 44.9
                                                                       e 15 24
Strasbourg
                                   e 12 26
                       81.5
                                                      e 22
                               29
                                                                -10
                                                                                         e 41.9
Sverdlovsk
                       81.5
                                  e 12 23
                                              +
                             356
                                                                       i 15 32
                                                                                  \mathbf{PP}
                                                 2
                                                       ^{22}
                                                           36
                                                                +4
Cheb
                       81.8
                               26
                                                     e 22 56?
                                                                +21
                                                                                          42.9
                                                 2
Moscow
                       81.9
                                              +++
                               10
                                  e 12 25
                                                     e 22 38
                                                                ++
                                                                   2
5
                                                 3 2
Clermont-Ferrand
                       82.0
                                  e 12 26
                               34
                                                     e 22 42
                                                                                   SS
                                                                       c 28 56?
Basle
                                  e 12 27
                       82.3
                       82.4
Prague
                               24
                                                     e 22 56
                                                                +15
                                                                                          41.9
                                                                                        C
                       82.5
                               29
Neuchatel
                                  e 12 32
                                                 6
                                              +++
Zürich
                       82.8
                                  e 12 29
                                                 2
Toledo
                       83.5
                                   i 12 35
                               41
                                                       22 54
                       83.6
                                  c 12 35
Chur
                                                                                        e 46.9
Tortosa
                       84.9
                               38
                                    12 48
                                              +10
                                                                                          32.9
                                                                   0
San Fernando
                       85.1
                               45
                                                     e 23
                                                                   8
                                                           16
                                                                +
                  E.
                                                                                          42.9
                                                ****
                                                               43
                                  e 12 28a
                                              -14
Granada
                       85.8
                                                     c 23
                                                           20
                                                                                           45.7
                               43
                                   i 12 54k
Malaga
                       85.8
                                              +12
                                                      i 23
                                                                -14
                                                                       i 16
                                                                                  PP
                                                                                           36.7
                                   i 12 47
Triest
                       86.1
                                              +
                                                      i 23
                                                                +
                                                                       e 24 18
                                                                   6
                                                                                   PS
Belgrade
                       88.9
                              23
                                  e 13 42
                                                                 PS
                                                     e 24 49
                                                                       e 28 40
                                                                                   SS
                                                                                        e 48.5
                             348
Tashkent
                       96.0
                                  e 14 14
                                                     e 24 50
                                              +44
                                                                +
                                                                   3
                                                                       e 20 38
                                                                                 PPP
Erevan
                       98.0
                                                     e 24 31
                                                               [+14]
Baku
                       98 \cdot 1
                                  e 15 52
Christchurch
                      100.9
                             220
                                                                       e 32 30
                                                                                   SS
                                                                                          46.0
Ksara
                      103.1
                                  c 19 56
                                              PPP
                              15
                                                                 PS
                                                     e 27 52
                             338
New Delhi
                     106.5
                                  e 21 14
                                              _{\mathrm{PPP}}
                      116.9
                             340
Bombay
                                                                         35 56?
                                                                                   SS
                                                                                        c 49·9
  Additional readings and notes :-
    Ferndale iE =0m.53s. and 1m.19s.
    San Francisco eEN = 1 \text{m.} 26 \text{s.}, eE = 1 \text{m.} 34 \text{s.} and 1 \text{m.} 38 \text{s.}, eN = 2 \text{m.} 14 \text{s.} and 2 \text{m.} 17 \text{s.}
    Berkeley eEN = 1m.28s., iEN = 1m.38s., eEN = 1m.48s., eN = 1m.56s., eE = 1m.59s.,
         iN = 2m.21s.
    Branner iN = 1m.36s., iE = 1m.40s., eE = 1m.43s., iE = 2m.10s., eN = 2m.20s.,
         iN = 2m.25s., eEN = 2m.40s.
    Lick eE = 1m.37s., eEN = 1m.41s. and 1m.44s., eE = 1m.48s., iEN = 2m.17s. and 2m.27s.
         eE = 2m.32s.
    Fresno eN = 1m.56s. and 2m.8s., iN = 3m.25s.
    Grand Coulee e = 3m.29s.
    Pasadena iNZ = 3m.11s.
    Overton iP = 2m.28s., i = 2m.46s.
    Boulder City i = 2m.43s., e = 3m.36s. and 5m.3s.
    Logan i = 3m.37s., e = 4m.17s., i = 4m.28s.
    Salt Lake City e = 3m.0s. and 4m.27s.
    Pierce Ferry i = 3m.5s.
    Bozeman e = 3m.5s. and 3m.40s., i = 5m.40s.
    Tucson i = 4m.3s., 4m.18s., 4m.39s., and 5m.20s.
    Rapid City i = 5m.3s., e = 7m.37s.
    Lincoln i = 5m.29s. and 10m.7s.
    Florissant iPZ = 5m.57s., iSE = 10m.41s.
    St. Louis iPZ = 5m.59s., iZ = 6m.6s., iSE = 10m.43s.
    Chicago iP = 6m.10s., e = 13m.41s.
    Cincinnati PPP = 7m.44s.
    Tacubaya eE = 6m.57s. and 14m.33s., eN = 14m.37s.
    Pennsylvania ePPP = 8m.43s.
    Columbia gives P as S and S as L.
    Philadelphia iS =13m.27s., e=14m.24s.
    San Juan ePPP = 13m.16s., eSS = 20m.51s.
    Upsala eE = 21m.20s., eN = 30m.14s., eE = 30m.38s., eN = 31m.50s.
    Copenhagen 27m.2s.
    Collmberg eZ = 12m.44s., 13m.14s., and 17m.26s.
    Prague e = 23m.32s.
```

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1945

315

Tortosa iSE = 23m.14s.
Malaga eSZ = 23m.31s., eSSZ = 24m.7s.
Triest eSKS? = 23m.9s.
Belgrade e = 15m.58s.
Tashkent eS = 25m.34s.
Long waves were also recorded at Huancayo, Riverview, Wellington, and Kodaikanal.

Sept. 28d. 23h. North Pacific?.

Mizusawa PE = 41m.55s., SE = 43m.34s.Grand Coulee iP = 49m.15s.Shasta Dam iP = 49m.32s.Tinemaha iPZ = 50m.4s.a. Overton iP = 50m.15s., i = 50m.34s.Mount Wilson iPZ = 50m.16s.a. Pasadena iPZ = 50m.16s.a. Riverside iPZ = 50m.18s.a. Boulder City iP = 50m.21s., i = 51m.15s.Pierce Ferry iP = 50m.23s., i = 50m.47s.Palomar iPZ = 50m.24s.Tucson iP = 50m.51s.a. Collmberg iZ = 51m.5s. and 51m.12s., eZ = 52m.20s. and 52m.43s.St. Louis ePZ = 51m.24s., iPZ = 51m.27s.Basle e = 57m.34s.

Sept. 28d. Readings also at 5h. (La Plata, St. Louis, Tucson, Mount Wilson, Pasadena, Palomar, near Berkeley, Branner, and Lick, not all one shock), 9h. (near Shasta Dam), 11h. (Riverview and Toledo), 13h. (Samarkand (3)), 14h. (Auckland), 15h. (Andijan and near Tucson), 16h. (near Mizusawa and near Ottawa), 17h. (near Samarkand), 18h. (Riverview), 20h. (Grand Coulee, Shasta Dam (2), and near Tucson (2)).

Sept. 29d. 4h. 27m. 51s. Epicentre 6°-0S. 77°-0W. Depth of focus 0-005. (as on 1945 Aug. 9d.).

$$A = +.2237$$
, $B = -.9691$, $C = -.1038$; $\delta = -3$; $h = +7$; $D = -.974$, $E = -.225$; $G = -.023$, $H = +.101$, $K = -.995$.

		Δ	Az.	Ρ.	$\mathbf{O} - \mathbf{C}$.	S.	0-C.	Suj	pp.	L.
		.0	300	m. s.	s.	m. s.	8.	m. s.	000000	m.
Huancayo		6.3	164	e 1 32	0	e 2 39	- 5	i 1 43	PP	e 3·3
Bogota		11.0	16	e 2 37	0	i 5 45	+66	i 2 47	$\hat{\mathbf{p}}$ P	0.0
La Paz		13 6	141	3 19	+ 8	6 49	+68		-	7.7
San Juan		26.5	25	1		e 10 6	+ 5	e 10 21	ss	e 15.8
St. Louis		46.1	345	e 8 19	0	e 15 0	0	e 8 29	$\widetilde{\mathbf{pP}}$	
Tucson		49.8	322	i 8 49	+ 1		_	i 9 27	3	
Palomar	Z.	54.4	319	i 9 24	+ 1		_	_		
Riverside	Z.	55.1	319	i 9 27	- 1	19 71 (-	-		
Mount Wilson	Z.	55.7	319	i 9 33	+ 1		_		-	
Pasadena	Z.	55.7	319	i 9 33	+ 1		-			
Haiwee		56.8	321	e 9 55	\mathbf{pP}		_		-	-
Tinemaha	z.	57.6	321	i 9 58	, pP	-			-	-

Additional readings;—
Huancayo e = 2m.1s., i = 2m.56s.
Bogota i = 4m.57s., 5m.38s., and 6m.10s.
San Juan e = 12m.43s.
St. Louis eSSE = 18m.12s.
Long waves were also recorded at Uccle,

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1945

316

Sept. 29d. 4h. Undetermined shock.

Apia iP = 44m.46s., iS = 45m.8s.Pasadena iPZ = 55m.36s., iZ = 55m.47s., eLZ = 106.8m. Mount Wilson iPZ = 55m.37s., iZ = 55m.48s.Palomar iPZ = 55m.39s. Riverside ePZ = 55m.39s. Haiwee iPZ = 55m.44s. Tinemaha iPZ = 55m.46s. Shasta Dam eP = 55m.47s. Boulder City iP = 55m.56s. Pierce Ferry iP = 56m.0s. Tucson iP = 56m.2s., i = 56m.12s., 56m.28s., and 57m.14s., eL = 79m.0s. Grand Coulee iP = 56m. 20s. Collmberg iZ = 63m.47s. Zürich ePKP? =63m.48s. Strasbourg ePKP = 63m.50s. Paris ePKP =63m.55s., eL =122m. Triest iP?Z = 64m.4s. Ksara e = 64 m. 5s. and 66 m. 56 s.Helwan eZ = 64m.14s, and 64m.27s. St. Louis eSKSE = 68m.4s., eSKKSE = 68m.43s., eLE = 88m.17s.Florissant eSKSE = 68m.5s., eL?E = 89.0m.Long waves were also recorded at Wellington, Christchurch, Riverview, and Uccle.

Sept. 29d. Readings also at 0h. (De Bilt and Uccle), 1h. (Strasbourg, Basle, Zürich, Collmberg, and Jena), 2h. (Helwan and Ksara), 3h. (Tucson and Palomar), 6h. (New Delhi, Collmberg (2), Almeria, near San Juan, and near Samarkand), 7h. (Helwan and near Samarkand), 9h. (Butte and near Samarkand (2)), 11h. (near Tashkent, Stalinabad, Andijan, and Samarkand), 12h. (near Oaxaca), 14h. (Triest, St. Louis, Haiwee, Tinemaha, Palomar, Riverside, Pasadena, Mount Wilson, Honolulu, Riverview, Christchurch, and Wellington), 15h. (Uccle and La Paz), 16h. (near Apia), 19h. (near Berkeley), 20h. (near Tucson), 21h. (near Mizusawa).

Sept. 30d. Readings at 1h. (Berkeley and near La Paz), 5h. (Grozny, Frunse, Jena, and Collmberg), 9h. (Jena and Bogota), 10h. (near Mizusawa), 11h. (Tucson, Palomar, Riverside, Pasadena, Mount Wilson, Santa Barbara, and Tinemaha), 14h. (near Samarkand), 18h. (near Tucson), 22h. (Tucson, Riverside, Mount Wilson, and Tinemaha).

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

The scanned images of the bulletins of the International Seismological Summary (ISS) have been obtained as part of a global earthquake relocation project (Villaseñor et al., 1997) initiated with funding from the US National Science Foundation through grant EAR-9725140 and collected by SGA Storia Geofisica Ambiente (Bologna) on behalf of the Istituto Nazionale di Geofisica e Vulcanologia (Rome), in the frame of Euroseismos project.

A digital hypocenter file of the ISS (Villaseñor and Engdahl, 2005) can be obtained from the USGS web site: http://earthquake.usgs.gov/scitech/iss/

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

Villaseñor, A., and E.R. Engdahl, *A digital hypocenter catalog for the International Seismological Summary,* Seism. Res. Lett., vol. 76, no. 5, pp. 554-559, 2005.

Villaseñor, A., E.A. Bergman, T.M. Boyd, E.R. Engdahl, D.W. Frazier, M.M. Harden, J.L. Orth, R.L. Parkes, and K.M. Shedlock, *Toward a comprehensive catalog of global historical seismicity,* Eos Trans. AGU, vol. 78, no. 50, pp. 581, 583, 588, 1997.