These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

> The International Seismological Summary. 1943 April, May, June.

INTERNATIONAL GEODETIC AND GEOPHYSICAL UNION.

ASSOCIATION OF SEISMOLOGY. FORMERLY THE BULLETIN OF THE BRITISH ASSOCIATION SEISMOLOGY COMMITTEE.

The Director of the I.S.S. wishes to express his thanks to U.N.E.S.C.O. and H.M. Treasury for financial support, which has covered the cost and preparation of this volume.

The second quarter of 1943 contains 116 epicentres, 80 of which are repetitions from previous determinations.

1992

Cases of abnormal focal depth are noted below :---

April	1d.	14h.	6.5S.	06. 106.0E.	Suggested	Deen
	5d.	1h.		142.8E.		
	5d.	(7.5S.	이 집안을 다 같아. 말을 잘 못했는 것을 물었다.	"0.04	o "
	9d.		이 집안에 아파가 두었을까요.	145.4E.	0.01	1978 - L
	12d.			123.5E.	Suggested	
		15h.	36.3N.	그는 것은 것은 것은 것이 같아요. 말 집에 없는 것이 같아요. 말 ? 말 ? 말 ? 말 ? 말 ? 말 ? 말 ? 말 ? 말 ? 말	0.02	
		23h.	24.5S.		0.06	
	- <u> </u>	15h.	1.0mC - 1.000 000 000 000	147·2E.	0.02	1975
		19h.		178.2W.	0.03	50 D
May	2d.	17h.	6·9N.	이 이 이 가지 않는 것 같은 것 같은 것 같아요.	Suggested	Deep
	3 d.			95·1W.	,,	
	12d.	8h.	19.7S.	175.9W.	0.03	0
	15d.	2h.	Undete	rmined shock		
	26d.	10h.	17.9N.	105.8W.	1.00000	3 5 0
				179.0W.	" 0·08	0"
June	0.1	101	04 20	100		
June		12h.	24.5S.		0.09	
	9d.	4h.	Undete	rmined shock	Suggested	Deep
	18d.	5h.		142·7E.	**	>>
		17h.		143·8E.	,,	"
	14d.	22h.	20.5S.	177.5W.	0.010	
	21d.	10h.	41.9N.	148.6E.	0.00	785.
	23d.	17h.	30·9S.	72.0W.	Suggested	
	24d.	12h.	21.0S.	65.5W.	0.02	
	24d.	20h.		168·3E.	0.010	
	954	19h.		178.8W.	0.070	

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

110

June	29d.	9h.	3.0N.	° 125·2E.	0.020
		10h.	1727 - 1727 - 1727 - 1727 - 1727 - 1727 - 1727 - 1727 - 1727 - 1727 - 1727 - 1727 - 1727 - 1727 - 1727 - 1727 -	123.0E.	0.100
	30d.	20h.	15·1S.	73.9W.	0.005

Thanks are also due to the Director of the Meteorological Office and the Superintendent of Kew Observatory for hospitality extended to the staff, and assistance with administration.

KEW OBSERVATORY, RICHMOND, SURREY.

1.50

May 1953.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943 1943 APRIL, MAY, JUNE.

April 1d. 14h. 18m. 12s. Epicentre 6°.5S. 106°.0E.

Bombay suggests depth of focus 35km., epicentre 7°.4N. 104°.5E.

 $A = -.2739, B = +.9552, C = -.1125; \delta = +8; h = +7;$

D = +.961, E = +.276; G = +.031, H = -.108, K = -.994.

		Δ	Az.	P. m. s.	0 – C. s.	S. m. s.	0 – C. s.	m. s.	op.	L. m.
Perth Colombo Kodaikanal Calcutta Hyderabad	E. N. E.	$ \begin{array}{c} $	$ \begin{array}{r} 0 \\ 297 \\ 301 \\ 330 \\ 312 \\ \end{array} $	5 43 5 51 (i 6 43) e 6 44 7 4	$-{}^{2}_{-15}$	10 28 10 51 (i 11 53) i 12 13 12 36	+ 8 - 8 - 3 + 9	6 8 (7 38) e 8 3 8 35	PP PP PP	13.6 (16.1) 17.2
Bombay Nake Kagosima New Delhi	E. N. E.	41 ·3 41 ·3 41 ·4 44 ·5 44 ·6 44 ·6	$309 \\ 309 \\ 32 \\ 30 \\ 323 \\ $	i739 e738 e752 e89 1813 e81k	$-10 \\ -11 \\ + 2 \\ - 6 \\ - 3 \\ -15$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$-16 \\ -11 \\ + 9 \\ +10 \\ -11 \\ -15$	$ \begin{array}{r} 9 & 17 \\ 1 & 7 & 48 \\ \hline 9 & 59 \\ \hline 9 & 59 \\ \end{array} $	PP pP PP	21·1 20·8
Miyazaki Dehra Dun Hukuoka Koti Zinsen	N.	45 · 2 45 · 4 46 · 1 47 · 6 47 · 8	32 326 29 31 22	e 8 26 i 8 26 i 8 24 e 8 42 (e 8 32)	+ 64 + 43 + - + 39	e 14 53 15 19 15 28	+3 +11 +5 -7	e 21 0 19 3	sss e	19·9 22·6 21·1
Keizyo Brisbane Kôbe Riverview	Е. N.	48.0 49.2 49.2 49.4 49.4 49.8	$23 \\ 121 \\ 121 \\ 33 \\ 130$	e 8 44 1 8 51 e 8 50 e 8 55 i 8 58	$+ 1 \\ + 1 \\ - 2 \\ + 2 $	$ \begin{array}{r} 1 \\ 1 \\ $	$-\frac{4}{8}$ + 1 + 3	 1 16 18		27·6 23·8
Sydney Kameyama Nagano Tokyo Sendai		$49.8 \\ 50.2 \\ 52.5 \\ 52.6 \\ 55.1$	$130 \\ 34 \\ 34 \\ 35 \\ 34 \\ 34$	e 9 9 e 9 1 e 9 29 e 10 21 e 9 9?	$+13 + 1 + 12 + 12 P_{e}P - 27$	e 17 6 18 39 17 23	+60 			26·3 30·5
Mizusawa Frunse Mori Tananarive	E. N.	$55.8 \\ 55.8 \\ 56.8 \\ 57.7 \\ 58.1$	$33 \\ 333 \\ 30 \\ 252$	e 9 35 e 10 24 9 44 e 9 49 i 9 58	- 6 PeP - 4 - 6	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$-5+11 \\ -7+13 \\ -10$	= 12 6		28·1 26·7
Tashkent Sapporo Tchimkent Christehurch Auckland		58.3 58.8 58.8 68.7 69.2	$328 \\ 29 \\ 330 \\ 134 \\ 127$	1951 1951 1955 1195	$-\frac{8}{-\frac{7}{2}}$	$\begin{smallmatrix}&17&46\\e&18&8\\i&17&59\\20&10\\20&30\end{smallmatrix}$	-15 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +	(e 22 0) 12 0 28 48 1	SS e PcP Q	22.0 32.7 36.8
Wellington Arapuni Johannesburg Ksara Helwan	N .	69 · 8 70 · 0 76 · 3 77 · 3 80 · 1	$132 \\ 128 \\ 245 \\ 306 \\ 301$	$ \begin{array}{r} 11 & 5\\ 10 & 12\\ e & 11 & 578\\ 12 & 3 \end{array} $	$-\frac{9}{-63}$ $-\frac{1}{10}$	$\begin{array}{r} 20 & 17 \\ 20 & 24? \\ 21 & 36? \\ e & 21 & 55 \\ 22 & 0 \end{array}$	-62 -22 -11 +7 -18	$ \begin{array}{c} 11 & 25 \\ 29 & 48 \\ \hline 15 & 0 \end{array} $	PeP Q PP	35.8 35.8 31.4
Yalta Moscow Istanbul Bacau Bucharest		81 · 8 83 · 5 84 · 5 87 · 2 87 · 3	316 328 312 317 315	e 12 21 12 21 22 15 e 12 54 9 e 12 55	-10 + 5 + 5	22 39 e 23 18 e 23 37	$-\frac{13}{-10}$ $+\frac{10}{8}$	= e 15 40		(40·8) 37·8
Cernauti Sofia Belgrade Upsala	Е,	$88 \cdot 2 \\ 89 \cdot 0 \\ 91 \cdot 4 \\ 94 \cdot 8 \\ 9$	319 313 313 329 329	e 12 55 e 12 56 e 13 4	$\frac{+1}{\overline{P_eP}}$	e 23 32 e 23 24 e 23 58 e 24 9 e 24 9 e 24 12	$ \begin{bmatrix} - & 6 \\ - & 3 \end{bmatrix} \\ \begin{bmatrix} - & 3 \\ - & 9 \\ \{ - & 8 \} \\ - & 5 \end{bmatrix} $	e 24 2 e 16 38 e 34 489 e 30 48	PP e	42.8 47.3 39.8

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943		11	2			8
	Δ Az.		-c. s.	0 – C.	Sur	
Triest Potsdam Cheb Copenhagen Jena	96·2 315 96·9 321 97·3 319 97·3 325 97·8 320	e 17 18 1 e 17 32 1 e 15 49	s. m. s. PP i 23 55 PP e 24 21 1 e 24 17 -24 53 PP e 25 5	8. [-13] [+10] [+3] -5 +3	m. s. 25 50 - 24 16 24 67	$\begin{array}{c} \mathbf{PS} & -\mathbf{m} \\ -\mathbf{PS} & \mathbf{e} & \mathbf{45 \cdot 8} \\ -\mathbf{e} & \mathbf{e} & \mathbf{53 \cdot 8} \\ \mathbf{SKS} & \mathbf{e} & \mathbf{53 \cdot 8} \\ \mathbf{SKS} & \mathbf{e} & \mathbf{41 \cdot 8} \end{array}$
Florence Honolulu Stuttgart Milan E. Zürich	$\begin{array}{cccccc} 97 \cdot 9 & 312 \\ 98 \cdot 1 & 69 \\ 99 \cdot 3 & 317 \\ 99 \cdot 4 & 314 \\ 99 \cdot 8 & 316 \end{array}$	e 16 25 e 13 44 - e 23 14 -	PP i 24 54 ⁸ e 24 29 • 1 e 25 14 ⁹ e 31 27 PP	$\begin{bmatrix} - & 9 \\ + 11 \end{bmatrix}$	i 27 47 e 17 44	$\begin{array}{c} \mathbf{PPS} \ \mathbf{e} \ 41 \cdot 1 \\ \mathbf{PP} \ \mathbf{e} \ 48 \cdot 0 \\ \hline \end{array} \\ \end{array}$
Basle Bergen Neuchatel De Bilt Uccle	$\begin{array}{cccccc} 100 \cdot 4 & 316 \\ 100 \cdot 9 & 329 \\ 100 \cdot 9 & 316 \\ 101 \cdot 7 & 321 \\ 102 \cdot 4 & 320 \end{array}$		$\begin{array}{c} P \\ -P \\$	$[-\overline{13}] \\ [+\overline{8}] \\ [+\overline{4}]$	e 32 28 e 25 32 \$	$= e \frac{44 \cdot 8}{e \frac{45 \cdot 8}{8 \text{KKS}}}$
College Clermont-Ferrand Paris Aberdeen Kew	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	e 18 42 I e 21 48?	PP e 25 26 PP	$\{+12\}$	e 27 38 e 27 18 i 28 2 e 24 56	PS e 56.6 PS 55.8 PS 55.1 SKS —
Stonyhurst Scoresby Sund Almeria Granada Sitka	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	19 27 I	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\{-20\}\ [+15]\ [+16]\ PPS\ [+1]\ [+1]$	$\begin{array}{r} 27 & 48 \\ e & 34 & 12 \\ 19 & 24 \\ 21 & 10 \\ e & 35 & 0 \end{array}$	$\begin{array}{cccc} {\rm PS} & 53.7\\ {\rm SS} & 44.1\\ {\rm PP} & 47.0\\ {\rm PPP} & 55.3\\ {\rm SS} & e \ 47.9 \end{array}$
San Fernando Lisbon Victoria Ivigtut Ukiah	$\begin{array}{cccccc} 111 \cdot 7 & 305 \\ 113 \cdot 6 & 308 \\ 120 \cdot 9 & 35 \\ 122 \cdot 1 & 344 \\ 125 \cdot 1 & 45 \end{array}$	e 19 14 I e 25 18? e 36 22 e 36 8	$\frac{P}{\frac{?}{?}} = \frac{29 \ 2}{24 \ 14} = \frac{29 \ 2}{=}$		29 36 29 22 	$\begin{array}{ccccccc} PPS & 48.8 \\ PS & 55.1 \\ - & 51.8 \\ - & e & 52.3 \\ - & e & 58.7 \end{array}$
Berkeley BozemanE.BozemanZ.TinemahaZ.Santa BarbaraZ.HaiweeZ.	$\begin{array}{ccccccc} 126 \cdot 3 & 47 \\ 129 \cdot 5 & 32 \\ 129 \cdot 5 & 46 \\ 129 \cdot 6 & 50 \\ 130 \cdot 2 & 47 \end{array}$	e 25 42 e 34 4 i 19 12 [+ e 19 9 [- e 19 9 [-	$\begin{array}{cccc} ? & - \\ ? & - \\ 2 & - \\ 2 & - \\ 2 & - \\ 3 & - \\ 2 & $	SKP	e 43 5 i 22 18 e 21 32	SSS e 59·1 SKP =
Pasadena Mount Wilson Z. Logan Riverside Salt Lake City	$\begin{array}{cccccccc} 130 \cdot 8 & & 49 \\ 130 \cdot 9 & & 49 \\ 131 \cdot 5 & & 37 \\ 131 \cdot 5 & & 49 \\ 132 \cdot 0 & & 38 \end{array}$	e 19 13 [i 19 13 [- e 19 16 [+ e 19 13 [- e 22 49 S	- 1] e 22 40	SKP SKP SKP	$e \begin{array}{c} 32 \\ e \\ 21 \\ 33 \\ e \\ 31 \\ 32 \\ - \end{array}$	$\frac{PP}{PS} = 54.8$ $= 6.56.2$
La Jolla Palomar La Plata Tucson	$\begin{array}{cccccccc} 132 \cdot 1 & 50 \\ 132 \cdot 2 & 49 \\ 136 \cdot 1 & 199 \\ 136 \cdot 1 & 199 \\ 136 \cdot 1 & 199 \\ 137 \cdot 2 & 47 \end{array}$	e 19 20 [4 22 48 P	KS 28 48 KS 28 48	SKP {-10} {-10} {-19}	 e 22 12	$ \begin{array}{c} - & - \\ - & 53 \cdot 9 \\ - & 62 \cdot 7 \\ - & 62 \cdot 7 \\ PP & e 52 \cdot 0 \end{array} $
Seven Falls Shawinigan Falls Ottawa Vermont Chicago	$\begin{array}{ccccccc} 139 \cdot 4 & 356 \\ 140 \cdot 1 & 357 \\ 141 \cdot 2 & 1 \\ 142 \cdot 2 & 358 \\ 142 \cdot 8 & 17 \end{array}$	e 19 36 [-	$-\frac{20}{3}$ $-\frac{1}{2}$ $-\frac{1}{2}$		e 40 28 e 41 24 e 41 23	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Buffalo Florissant N. St. Louis Z. Fordham Cape Girardeau N.	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	19 36 [e 33 20 i 18 31 i 16 57 e 19 44 [-				$\frac{-}{PKP} = 65.8 \\ e 77.8 \\ $
Columbia Bermuda La Paz Z. Huancayo San Juan Bogota	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	e 19 46 [- i 20 2 [- e 20 8 [- e 20 15 [-	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	and the second se	e 43 52 e 42 57 1 20 44 e 24 56 e 51 58	SSP e 69.6 SS e 53.5 PKP, 75.3 PP e 64.9 SSS e 67.7

1.1

Additional readings :--Perth PPP =6m.40s., SS =11m.13s. Kodaikanal SSE =(13m.33s.). Readings increased 30 seconds. Calcutta iSSN =14m.16s.

Continued on next page.

578 2.4

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

113

 $\begin{array}{l} \label{eq:hyderabad} \begin{array}{l} P_cPE = 9m.58s., \ SSE = 15m.5s., \ S_cSE = 17m.16s.\\ Bombay \ isP = 7m.55s., \ i = 8m.15s., \ PPPN = 9m.38s., \ i = 10m.16s., \ isS = 14m.3s., \\ SSE = 16m.48s., \ SSN = 16m.56s., \ i = 18m.1s.\\ New \ Delhi \ P_cPN = 10m.19s., \ PPPN = 10m.58s., \ SSE = 17m.7s., \ SSSEN = 17m.57s.\\ Zinsen \ reading \ decreased \ by \ 10 \ minutes.\\ Brisbane \ iN = 20m.0s.\\ Riverview \ iN = 9m.3s., \ iEZ = 9m.10s., \ iEN = 16m.27s., \ iSSE = 19m.26s., \ iN = 19m.44s., \ iE = 19m.51s., \ iSSSEN = 21m.0s., \ eQN = 21\cdot1m.\\ Tananarive \ S_cS = 19m.50s., \ SS = 21m.30s., \ iN = 24m.3s.\\ Christchurch \ PSN = 20m.44s., \ S_cS = 21m.28s., \ SS = 24m.37s., \ Q = 27m.49s.\\ Auckland \ i = 22m.43s. \ and \ 26m.18s.\\ Wellington \ S_cS = 20m.58s., \ SPP iZ = 21m.33s., \ i = 21m.58s., \ SS i = 24m.48s., \ Q = 29m.23s.\\ \end{array}$

Helwan eZ = 13m.2s., SSN = 27m.4s., SSSN = 30m.22s.Istanbul L given as SSS. Bucharest eN =13m.13s., eSKSEN =23m.19s., PSN =24m.15s. Sofia eN = 23m.34s. Belgrade e = 14m.0s. Upsala eSSS?N = 33m.48s.?. Copenhage 30m.55s. Jena eZ = 27m.24s. Florence iPPPZ =19m.45s., eSKSE =24m.20s., ePSN =25m.45s., eSSN =30m.55s. Honolulu e = 30m.55s. Stuttgart ePPZ = 17m.56s., ipPPZ = 18m.25s., eSKS = 24m.20s., eSP = 26m.41s., iSPZ = 26m.59s., eSPPZ = 28m.6s., e = 31m.14s., eSS = 31m.58s., e = 43m.18s.? De Bilt eSSS = 36m.18s. Uccle eE = 27m.7s., 33m.12s.?, and 38m.42s. Aberdeen iPPN = 28m.11s., QEN = 49m.17s.Kew ePKS?N = 25m.42s., eEZ = 27m.22s., ePPP? = 27m.56s., eSKKS?N = 32m.12s., ePS?N = 34m.48s.?, eSS?EN = 42m.48s.?.Stonyhurst PPP? = 22m.33s., SSS? = 40m.24s., Q = 48m.48s.Almeria PPP = 19m.39s., PKS = 22m.19s., PS = 28m.39s., PPS = 29m.55s., SS = 34m.27s., Q = 41m.35s.Granada PPP = 24m.29s., SKKS = 28m.0s., PPS = 32m.19s., SS = 38m.23s., SSS = 42m.18s. San Fernando PPE = 22m.40s.Lisbon SS?N = 34m.19s., N = 46m.6s.?.Victoria eN = 40m.17s.Mount Wilson eSKKPZ = 31m, 46s. Logan e = 41m.20s. Salt Lake City eSS? = 37m.23s. La Plata SSSE = 46m.36s.Tucson i = 19m.32s. and 22m.22s., iPPP? = 23m.2s., e = 25m.44s. and 30m.6s., eSS = 39m.5s., e = 43m.59s.Ottawa eN = 23m.20s.Vermont $eSSS_{1} = 47m.38s.$ Buffalo PP =19m.51s., 20m.20s., 23m.54s. Florissant eN = 38m.16s. St. Louis eZ = 18m.45s.

Fordham e = 34m.48s.?. Columbia e = 34m.9s. Bermuda e = 34m.49s., ePKP,PKP? = 41m.9s. La Paz iPPZ = 24m.2s., iPPPZ = 27m.39s., iPSKS = 34m.19s., iSSZ = 44m.21s. Huancayo e = 30m.28s. and 31m.53s., ePKP,PKP = 41m.51s. San Juan e = 42m.42s. Bogota e = 22m.23s. Long waves were also recorded at other American and European stations.

- April 1d. Readings also at 2h. (near Andijan and near Bogota), 4h. (Palomar, Riverside, Pasadena, Mount Wilson, Tucson, and Haiwee), 8h. (near Lick), 9h. (Fort de France), 13h. (near Berkeley), 17h. (near Mizusawa), 18h. (Tinemaha (2), Haiwee (2), Riverside, Mount Wilson, Pasadena (2), Tucson (2), near Apia), 21h. (near Berkeley, Lick, Branner, and Fresno).
- April 2d. Readings at 1h. (near Branner), 4h. (near Lick), 8h. (near Branner and Lick), 9h. (near Frunse, Tashkent, and Tchimkent), 11h. (near Branner and Lick (2)), 13h. (near Berkeley, Branner (2), and Lick (3)), 22h. (Riverside, Pasadena, Mount Wilson, and Riverview), 23h. (Palomar and Tucson).
- April 3d. Readings at 0h. (Pasadena, Palomar, Riverside, Tucson, near Berkeley, Branner, and Lick), 1h. (near Fort de France), 5h. (near Mizusawa), 12h. (Arapuni and Auckland), 13h. (Stuttgart, Auckland, Arapuni, Christchurch, Brisbane, Riverview, Wellington, Mount Wilson, and Riverside), 15h. (Arapuni, Auckland, Wellington, Riverview, Honolulu, Haiwee, Mount Wilson, Pasadena, Tucson, Sitka, College, Huancayo, and Stuttgart), 17h. (Huancayo and near La Paz), 19h. (Huancayo), 22h. (Andijan and Tashkent).

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

114

April 4d. Readings at 5h. (Haiwee, Mount Wilson, Pasadena, Tucson, and Riverside), 7h. (near Fort de France), 12h. (Tacubaya, San Juan, Huancayo, La Paz, Honolulu, Tucson, Mount Wilson, Pasadena, Riverside, Ukiah, and St. Louis), 13h. (Mount Wilson, Tucson, Riverside, Riverview, Basle, Chur, Zürich, Potsdam, Stuttgart, Uccle, Milan, Triest, and near Florence), 15h. (near Fresno (2)), 17h. (La Paz, La Plata, Tucson, and Riverside), 18h. (Fort de France, near Andijan, and Tashkent), 19h. (near Andijan and Tashkent), 22h. (Palomar, Pasadena, Riverside, Tucson, and near Apia).

April 5d. 1h. 33m. 14s. Epicentre 42°.0N. 142°.8E. (as on 1942 March 11d.).

Intensity V at Urakawa; IV at Obihiro; II-III at Hatinohe, Morioka, and Kusiro. Epicentre 41°.9N. 142°.8E. Macroseismic radius 200.300km. Depth 60km. Seismological Bulletin of the Central Meteorological Observatory, Japan for the year 1943, Tokyo 1950, p.15, macroseismic chart p. 15.

> A = -.5937, B = +.4507, C = +.66666; $\delta = -3$; h = -2; D = +.605, E = +.797; G = -.531, H = +.403, K = -.745.

		Δ	Az.	_P.		0 – C.	s.	0 – C.	Su	pp.	L.
Land Coll 100 (Coll Coll 2011)		0	•	m.	s.	8.	m. s.	8.	m. s.		m.
Sapporo		1.5	315	0 3	31k	+ 3	0 49	0			
Hatinohe		1.7	213		33	+ 2	0 51	- 3	12.2		
Aomori		1.9	232		35						
Nemuro		2.4			and the second se	+1	0 58	- 1	1.000		_
Minnaomo	02280		57		14	+ 3	1 13	+ 1		_	
Mizusawa	N.	3.1	204	e 0 £	55	+ 4	1 33	+ 4			
Sendai		4.0	201	1	2	- 2	1 48	- 4	1 58	S*	100000
Hukusima		4.6	204	ĩ 1	12	õ	2 2	- 5	¥ 00	0	
Onahama		5.2	196		31	P*					
Aikawa		5.3	000				2 34	S*			
			222		21	- 1			-	-	
Mito		5.9	198	1 3	38	+ 7	2 31	- 9			
Utunomiya		5.9	203	1 2	30	- 1	2 34	- 6			
Tukubasan		6.1	200		32	- 2	2 37		22233	2555	2027
Nagano		6.4	215	Constraints and the second s	14			- 8 Sg			
Tokyo		6.7	200			+ 0	3 26	Øg			
Vohn		0.1	202	22	0	P*		0.2325			
Kohu		7.2	208	2	4	P*	3 29	S*			-
Shizuoka		7.8	207	3 2	20	s	(3 20)	- 8	2 <u>0</u> 22		201200
Vladivostok		8.1	281	i 2	3	+ 1	i 3 40	the second se			
Nagoya		8.2	215	2	8	100 C 1000 C 1000 C 1	0 20	+ 5	2116		
Santa Barbara	12	72.8	50	the second s			3 53	+15			
	z.		59		16	+14					
Haiwee	z.	72.9	57	i 11 4	13	+10			i 11 52	$P_{c}P$	

Mount Wilson	z.	74.0	58	i 11 37	- 2	 	i 11 53	P_cP	
Pasadena		74.0	58	e 11 38	- 1	 	1 11 52	$\mathbf{\tilde{P}_{c}\tilde{P}}$	
Riverside	z.	74.6	58	e 11 26	-17	 	i 11 55	PcP	
Tucson		79.9	55	e 12 10	- 2	 	i 12 26	$\mathbf{\hat{P}_{c}\hat{P}}$	<u> 24–</u> 22
Stuttgart	z.	80.8		e 12 13	- 4	 -		× 0×	-
				이 방법은 아이에서 아이지 않는다.					25 CT 25 C

April 5d. 1h. 56m. 5s. Epicentre 39°.5N. 73°.0E.

 $A = + \cdot 2262, B = + \cdot 7399, C = + \cdot 6335; \delta = -6; h = -1;$ $D = + \cdot 956, E = - \cdot 292; G = + \cdot 185, H = + \cdot 606, K = - \cdot 774.$

		\$	Az.	P. m. s.	0 – C. s.	S. m. s.	0 – C.	m. s.	pp.	L. m.
Andijan Tashkent Dehra Dun New Delhi	N.	$1 \cdot 4 \\ 3 \cdot 4 \\ 10 \cdot 1 \\ 11 \cdot 4$	$339 \\ 304 \\ 154 \\ 161$	0 27 i 0 56 e 2 31 i 2 42a	$+ 1 \\ + 3 \\ - 5$	1048 e343 1449	$+ \frac{2}{7}$	$\frac{-}{13}$		e 4.6
Sverdlovsk Bombay	N.	19.2 20.5	339 182	4 25	- š	7 58	- i			
Calcutta Hyderabad Irkutsk Moscow	N. E.	$21 \cdot 4$ $22 \cdot 5$ $25 \cdot 1$ $28 \cdot 5$	$140 \\ 168 \\ 48 \\ 316$	$ \begin{array}{r} i \ 4 \ 42 \\ i \ 4 \ 51 a \\ 5 \ 5 \\ i \ 5 \ 26 \\ 6 \ 2 \\ \end{array} $	$+ \frac{3}{2}$	$ \begin{array}{r} i & 8 & 32 \\ i & 8 & 51 \\ 9 & 4 \\ 1 & 9 & 52 \\ 10 & 45 \\ \end{array} $	+ 5 + 6 + 1 + 1 + 1 + 1		PPP PP SS	i 9.7 i 10.2 11.0

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943					115				
Yalta Kodaikanal Ksara Colombo Focsani	E.	∆ 29·1 29·4 30·2 33·0 33·9	Az. 292 173 271 169 296	P. m. s. e 6 5 e 6 17 e 6 273 11 55 e 7 137	0 - C. s. + 1 + 10 + 13 S + 26	S. m. s. e 11 5 e 11 24 (11 55)	0 - C. s. $+ \frac{4}{11}$ $- \frac{2}{2}$	Suj m. s. i 10 27 (14 14)	$\frac{pp. \qquad L.}{m.}$ $\frac{7}{ss} \qquad = \frac{1}{s}$
Bacau Cernauti Bucharest Helwan Campalung		$34.0 \\ 34.6 \\ 34.8 \\ 35.3 \\ 35.5 \\ 35.5$	298 300 294 267 296	e 7 55 e 6 53 e 6 53 e 6 59 e 7 1 ?	$+ 70 \\ - 10 \\ + 1$	e 12 5 12 33 12 35	$-\frac{17}{+8}$		$ \begin{array}{c} - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \end{array} \end{array} $
Sofia Belgrade Upsala Zinsen Prague		$37.1 \\ 38.7 \\ 39.8 \\ 41.5 \\ 41.9$	$292 \\ 295 \\ 319 \\ 76 \\ 305$	e 7 5 e 7 27 i 7 37 e 7 49 9 30	-90 + 1 +11 + 1 PP	e 12 55? 13 32 e 17 20.	$-\frac{6}{10}$ ss		PP e 28.1 PP e 20.9 — e 21.9
Potsdam Copenhagen Cheb Triest Jena	E. N.	42.4 42.5 43.2 43.2 43.6 43.6	$308 \\ 314 \\ 305 \\ 299 \\ 306 \\ 306 \\ 306$	i 8 3 e 9 34 e 8 8 e 7 55 i 8 9 i 8 9	+ 5 PP + 4 - 9 + 1 + 1	e 17 20 14 21 e 14 31 i 14 28 e 14 31 e 14 25	SS - 1 - 1 - 4 - 7 - 13	i 9 32 e 9 49 e 9 42 (e 17 55) (e 17 47)	PP e 21.9 PP e 24.9 PP SS e 20.9 SS e 20.9
Vladivostok Florence Stuttgart Chur Hukuoka		43.6 45.4 45.5 45.7 45.8	66 296 304 302 79	e 9 28 e 8 20 e 8 23 e 15 20	$+\frac{66}{-3}$ -1 PPS	e 14 28 i 16 8 e 15 3 e 18 17 22 29	$^{-10}_{+64}$ $^{-2}_{-2}$ ss L	i 11 20 e 10 7	$\frac{PP}{PP} \begin{array}{c} e \ 22 \cdot 6 \\ e \ 22 \cdot 9 \\ = \ 26 \cdot 2 \\ (22 \cdot 5) \end{array}$
Zürich Milan Strasbourg Basle De Bilt		$46.2 \\ 46.3 \\ 46.5 \\ 46.8 \\ 47.2$	$302 \\ 299 \\ 305 \\ 303 \\ 310$	e 8 27 8 35 1 8 30 e 8 32 1 8 39k	-16+1-1+3	e 18 23 15 13 15 18 i 15 31		e 10 21 e 10 25	PP i 25.9 PP e 23.9
Neuchatel Uccle Paris Aberdeen Nagano		$47.4 \\ 48.1 \\ 49.8 \\ 50.2 \\ 50.4$	$302 \\ 308 \\ 305 \\ 317 \\ 72$	e 8 36 e 8 42 e 8 59	$\frac{2}{-\frac{1}{2}}$	e 15 40 e 16 10? e 15 44	$-\frac{2}{+}\frac{2}{4}$	$\begin{array}{r}10&33\\e&19&58\\i&19&56\\i&19&56\end{array}$	PP e 23.9 SS e 28.4 SS 1 25.4
Kew Edinburgh Stonyhurst Barcelona Tortosa	Е,	$50.7 \\ 51.1 \\ 51.3 \\ 52.5 \\ 53.9$	$310 \\ 316 \\ 313 \\ 297 \\ 296$	$ \begin{array}{r} e 9 & 4\\ e 11 & 10\\ 11 & 9 \end{array} $	+ 1 PP PP	e 16 11 e 18 21 16 22 e 16 46 18 51	- 7 - 4 + 3	e 10 59 (i 20 25)	$\begin{array}{cccc} \mathbf{PP} & \mathbf{e} & 22.4 \\ \mathbf{ss} & \mathbf{e} & 23.7 \\ \mathbf{ss} & \mathbf{e} & 28.0 \\ \mathbf{ss} & \mathbf{e} & 30.8 \\ \mathbf{e} & 30.9 \end{array}$
Scoresby Sund Toledo Almeria Granada San Fernando		$55.0 \\ 57.4 \\ 57.7 \\ 58.4 \\ 60.6$	337 297 293 294 294	$ \begin{array}{r} 1 & 9 & 51 \\ i & 9 & 55 \\ i & 9 & 58 \\ 9 & 58 \\ 9 & 13 \\ \end{array} $	$-\frac{2}{0}$ $-\frac{2}{62}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	PS +17 + 2 + 3	$\begin{array}{cccc} e & 21 & 56 \\ 12 & 8 \\ 10 & 20 \\ 10 & 16 \\ \end{array}$	SS e 25.4 PP 29.4 pP 34.0 pP 29.3
Lisbon College Seven Falls Saskatoon Ottawa		$61.5 \\ 71.2 \\ 87.9 \\ 88.7 \\ 90.9 \\ 90.9$	$298 \\ 18 \\ 336 \\ 0 \\ 339$	10 23 e 13 10	+ 2 	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$+ 1 \\ - 5 \\ + 7 \\ - 7 $	e 28 41 e 24 7	
Victoria Philadelphia Logan St. Louis Riverview	Е.	$91.2 \\ 95.7 \\ 99.0 \\ 100.7 \\ 102.6$	$10 \\ 335 \\ 3 \\ 347 \\ 124$	e ¹³ 48 e ²¹ 13	+ 4	e 24 9 e 23 40 e 24 58 e 24 11 e 27 28	$^{+ 4}_{[-25]}$ $^{-14}_{[-20]}$ PS	$e_{18}^{e_{11}} 10$ $e_{18}^{-10} 30$ =	SS e 38.9 PP e 46.4 - e 55.3
Mount Wilson Pasadena Riverside Tucson San Juan Huancayo	Z. Z.	$105.9 \\ 106.0 \\ 106.2 \\ 108.5 \\ 110.9 \\ 140.$	9 9 9 3 318 306	e 17 47 e 18 41 e 18 34 e 17 40	PKP PP PP	e 28 13 e 28 41 e 48 7	PS PS SSS	e 18 41 e 19 2	$ \begin{array}{c} PP &$

For Notes see next page.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

116

NOTES TO April 5d, 1h, 56m, 5s.

Additional readings and notes :---Colombo readings for S and SS are recorded as P and S. New Delhi i = 3m.46s., S*N = 5m.30s., S_gE = 5m.59s., S_gN = 6m.10s., P_cP = 8m.46s., $S_{c}S = 15m.21s.$ Bombay iN =4m.46s., 5m.39s., and 8m.38s., SSN =9m.9s. Calcutta isSN = 9m.29s. Focsani eN = 7m.37s.?. Bacau eEN =13m.13s.? and 14m.37s.?. Bucharest ePE =6m.56s., eN =7m.23s. and 7m.49s., iE =8m.51s., eN =9m.34s., iE =15m.1s., iN =15m.5s., 15m.47s., and 16m.25s., iE =16m.28s. Helwan eZ=7m.34s., PPPZ=8m.20s., eN=13m.13s. Campulung eEN =7m.5s., 8m.7s., and 8m.35s. Belgrade iPPP =7m.30s., e =18m.12s. and 24m.6s., readings wrongly identified. Upsala eSN = 13m.36s., eSSN = 16m.7s., eSSE = 16m.17s., eE = 18m.4s., eN = 16m.17s.18m.21s. Potsdam ePPPN = 9m.43s.?. Copenhagen 10m.28s. and 15m.42s. Cheb e = 18m.1s. Triest eSS? =17m.39s. Jena eE = 9m.49s., eSN = 17m.50s., readings for SS are given as S for each component. Florence iPPPZ = 11m.44s., iSSE = 18m.21s., iSSSE = 19m.55s.Stuttgart iPZ = 8m.26s.a, ePPZ = 10m.15s., ePPP?Z = 11m.37s., eSZ = 15m.9s., eSS = 18m.17s., eSSZ = 18m.43s.Strasbourg e = 20m.24s. De Bilt iSS =19m.58. Uccle SSE = 19m.10s., SSN = 19m.23s.Kew eSSEN = 19m.52s., eSSSEN = 21m.40s.Stonyhurst SS is given as iS. Toledo pP = 10m.50s. Almeria sP = 10m.30s., $P_cP = 10m.44s.$, $pP_cP = 11m.13s.$, $sP_cP = 11m.23s.$, PP = 12m.16s., $S_cP = 14m.23s.$, sS = 18m.39s., $S_cS = 19m.25s.$, $pS_cS = 19m.59s.$ Granada $P_cP = 10m.49s.$, $pP_cP = 11m.13s.$, PP = 12m.19s., pPPP = 13m.49s., $P_cS = 10m.49s.$ 14m.31s., ScS = 19m.25s., Q = 25.4m. Lisbon E = 16m.49s.1, SE = 18m.55s.1. Ottawa e = 28m.55s.?. Philadelphia ePS = 26m.9s. Logan e = 23m.24s. Long waves were also recorded at Tananarive, Wellington, Ivigtut, Bermuda, Bergen, and other Japanese and American stations.

April 5d. 3h. 9m. 14s. Epicentre 7°.5S. 77°.0W. Depth of focus 0.040.

Approximate.

A = $+ \cdot 2231$, B = $- \cdot 9662$, C = $- \cdot 1297$; $\delta = +14$; h = +7; D = $- \cdot 974$, E = $- \cdot 225$; G = $- \cdot 029$, H = $+ \cdot 126$, K = $- \cdot 992$.

		Δ	Az.	Р.	0-C.	s.	0 – C.	Su	pp.	L.
		0	0	m. s	. 8.	m. s.	S.	m. s.	1017030	m.
Huancayo Bogota La Paz	z.	$ \begin{array}{r} 4 \cdot 8 \\ 12 \cdot 4 \\ 12 \cdot 4 \end{array} $	$ 161 \\ 14 \\ 137 $	i 0 56 e 2 33 i 2 41	3 -16	$ \begin{array}{ccccccccccccccccccccccccccccccccccc$	-29 + 7	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$_{\mathbf{PP}}^{\mathbf{pP}}$	_
Fort de France	2.	27.1	37	i 2 41 e 5 8		19 99	-18		-	5.6
San Juan		27.9	22	e 6 1	+35	e 10 8	+21			e 12·1
Harvard		50.0	5	i 8 23	- 4		n de service Service Service			_
Tucson		51.0	322	18 34	- 1			i 10 27	\mathbf{PP}	
Palomar	z.	55.5	319	e 9 9	+2			e 9 40	\mathbf{pP}	
Riverside	z.	56.3	320	1913	3k 0		·•	i945	pP	
Mount Wilson	z.	56-8	320	1918	3k + 2			19 50	рР	
Pasadena		56.9	320	i 9 17	k 0		-	i949	pP	
Haiwee	Z.	58.0	321	e 9 23	3 - 2			i 9 57	\mathbf{pP}	
Tinemaha	N.	58.8	321	e 9 31	+ 1			e 10 5	\mathbf{pP}	÷ +
Granada		81.5	50	i 11 46	3 - 1		_		•	
Toledo		81.9	48	i 11 46	5 - 3	23 33	1	12 18	\mathbf{pP}	
Tortosa	Е.	85.5	48	12 59	pP_4					_
Stuttgart	z.	93.1	41	$ \begin{array}{r} 12 & 59 \\ e & 12 & 39 \end{array} $) - 4			e 13 13	\mathbf{pP}	
Additional rea Bogota iPI Tucson i = Pasadena i	$\frac{PPP}{9m.5}$ $Z = 1$	= 3m. s., e = 0m.27s	11m.(=3m.24 3s.	s., eS?=	6m.12s.,	iPcPi =	6m.39s.	- 25	

Stuttgart eZ = 13m.27s.

- 55

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

117

```
April 5d. 8h. Undetermined American shock.

Tucson iP = 26m.35s., i = 27m.0s. and 27m.54s., iS = 28m.53s., iL = 29m.25s.

La Jolla eP = 27m.22s.

Palomar ePZ = 27m.24s.

Riverside ePZ = 27m.33s., eSZ? = 30m.49s.

Pasadena iP = 27m.39s., eSEN = 31m.15s.

Mount Wilson ePZ = 27m.40s., eSZ = 31m.5s.

Santa Barbara iPZ = 27m.54s.

Haiwee iPZ = 28m.0s.

Tinemaha iPN = 28m.13s.

Logan ePP = 28m.52s., eL = 33m.32s.

St. Louis eZ = 29m.42s., iPZ = 29m.52s., eSN = 33m.35s.
```

Cape Girardeau ePE = 29m.42s., eE = 35m.53s.Salt Lake City eS = 32m.5s., eL = 33m.26s.Florissant iZ = 36m.4s., 37m.1s., and 38m.13s.Tacubaya PZ = 37m.55s.Long waves are also recorded at other American stations.

April 5d. 20h. 45m. 4s. Epicentre 6°.2S. 147°.7E. (as on 1939 January 25d.).

A = -.8404, B = +.5313, C = -.1073; $\delta = +7$; h = +7: D = + .534, E = + .845; G = + .091, H = - .057, K = - .994. Р. 0 – C. Az. s. 0 - C.Δ Supp. L. m. s. 8. m. s. 8. m. s. m. 0 0 $\begin{smallmatrix}i&4&56\\i&6&0\end{smallmatrix}$ e 8 43 Brisbane 21.8 165N., 0 i 5 10 9 \mathbf{PP} e 12.2 27.7173 8 Riverview i 10 30 +i6 50 PPP e 14.0 27.7 173 e 8 267 Sydney e 11.7 0.000 -39.2 224 i 13 26 i 15 56 SS Perth 6 i 22.2 Acres 10 -39.3 145 Auckland 15 1 2 16 6 SS 19.9 146 40.6 Arapuni +6214 56 23.9 -----7 58 42.5 149 Wellington - 1 15 26? 9 34 PP 3 21.9 Hukuoka 42.8 340 e 14 37 +11Burner (-1742.8 7 44 Kumagaya 350 43.2 153 8 15 Christchurch +11- 2 14 30 e 17 30 SS 21.2 e 8 43.6 350 Nagano 4 4 -44.7 8 14 353 Sendai 2 15 6 +12= -_ 346 2 51.2 e 9 Vladivostok 5i 16 41 +16i 20 68.9 334 i 11 5 Irkutsk 25 +12New Delhi 76.1 302 i 21 N. 23 -12Tashkent 85.4 313 i 12 38 23 25 - 2 +14----56 i 13 32 96.9 - 2 Pasadena e 44·3

Mount Wilson	z.	97.0	56	i 13	34	- 1	3 1		-		
Riverside	Z.	97.5	56	i 13	34	- 3	i a tomata i			-	
Tucson		103.0	57	e 16	8	2	3 3003 2		e 18 17	\mathbf{PP}	e 47·6
St. Louis	E.	118.7	49	e 28	1	?	e 29 54	\mathbf{PS}	e 31 32	PPS	e 41.5
Cheb		122.5	328		Times	1944 - 19 10 - 1 9	e 37 56?	SSP	10.12 <u>0-</u> 2101		e 66·9
Stuttgart		125.0	327	e 18	59	[-3]					e 63·9
Ottawa		$125 \cdot 8$	35	e 19	1	[-3]		(1000)			54.9
Bermuda		140.1	45	e 36	48	8				_	e 69·4
Fort de France		150.4	71	e 19	54	[+ 6]		(1) (1) (1)			

Additional readings :---

Brisbane iSSN = 9m.0s. Riverview iN = 7m.23s., iE = 10m.45s., iN = 10m.51s., iZ = 10m.56s. and 11m.40s., iSSN = 11m.54s.

Perth i =17m.26s.

ъ.

Auckland i = 16m.41s.

Wellington iZ = 8m.10s. and 8m.31s., PPP?Z = 10m.41s., $S_cS = 17m.36s$., Q = 18.9m. Christehurch Q = 17m.56s.

Tucson e = 29m.39s. and 38m.24s.

St. Louis eE = 30m.14s. and 33m.40s.

Long waves were also recorded at College, Philadelphia, Harvard, Tananarive, and other European stations.

April 5d. Readings also at 1h. (La Paz, Mount Wilson, Riverside, and Chicago), 2h. (near Andijan), 4h. (near Mizusawa), 5h. (Cheb, De Bilt, Kew, Stuttgart, Hyderabad, Kodaikanal, Calcutta. New Delhi, Frunse, near Stalinabad, Tashkent, and Tchimkent), 6h. (near Berkeley, Branner, and Lick), 7h. (Mount Wilson, Pasadena, Palomar, Tucson, and Riverside), 9h. (Tucson), 10h. (Yalta), 11h. (near Tashkent), 18h. (Sofia), 21h. (near Tashkent and Tchimkent).

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

118

April 6d. 16h. 7m. 12s. Epicentre 30°.9S. 72°.0W.

Valley of Aconcagua:

Destructive Scale IX at Cambarbala, Illapel, and Salamanca ; very strong at Petorca and Ovalla. Felt all over the distance (2000 km.), between Iquique and Valdivia, and as far as Buenos-Aires.

Epicentre 30°.7S. 72°.0W. (Pasadena); 31°.5S. 71°.4W. (U.S.C.G.S.); 29°.8S. 71°.0W. (J.S.A.).

Macroseismic epicentre 31°·2S. 71°·1W. (Strasbourg). Magnitude 8 (Pasadena). Frederico Greve. Determination del Coeficiente de Sequridad Antisismico para las Diferentes Zonas de Chile, p. 15. Federico Greve. Descripcion de los principales effectos, de los sismos sentidos en Chile

en los anos 1942-1946, with isoseismic chart.

A = + $\cdot 2656$, B = - $\cdot 8175$ C = - $\cdot 5110$; $\delta = -3$; $h = +2$; D = - $\cdot 951$, E = - $\cdot 309$; G = - $\cdot 158$, H = + $\cdot 486$, K = - $\cdot 860$.									
Montezuma La Plata La Paz N. Huancayo Bogota	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Supp. L. m. s. m. $\overline{3}$ 2 P $\overline{5 \cdot 6}$ $\overline{3}$ 2 P $\overline{5 \cdot 6}$ $\overline{4}$ 50 PPP $\overline{7 \cdot 4}$ $\overline{18}$ 36 PPP $\overline{17 \cdot 6}$					
Balboa Heights Fort de France Port au Prince San Juan Oaxaca N.	$\begin{array}{ccccc} 40 \cdot 3 & 350 \\ 46 \cdot 6 & 16 \\ 49 \cdot 2 & 0 \\ 49 \cdot 3 & 9 \\ 53 \cdot 3 & 332 \end{array}$	i 8 29a - 3 e 9 3 +11 i 8 49 - 4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					
Vera Cruz E. Tacubaya Z. Manzanillo E. Guadalajara E. Mazatlan E.	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$							
Mobile Bermuda Columbia Chihuahua Z. Georgetown	$ \begin{array}{r} 63 \cdot 1 & 345 \\ 63 \cdot 3 & 8 \\ 65 \cdot 1 & 354 \\ 67 \cdot 5 & 329 \\ 69 \cdot 6 & 357 \\ \end{array} $	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
Cape Girardeau E. Florissant Fordham Pittsburgh New Kensington	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
Tucson Harvard Ann Arbor Buffalo Chicago	$\begin{array}{cccc} 72 \cdot 8 & 327 \\ 73 \cdot 0 & 1 \\ 73 \cdot 6 & 352 \\ 73 \cdot 7 & 356 \\ 73 \cdot 8 & 348 \end{array}$	i 11 36 - 2	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
Lincoln Vermont Halifax Ottawa La Jolla	$\begin{array}{cccc} 74 \cdot 9 & 342 \\ 75 \cdot 0 & 359 \\ 75 \cdot 6 & 8 \\ 76 \cdot 0 & 358 \\ 76 \cdot 5 & 323 \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	e 14 42 PP e 30.6 1 12 13 pP 31.1 28 181 SS e 34.8 14 481 PP e 37.8					
Denver N. Shawinigan Falls Riverside Boulder City Seven Falls	$\begin{array}{cccc} 76\cdot 7 & 335 \\ 77\cdot 1 & 0 \\ 77\cdot 5 & 323 \\ 77\cdot 7 & 328 \\ 77\cdot 7 & 2 \\ 77\cdot 7 & 2 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					
Mount Wilson Pasadena Santa Barbara Haiwee Salt Lake City	$\begin{array}{cccc} 78 \cdot 0 & 323 \\ 78 \cdot 1 & 323 \\ 79 \cdot 1 & 322 \\ 79 \cdot 5 & 325 \\ 80 \cdot 3 & 331 \end{array}$	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
Tinemaha Angra do Heroismo Fresno N. Logan Lick	$\begin{array}{cccccc} 80 \cdot 3 & 325 \\ 80 \cdot 8 & 35 \\ 80 \cdot 8 & 324 \\ 81 \cdot 1 & 332 \\ 82 \cdot 2 & 323 \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					

Continued on next page.

141

10 M

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

	Ľ.	1	ģ)
	242			

	<u>م</u>	Az.	Р. a. s.	0 – C. s.	S. O-C. m. s. s.	Supp. m. s.	L. m.
Santa Clara Branner Berkeley Bozeman Ukiah	82.4 82.6 83.0 84.0 84.4	323 e 1	$ \begin{array}{cccc} 2 & 29 \\ 2 & 29 \\ 2 & 34 \end{array} $	+ 2 + 3 + 1 + 1 + 2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	e 34 59 (i 27 38 S e 15 29 P	e 40.0 s e 39.9 P e 36.2 P e 35.2
Butte Johannesburg Christchurch Tuai Wellington	84 ·9 85 ·3 85 ·4	227 1		$-18 \\ -2 \\ -1 \\ +6 \\ -1 \\ -1$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	e 18 123 PI 15 49 P 15 483 P	P 43.8 P 39.2
Ferndale Kaimata Arapuni New Plymouth Auckland	86.6 86.8 87.2	$ \begin{array}{ccc} 227 & 1 \\ 226 & 1 \end{array} $	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$^{-55}_{+4}_{+31}_{+25}_{-62}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		S e 33·3
Saskatoon Seattle Lisbon San Fernando Apia	$90.3 \\ 90.7 \\ 91.0$	329 e 1	and the second	-22 + 39 + 29 - 42 - 22 + 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccc} 16 & 33 & P \\ e & 31 & 48 \\ & 16 & 32 & P \\ & 16 & 5 & P \\ e & 30 & 24 & SS \end{array}$	P e 36.8 ? e 37.8 P 36.5 P 42.8
Victoria Granada Almeria Ivigtut Toledo	$91 \cdot 4 \\ 93 \cdot 2 \\ 93 \cdot 7 \\ 93 \cdot 8 \\ 94 \cdot 5$		3 14	$+ 3 \\ - 2 \\ - 5 \\ - 6 \\ - 2$	$egin{array}{cccccccccccccccccccccccccccccccccccc$	16 50 PI 17 10 PI 17 2 PI 17 2 PI e 17 17 PI . 13 58 PI	e 37.8 45.0 44.3 e 37.4
Honolulu Tortosa E. Barcelona Clermont-Ferrand Marseilles	$97.2 \\ 97.7 \\ 999.2 \\ 102.1 \\ 102.3$	$\begin{array}{cccc} 291 & e & 1 \\ 47 & 1 \\ 47 & e & 1 \\ 44 & i & 1 \\ 47 & 1 \\ 47 & 1 \end{array}$	$ \begin{array}{r} 3 & 36 \\ 3 & 35 \\ 3 & 54 \end{array} $	$-25 \\ -20 \\ -10 \\ -4 \\ +10$	$\begin{array}{r} e \begin{array}{c} 24 & 43 & -14 \\ 25 & 13 & +12 \\ 24 & 37 & [+14] \\ \hline 25 & 48? & + \end{array}$	$\begin{array}{ccccccc} e & 17 & 56 & PI \\ 17 & 27 & PI \\ 18 & 12 & PI \\ e & 17 & 12 \end{array}$	e 40.7
Reykjavik Sitka Kew Paris Stonyhurst	$102.7 \\ 102.8 \\ 103.3 \\ 103.4 \\ 103.5$	$\begin{array}{cccccccc} 21 & 1 \\ 331 & e & 1 \\ 38 & i & 1 \\ 41 & i & 1 \\ 35 & i & 1 \end{array}$	4 8 3 58 3 59	-17 + 7 - 5 - 5 - 5 + 7 - 5 + 7 - 5 + 7 - 5 + 7 - 5 + 7 - 5 + 7 - 5 + 7 - 5 + 7 - 5 + 7 - 5 + 7 - 5 + 7 - 5 + 7 - 5 + 7 + 7 - 5 + 7 + 7 + 7 + 7 + 7 + 7 + 7 + 7 + 7 +	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1753PFe1827PFe1833PFi1821PFi1827PF	i 51.7 e 40.8 51.8
Tananarive Riverview Sydney Edinburgh Besançon	103.8	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$^{+17}_{-3}_{+31}_{\rm PP}_{\rm PP}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	18 12 PP i 18 20 PP e 33 0 SS 20 39 PP	43.1 e 48.1 e 51.3
Neuchatel Uccle Aberdeen Basle Milan	$105.0 \\ 105.4 \\ 105.5 \\ 105.7 \\ 105.7 \\ 105.7 \\$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4 9a 9 2	- 3 - 4 PP - 5 - 2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	i 18 36 PP i 28 7 PS e 18 39 PP i 19 22	45.8 45.6
Florence Zürich Strasbourg Scoresby Sund Chur	$106.2 \\ 106.2 \\ 106.3 \\ 106.4 \\ 106.5$	44 e 1 43 i 1 16 e 1	4 15	- 42 - 22 + 3	i 25 21 $[+25]$ e 25 10 $[+14]$ i 25 23 $[+27]$ e 25 1 $[+4]$ e 25 28 $[+31]$	i 18 30 PP e 18 29 PP i 18 42 PP e 19 6 PP e 18 26 PP	e 44 ·8 41 ·0
De Bilt Stuttgart Brisbane E. N. Triest		$\begin{array}{r} 44 & i \ 1 \\ 222 & e \ 1 \\ 222 & i \ 1 \\ \end{array}$		– 2 P PP P	i 25 16 $[+19]$ e 25 28 $[+28]$ i 24 46 $[-17]$ i 24 52 $[-11]$ 25 16 $[+9]$	i 18 38 PP e 18 36 PP i 28 37 PS e 18 50 PP e 18 55 PP	e 51.5 e 59.5
Jena Cheb Bergen Prague Potsdam	109.6109.7110.5110.9111.0	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	4 36 9 18 4 427	P P PP PP	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	i 18 58 PP e 18 54 PP 38 45 SSS e 19 5 PP e 29 61 PS	e 48.8 e 57.8
College Copenhagen Belgrade Sofia Helwan	$ \begin{array}{c} 111 \cdot 8 \\ 112 \cdot 0 \\ 112 \cdot 7 \\ 113 \cdot 8 \\ 115 \cdot 2 \end{array} $	37 19 37 19 51 e 14 54 e 16 70 e 14	$ \begin{array}{c} 14 \\ 56 \\ 3 187 \end{array} $	[+27] PP P P	$\begin{array}{ccccccc} e & 29 & 12 & PS \\ & 25 & 40 & [+20] \\ e & 29 & 18 & PS \\ e & 29 & 357 & PS \\ & 29 & 24 & PS \\ \end{array}$	e 19 23 PP 34 48 SS e 35 41 SSP e 19 29 PP e 30 30 PPS	e 48·8

Continued on next page.

1.1

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

120

	Δ	Az. P. m. s.	0 – C. s.	S. 0-C. m. s. s.	Supp. m. s.	ь. m.
Campulung Upsala Bucharest Perth Istanbul	$ \begin{array}{r} 0 \\ 115 \cdot 9 \\ 116 \cdot 0 \\ 116 \cdot 3 \\ 117 \cdot 1 \\ 117 \cdot 3 \end{array} $	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	PP PP	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	e 19 44 1 e 36 31 SSP i 19 47 PP 36 3 SS 34 42 1	47.8 46.8 48.8 58.9 54.8
Cernauti Focsani Bacau Ksara Yalta	$ \begin{array}{r} 117 \cdot 4 \\ 117 \cdot 4 \\ 117 \cdot 5 \\ 120 \cdot 2 \\ 121 \cdot 9 \end{array} $	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	'PP'	e 29 43 PS 30 18? PS e 30 24? PS		49·8 47·8
Colombo Kodaikanal Bombay Nemuro Hyderabad	E. 144.5 E. 145.0 146.1 147.8 E. 150.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{bmatrix} - & 1 \\ + 21 \\ [+ 21] \\ [- & 2] \\ [+ 46] \\ [& 0] \end{bmatrix} $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	23 24 PKS 23 4 PKS 23 4 PKS 23 25 PP	77.5 i 63.1
Sapporo Mori Mizusawa Sendai Tokyo	$150.9 \\ 151.7 \\ 151.8 \\ 152.0 \\ 153.1$		$ \begin{bmatrix} & 0 \\ [& 0] \\ [+ & 6] \\ [+ & 6] \\ [+ & 12] \end{bmatrix} $	$ \begin{array}{c} 32 \\ 32 \\ $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$42.7 \\ 70.5 \\ 43.0 \\ 71.2$
New Delhi Yokohama Misima Dehra Dun Nagano	153.2 153.2 153.8 N. 154.3 154.3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$[+ 0] \\ [+ 6] \\ [+ 2] \\ [+ 2] \\ [-15] \\ [+ 9] \end{cases}$	$ \begin{array}{ccccccccccccccccccccccccccccccccccc$	23 35 SKP e 41 3 ?	e 71.6 e 82.4
Nagoya Kobe Koti Hamada Miyazaki	$155 \cdot 4$ $156 \cdot 9$ $158 \cdot 2$ $159 \cdot 4$ $160 \cdot 0$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{bmatrix} - & 9 \\ - & 1 \end{bmatrix} \\ \begin{bmatrix} + & 7 \\ + & 34 \end{bmatrix} \\ \begin{bmatrix} + & 4 \end{bmatrix} $	$30 \\ 6 \\ -50 \\ -50 \\ -7 \\ 35 \\ 35 \\ 3 \\ 7 \\ 7$	= = = (44 43) SS	44·7
Calcutta Hukuoka Nake Keizyo Zinsen	N. 160.6 160.9 161.2 163.1 163.3	283 20 1	$\begin{bmatrix} - & 3 \\ [- & 1] \\ [- & 1] \\ [+23] \\ [+ & 2] \end{bmatrix}$	$ \begin{array}{ccccccccccccccccccccccccccccccccccc$	$\stackrel{20}{\underline{24}} \stackrel{37}{\underline{55}} \stackrel{\mathbf{PKP}_2}{\underline{PP}} \stackrel{\mathbf{EP}_3}{\underline{=}}$	1 69·4 75·6

Additional readings :---

La Plata SN = 4m.54s.

Bogota i = 7m.12s., 7m.22s., and 8m.5s., e = 11m.40s. and 12m.2s.Fort de France PPP = 10m.57s., SS = 18m.36s., SSS = 19m.46s.

```
Bermuda i = 12m.25s, and 23m.16s.
Columbia e = 20m.10s.
Cape Girardeau iE = 11m.24s., isPE = 11m.40s., iP_cPE = 11m.45s., ipP_cPE = 12m.3s.,
    iPPE = 13m.58s., ipPPE = 14m.17s., isSE = 20m.49s.
Florissant is PN = 11m.51s., eP_cPN = 11m.57s., ePPN = 14m.6s., epPPN = 14m.23s.,
    isSE = 21m.9s., iSPN = 21m.19s., eSSN = 25m.17s.
Fordham i=11m.50s., 25m.49s., and 29m.37s.
New Kensington e = 23m.30s.?.
Tucson iPP = 14m.21s., i = 15m.29s., esPS! = 22m.11s., i = 24m.58s., 26m.0s., and
    28m.33s.
Harvard i = 21m.22s.
Ann Arbor SS = 26m.12s.
Buffalo iPPP = 15m.42s.
Chicago i =15m.30s., 16m.24s., 26m.11s., and 29m.40s.
Lincoln ePPP = 16m.29s., i = 22m.19s., e = 26m.37s.
Vermont iPP = 14m.38s., ePPP = 16m.27s., e = 20m.57s., i = 23m.7s., iSS = 26m.27s.
Halifax SSS = 29m.18s.?.
Ottawa i = 23m.8s., iN = 25m.1s., SS = 26m.46s
Denver eE =12m.3s., iN =13m.5s., 13m.35s., and 14m.11s., iPPN =14m.52s., iN ==
    21m.55s., eE = 22m.5s., eEN = 27m.6s.?.
Shawinigan Falls SS = 26m.42s.?.
Seven Falls e=19m.6s.
Pasadena iEN =12m.20s., iSSE =27m.14s.
Salt Lake City e = 17m.35s., iSS = 27m.56s., isSS = 28m.42s.
Logan e = 26m.46s.
Berkeley iPN = 12m.32s., iSN = 22m.52s., iSZ = 22m.58s.
Bozeman e=17m.6s., iS=22m.58s., iSS?=28m.37s., eSSS=22m.7s.
Ukiah e = 18m.18s., isPS = 24m.34s., e = 28m.57s., eSSS = 32m.28s.
Johannesburg eSN = 22m.56s.?, e?N = 34m.48s.?.
Christchurch PS = 23m.38s., SS = 28m.38s., SSS = 32m.31s., Q = 35m.46s.
```


These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

121

Wellington $P_{c}PZ = 12m.52s.$, iZ = 13m.4s., 14m.18s., 15m.28s., and 16m.25s., S = 22m.58s., PS = 23m.26s., PPS? = 24m.20s., i = 24m.40s., and 26m.51s., SS = 28m.12s., i = 29m.46s., SSS? = 32m.18s.?., Q = 35m.48s.Ferndale iSN = 22m.29s., iSSE = 28m.22s.Kaimata i = 13m.11s.Arapuni PPS? = 25m.48s.?, SS = 30m.12s.? Auckland i = 12m.53s. and 13m.30s., PP? = 15m.40s., i = 22m.33s., PS? = 22m.53s., i = 23m.20s., and 24m.8s., SS = 27m.43s., SSS = 32m.15s., Q = 35m.33s.Saskatoon e = 26m.24s., SS = 29m.33s., SSS = 33m.18s.? Seattle e = 23m.42s.Lisbon N = 13m.10s., Z = 14m.8s. and 17m.2s.?, E = 17m.7s., N = 17m.12s. and 19m.15s., SKSN = 23m.19s., SE = 23m.53s., $S_{c}SZ = 24m.4s.$, $S_{c}SN = 24m.8s.$, PSN = 24m.29s.,

PPSZ = 25m.23s.?, PPSE = 25m.28s., SS?EN = 30m.24s.?. San Fernando SKSE = 23m.12s., PSE = 25m.26s., SSE = 30m.10s.Apia eSKKS = 37m.24s. Victoria SS = 30m. 36s. ?. Granada iS = 24m.19s., PS = 25m.40s., PPS = 26m.34s., SS = 31m.10s., Q = 38.4m. 26m.4s., SS = 30m.54s., SSS = 35m.11s.Ivigtut e = 23m.56s., iPS = 24m.52s., i = 31m.9s., e = 35m.8s.Toledo PP = 17m.30s., sS = 25m.12s.Honolulu e = 23m.39s., i = 26m.33s., e = 32m.18s., and 35m.57s.Tortosa PPPE =19m.45s., PSE =26m.26s., SSE =31m.50s., QE =40m.48s. Barcelona SS = 32m.23s.Marseilles SSS = 36m.48s.?. Reykjavik SS = 33m.13s. Sitka ePS = 27m.38s., eSS = 32m.38s., eSSS = 37m.13s.Kew iP=14m.26s., ePPP=20m.48s., eSKKSEN=25m.46s., eSEN=26m.24s., ePSEN = 27m.43s., ePPSE = 28m.51s., eSSEN = 33m.18s.?, eSSSEN = 37m.48s.?. Paris iPS = 27m.43s.Stonyhurst i = 25m.2s., SS = 33m.42s., SSS = 37m.43s. Tananarive sPP=18m.49s., PPP=20m.7s., SKKS=25m.16s., S=25m.49s., isS= 26m.32s., PS = 27m.34s., isPS = 28m.3s., SS = 33m.17s., iSSS = 36m.54s. Riverview i=17m.46s., iE=18m.42s., iSKKSE=25m.32s., iN=27m.32s., iPSE= 27m.42s., eE = 27m.54s., N = 28m.8s., iE = 28m.51s., eN = 32m.8s., iE = 32m.48s.. $eQE = 43 \cdot 3m., eQN = 43 \cdot 7m.$ Edinburgh PP = 18m.23s., PKS = 21m.52s., SKS = 24m.7s., S = 25m.34s., PS = 27m.55s., PPS = 28m.48s., SS = 33m.40s., SSS = 37m.3s.Uccle iPPPE=21m.3s., iEN=25m.9s., iPSEN=28m.8s., iSSE=33m.41s., iSSN=33m.44s. Aberdeen iEN = 33m.42s., iEN = 40m.47s.Basle e = 27m.19s. Florence iPPPZ = 21m.5s., iSN = 26m.33s., iPSN = 28m.17s., iPPSN = 29m.17s., iSSN = 38m.5s.Zürich ePS = 27m.558. Strasbourg eS = 26m.10s., iPS = 28m.8s., SS = 33m.51s.Scoresby Sund e =18m.28s. and 26m.19s., ePS =28m.19s., eSS =34m.3s. De Bilt iPS = 28m.8s., eSS = 33m.48s.Stuttgart iPZ =14m.46s., ePPP =21m.20s., eSP =27m.48s., eSP =28m.25s., ePKKPZ =29m.43s., eSS = 33m.56s., eSSS = 38m.4s., eQ = 49.6m.Brisbane iSKKSN = 25m.42s., iPSN = 28m.40s., iSSN = 34m.20s.Triest eSKKS? = 24m.42s., PS? = 26m.48s. Jena e=16m.48s., eN=17m.56s., iE=18m.48s., iZ=19m.17s., iZ=19m.56s., iEN= 20m.0s.?, eE = 25m.16s., eEN = 26m.30s.?, iE = 28m.28s., e = 29m.48s.? and 34m.48s.?, eN = 38m.48s.?, eEZ = 39m.6s.?, e = 42m.48s.?. Cheb e = 25m.50s., ePS = 27m.12s.?, ePPS = 28m.6s.?, eSSS = 38m.48s.?, eE = 39m.34s.? Bergen PS = 29m.3s., SS = 35m.21s., e = 42m.33s. and 44m.33s.Prague ePKP = 18m.18s.?, ePS = 28m.30s., eSSS = 39m.0s.?. Potsdam eE = 25m.6s.?, iE = 28m.48s., eE = 43m.0s.?. College $eS_{1}^{2} = 27m.1s.$, eSS = 34m.36s.Copenhagen 26m.39s. and 28m.10s., PS = 29m.9s. and 33m.31s. Belgrade e = 18m.21s., i = 19m.22s.Sofia eN =17m.35s., eE =18m.23s., eN =19m.19s., eE =36m.5s. Helwan eZ =18m.42s., and 19m.11s., eEZ =19m.43s., eE =28m.48s., SSN =34m.32s. Upsala ePP?N = 20m.18s., eN = 27m.48s.?, ePSE = 29m.39s., ePSN = 29m.48s.?, ePPSE = 31m.0s., eE = 34m.48s.?, eN = 35m.48s.?, eN = 39m.48s.?, eSSSE = 40m.31s. Bucharest iE = 29m.33s., SKKSEN = 30m.20s., iE = 35m.40s. Perth PKP = 22m.48s., PP = 24m.23s., SKP = 25m.48s., SKS = 29m.33s., SKKS = 30m.58s., S = 32m.23s., PS = 33m.58s., SS = 40m.30s. Phases wrongly identified. Kodaikanal iSSE =43m.18s.Bombay PPE = 23m.24s., PKKPE = 28m.32s., SKSPE = 33m.33s., PPSE = 36m.15s., SSE = 42m.5s., PSPSE = 43m.4s., SSSE = 47m.10s.Hyderabad PKP₂E = 20m.25s., SKSPE = 33m.34s., SSE = 42m.49s. Sapporo i = 20m.16s., e = 24m.9s.Tokyo PKPE = 20m.33s., eSKPN = 23m.37s., i = 26m.21s., PPPN? = 27m.32s., SS? = 43m.538. New Delhi iPP=24m.13s., SKKSN=31m.27s., PPSE=37m.6s., SSN=43m.11s., SSSE = 50m.28s., SSSN = 50m.43s.Calcutta iPPN = 24m.29s., iSSSN = 47m.14s. Hukuoka SSS = 51m, 8s., Q = 67m.3s.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

122

April 6d. 18h. 17m. 34s. Epicentre 30°.9S. 72°.0W. (as at 16h.).

		Δ	AZ.	Р.	0 – C.	S.	0-C.	Sur	pp.	L.
		•	o	m. s.	8.	m. s.	8.	m. s.		m.
Montezuma		8.7	19			e 4 20	S*			
La Plata	Е.	12.5	112	3 0	- 2	5 17	- 6	5		6.1
Several Constraints	N.	12.5	112	3 2	0	5 14	- 9		5	6.0
La Paz		14.8	15	e 3 35	+ 3	6 31	+13			7.3
Huancayo		19.0	351	e 6 1	8			53 22-22	Sites	e 12·7
Tueson		72.8	327	i 11 31	- 1		:- 	20 -011		
Riverside	Z.	77.5	323	e 11 59	0			e 12 6	2	
Mount Wilson	Z.	78.0	323	e 12 1	- 1					-
Pasadena	z.	78.1	323	1 12 28	+26		_			
Haiwee	z.	79.5	325	112 9	- 1	-				

Mount Wilson also gives iZ =12m.8s. and 12m.29s.

April 6d. Readings also at 2h. (Basle), 6h. (near Fort de France), 9h. (near Bogota and near Mizusawa), 10h. (near Tashkent), 11h. (near Bogota), 15h. (Mount Wilson, Tucson, Riverside, and near Bogota), 16h. (near Berkeley), 17h. (La Paz (4)), 18h. (La Paz (2) and La Plata (6)), 19h. (La Paz and La Plata (3)), 20h. (La Paz (3), La Plata (3), Montezuma, Huancayo, Tucson, Riverside (2), Mount Wilson (2), and Haiwee (2)), 21h. (La Plata (2)), 22h. (La Paz, La Plata (2), and near Fresno).

April 7d. 6h. 13m. 37s. Epicentre 30°.9S. 72°.0W. (as on 6d.).

 $A = +.2656, B = -.8175, C = -.5110; \delta = -3; h = +2.$

		Δ	AZ.	Р.	0-C.	S .	0-C.	Su	pp.	L.
		0		m. s.	8.	m. s.	8.	m. s.	94579350	m.
Montezuma		8.7	19			e 4 18	+28			e 4.5
La Plata	E.	12.5	112	2 58	- 4	5 23	0	5 	_	6.1
9477100012540000000000	N.	12.5	112			$5 11 \\ 5 17$	-12		_	6.1
	Z.	12.5	112	2 58	- 4		- 6			6.0
La Paz	z.	14.8	15	i 3 33	+ 1	6 27	+ 9			7.7
Huancayo		19.0	351	e 4 27	+ 1	i8 7	+12	(_	i 9.0
Bogota		35.4	358	i7 1	+ 1			e7 5	8	
San Juan		49.3	9					e 18 39	Ŷ	e 28·7
St. Louis		71.2	346	e 11 23	0	e 20 37	- 3	e 20 48	9	
Tucson		72.8	327	i 11 31	- 1	e 20 50	- 8	e 38 16	P'P'	
Riverside	z.	77.5	323	e 11 59	0	33 <u>52 (18</u>	1			
Mount Wilson	Z.	78.0	323	i 12 2	0	30 0000				
Pasadena	Z.	78.1	323	i 12 2	0	12-22				
Haiwee	z.	79.5	325	i 12 10	0	5 				
Tinemaha	Z.	80.3	325	i 12 12	- 2	State 100	1000			
Logan	4.614	81.1	332	e 12 18	0	e 22 41	+13	e 20 57	?	e 42·0

St. Louis also gives eZ = 11m.28s. Long waves were also recorded at Stuttgart.

April 7d. 8h. 10m. 7s. Epicentre 30°.9S. 72°.0W. (as at 6h.).

		Δ	Az.	Р.	0 – C.	8.	0 – C.	Suj	op.	L.
		G	0	m. s.	8.	m. s.	8.	m. s.		m.
Montezuma		8.7	19			e 3 57	+ 7	e 4 40	8	e 4·9
La Plata	E.	12.5	112	$ \begin{array}{ccc} 2 & 58 \\ 2 & 59 \end{array} $	- 4	5 17	- 6			6.0
	N.	12.5	112	2 59	- 3	5 11	-12	8		5.9
	Z.	12.5	112	3 0	- 2	5 17	- 6	() 		5.8
La Paz	z.	14.8	15	3 37	+ 5	1621	+ 3			7.5
Huancayo		19.0	351	e 4 29	+ 3	e 8 9	+14	i 8 12	SS	e 9·4
Bogota		35.4	358	e 6 59	- 1					-
St. Louis		71.2	346	e 11 30	+ 7	e 20 39	- 1			
Tucson		72.8	327	i 11 30	- 2	1				
Riverside	Z.	77.5	323	i 11 56	- 3					
Mount Wilson	z.	78.0	323	i12 0	- 2	S ana			 8	
Haiwee	Z.	79.5	325	e 12 8	- 2					· · · · ·
Tinemaha	z.	80.3	325	e 12 11	- 3)				

Long waves were also recorded at Columbia,

•

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

85

123

April 7d. 8h. 45m. 56s. Epicentre 24°.5N. 126°.7E. (as given by Bombay).

A = -.5444, B = +.7304, C = +.4124; $\delta = -7$; h = +3; D = +.802, E = +.598; G = -.246, H = +.331, K = -.911.

		Δ	Az.	Р.	о -с.	s.	0-C.	Su	pp.	L.
		0	0	m. s.	8.	m. s.	8.	m. s.		m.
Mizusawa Irkutsk	E.	19·0 32·6	37 334	$\begin{pmatrix} 4 & 14 \\ 6 & 30 \end{pmatrix}$	$-12 \\ -5$	$\begin{smallmatrix}&4&14\\11&42\end{smallmatrix}$	- P - 9	Ξ		
Calcutta	N.	35.2	275	e 6 52	- 6	14 41	88	i 11 47	2	
Dehra Dun	N.	1 Contraction of the state o	289	e 11 15	. ?	e 19 11	2	/==		e 24.0
New Delhi	N.		286	e 8 20	+ 8	i 14 47	+ 1	—		
Hyderabad	E.	45.4	271	8 36	+14	e 15 36	PPS			
Andijan		47.8	304	e 8 44	+ 3					
Kodaikanal	E.	48.8	263	e84	-45			Contraction and Contraction	-	
Bombay		50.1	275	i 9 13	+14	i 16 28	PPS	11 11	\mathbf{PP}	
Tashkent		50·1	305	i92	+ 3	e 16 33	PPS	-	-	
Sverdlovsk		56.8	324	i948	0			e 22 7	Ŷ	
College		66.2	28	e 8 44	9	e 19 30	-10		-	e 31.5
Helwan		82.5	299	12 34	+ 8	e 22 52	+10	15 43	\mathbf{PP}	
Cheb		85.8	325	e 31 4?	9	1		(_	e 36·1
Haiwee	z.	94.2	47	i 13 32	+10				-	
Mount Wilson	z.	95.2	49	i 13 35	+ 8			_		
Pasadena	z.	95.2	49	i 13 36	$^{+8}_{+9}$			_	-	
Riverside	z.	95.8	49	e 13 37	+ 8		1			
Tucson		101.3	47	e 14 5	+11	_		e 18 1	\mathbf{PP}	
La Paz		164.0	63	e 20 31	[+26]		—			

April 7d. 13h. 7m. 1s. Epicentre 30°.9S. 72°.0W. (as at 8h. 10m.).

		Δ	Az.	Р.	0-C.	s.	0 – C.		pp.	L.
Montezuma La Plata La Paz	E. N. Z. Z.		$19\\112\\112\\112\\112\\15$	m. s. (2 59) (3 5) i 3 33		m. s. e 4 12 (5 17) (5 11) (5 17) i 6 29	8. + 22 - 6 - 12 - 6 + 11	m. s. e 4 53 	<u>י</u>	m. i 5·2 5·9 6·2 6·0 8·0
Huancayo Bogota Fort de France San Juan Bermuda		$19.0 \\ 35.4 \\ 46.6 \\ 49.3 \\ 63.3$	351 358 16 9 8	e 4 29 e 7 3 e 8 28 e 8 50 e 10 44	+ 3 + 3 + 3 + 3 + 11	i 8 2 i 15 53 e 19 20	$+ \frac{7}{-6}$	 e 10 42 e 24 56	PP?	i 9·3 e 22·1 e 26·5
Cape Girardeau St. Louis Fordham Pittsburgh N Tucson	Е. .w.	$69.8 \\ 71.2 \\ 71.4 \\ 71.4 \\ 72.8$	$346 \\ 346 \\ 359 \\ 354 \\ 327$	e 11 12 e 11 22 i 11 23 e 11 23 e 11 25 i 11 31	$-21 \\ -11 \\ -11 \\ +11 \\ -11$	e 20 21 e 20 41 1 20 45 e 20 39 e 21 5	-21 ++33 +-7 +7	e 11 41 $= 143$ $e 14 33$	pP PP	e 34·2 e 24·1
Harvard Chicago Ottawa Riverside Seven Falls	Z.	73.0 73.8 76.0 77.5 77.7	1 348 358 323 2	i 11 32 e 11 36 11 48 i 11 59	$ \begin{bmatrix} - & 1 \\ - & 2 \\ - & 3 \\ 0 \end{bmatrix} $	$ \begin{array}{c} i & 21 & 4 \\ i & 21 & 6 \\ 21 & 34 \\ e & 21 & 52 \\ \end{array} $	$+\frac{4}{3}$ $-\frac{0}{0}$	e 26 21	?	e 38.0 e 35.2 e 37.0 32.0
Mount Wilson Pasadena Santa Barbara Haiwee Salt Lake City	z. z.	78.0 78.1 79.1 79.5 80.3	323 323 322 325 331	i 12 1 e 12 1 e 12 14 i 12 11	-1 -1 +6 +1	i 21 59 e 22 21	$+\frac{3}{-1}$	e 27 58		e 37.7 e 42.0
Tinemaha Logan Berkeley Bozeman Ukiah	z.	$\begin{array}{r} 80 \cdot 3 \\ 81 \cdot 1 \\ 83 \cdot 0 \\ 84 \cdot 0 \\ 84 \cdot 4 \end{array}$	325 332 323 335 323	i 12 15 e 12 18 i 12 36 e 12 32	+ 1+ 0+ 8- 1	e 22 28 1 22 51 e 23 0 e 23 2	$+ \frac{1}{3} + \frac{1}{1}$	e 27 57 e 28 19	ss ss	e 41.7 e 40.4 e 41.7

Continued on next page,

.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

121

1943										
		Δ	Az.	Р.	0 – C.	s.	0 – C.	Sul	pp.	L.
Christchurch Wellington Arapuni Saskatoon Lisbon		85·3 85·4 86·8 88·1 90·7	$222 \\ 224 \\ 227 \\ 340 \\ 45$	m. s. 12 41	*	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8. - 6 - 12 PPS - 2 - 11	m. s. 28 43 28 59? 	ss ss s.	m. 39·7 40·0 49·0 46·7
San Fernando Victoria Granada Almeria Cheb	E.	$91.0 \\ 91.4 \\ 93.2 \\ 93.7 \\ 109.7$	$ \begin{array}{r} 48 \\ 329 \\ 48 \\ 49 \\ 43 \\ 43 \end{array} $	$\begin{array}{r}\\ e & 13 & 54\\ e & 14 & 2\\ e & 16 & 59 \end{array}$	$+\frac{37}{42}$	$\begin{array}{r} 23 & 599 \\ 23 & 419 \\ 23 & 54 \\ 24 & 29 \\ \end{array}$			PP PS	49 · 0 44 · 0 47 · 6 44 · 0 e 53 · 0
Helwan Bombay New Delhi Calcutta		$^{115 \cdot 2}_{146 \cdot 1}_{153 \cdot 2}_{160 \cdot 6}$	86	19 42 e 24 56 e 19 19)	[+1] [-42]	e 29 29 30 3	$\{ \begin{array}{c} \mathbf{PS} \\ + & 6 \\ - & - \\ - & - \\ \end{array} \right\}$	23 0 (e 24 42)	SKP PP	e 71.0
Additional real La Plata re Huancayo Bogota i = San Juan e St. Louis e Logan e = Christchurc Almeria F 26m.17	adin i=5i 7m.1 S_cS ? Z=1 16m. h SS P=1	gs incre m.9s., e 2s., e = =18m.: 2m.20s. 14s. and S = 31n	= 5m = 7m.2 31s., 6 , eS? 1 23m 1.48s.,	47s. 6s. and 7n eSS = 19m E = 20m.3 .58s. e = 35m.3	n.36s. .27s. 8s., isSI 84s.		1965 1977 - 1977 - 1977	eS = 25n	1.34s.,	$\mathbf{PS} =$
Bombay F	PPE =	=23m.3 SE $=42$ reduces	0s., m.9s.	eE = 26m.	30s., an	d 33m.1	7s., SK	SPE = 33n	n.35s.,	eE =

28

April 7d. 18h. 0m. 45s. Epicentre 30°.9S. 72°.0W. (as at 13h.).

		Δ	Az.	Р.	0-C.	s.	0-C.	Suj	DD.	L.
		0	0	m. s.	s.	m. s.	8.	m. s.	-	m.
Montezuma		8.7	19			4 31	S*			
La Plata	E.	12.5	112	2 51	-11	5 9	-14	2 58	D	e 5·1
2010/00/02/03 2020	N.	12.5	112	3 3	+11	5 9	-14	5 45	P SS	6.0
	Z.,	12.5	112	2 56	- 6	59 59 515	-18	0 10	ରର	0.3
La Paz	z.	14.8	15	3 38	+ 6	0 10	- 0	1975-197		5.8
1.100 1 1002		11.0	10	0 00	4.0			-		17.6
Huancayo		19.0	351	e 4 46	+20	e 8 19	+24			o 0.7
St. Louis	z.	71.2	346	i 11 22	- 1	0010	1.92			e 9.7
Tucson		72.8	327	i 11 32	â			i 12 0		
Riverside	Z.	77.5	323	e 11 59	ŏ	_	- 21	i 12 0	f	
Mount Wilson	The second se		the second se		× ×					
Mount wilson	Z,	78.0	323	i 12 2	0		-			
Pasadena	Z.	78.1	323	i 12 1	- 1					
Haiwee	Z.	79.5	325	1 12 10	- 1	3774				
					<u>v</u>					-
Tinemaha	z.	80.3	325	i 12 14	0			i 12 35	3	

La Plata also gives E = 3m.39s.

April 7d. 23h. 17m. 52s. Epicentre 30°.9S. 72°.0W. (as at 18h.).

		Δ	Az.	Р.	0 – C.	s.	0-C.	Su	pp.	L.
Montezuma La Plata	E. N.		$19\\112\\112$	m. s. $\frac{2}{2}$ 55	s.	m. s. e 3 20 5 8	$^{8.}_{-30}$	m. s.		m. e 4 · 7 5 · 9
La Paz	Z. Z.	$12.5 \\ 12.5 \\ 14.8$	$112 \\ 112 \\ 15$	$ \begin{array}{r} 2 & 52 \\ 2 & 55 \\ 1 & 3 & 35 \end{array} $	$-10 \\ -7 \\ +3$	$5 8 \\ 5 8 \\ 5 8 \\ 1 6 32$	$-15 \\ -15 \\ +14$	=	=	5.7 6.3 8.1
Huancayo Bogota Fort de France San Juan Bermuda		19.0 35.4 46.6 49.3 63.3	351 358 16 9 8	1 4 31 e 7 4 e 8 28 e 8 51 e 10 50	+ 5 + 4 + 4 + - 4 + 2 + 17	i 8 13 	+18 -3 +23		PP PP PP	9.5 e 22.8 e 26.8

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

125

5

Columbia Philadelphia St. Louis Fordham Pittsburgh		$65 \cdot 1 \\ 70 \cdot 6 \\ 71 \cdot 2 \\ 71 \cdot 4 \\ 71 \cdot 4 \\ 71 \cdot 4$	$354 \\ 358 \\ 346 \\ 359 \\ 354$	$\begin{array}{r} & & & \\ \mathbf{i} & 11 & 15 \\ \mathbf{i} & 11 & 23 \\ \mathbf{i} & 11 & 24 \\ \mathbf{i} & 11 & 23 \end{array}$	$-\frac{4}{0}$ - 1	e 19 36 e 20 30 i 20 41 i 20 46 e 20 42	+ 9- 3+ 1+ 40	e 23 42 e 21 18 e 21 14 i 21 26	SS PS PS PS	e 35.7 e 24.7			
Florissant Tucson Harvard Chicago Lincoln		$71 \cdot 4$ 72 \cdot 8 73 \cdot 0 73 \cdot 8 74 \cdot 9	$346 \\ 327 \\ 1 \\ 348 \\ 342$	i 11 24 i 11 33 i 11 33 e 11 38 e 11 38 e 11 46	$^{+}{}^{0}{}^{0}{}^{0}{}^{+}{}^{2}{}^{2}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+ 13 + 35 + 53 + -11 +	i 16 0 e 21 44 i 21 18 e 14 32	PPP PS PP	e 33·1 e 36·0 e 40·1 e 32·4 e 46·5			
Ottawa Palomar Riverside Seven Falls Mount Wilson	z. z.	76.0 76.7 77.5 77.7 78.0	358 323 323 2 323	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-10 + 12 + 20	21 36 $-21 54$	$+\frac{2}{-2}$	14 44 ?	PP	e 39·1 28·1			
Pasadena Santa Barbara Haiwee Salt Lake City Tinemaha		$78 \cdot 1$ $79 \cdot 1$ $79 \cdot 5$ $80 \cdot 3$ $80 \cdot 3$	323 322 325 331 325	e 12 3 i 12 8 i 12 12 e 12 15 i 12 17	$+ 1 \\ + 2 \\ + 1 \\ + 3$	i 22 1 e 22 15 e 22 21 e 22 23	+ 5 + 4 + 1 + 3	e 27 28	ss	e 32·1 e 41·9			
Logan Santa Clara Berkeley Bozeman Ukiah		$\begin{array}{r} 81 \cdot 1 \\ 82 \cdot 4 \\ 83 \cdot 0 \\ 84 \cdot 0 \\ \cdot 84 \cdot 4 \end{array}$	332 323 323 335 323	e 12 21 e 12 29 i 12 33 e 12 25 e 12 40	+ 3 + + 5 + + - +	e 22 28 i 22 52 e 23 0 e 23 8		e 31 38 e 28 27	sss ss	e 41.5 e 39.6 e 39.4 e 35.2			
Christchurch Wellington Arapuni Auckland Saskatoon		85·3 85·4 86·8 88·1 88·1	222 224 227 228 340	$ \begin{array}{c} 12 & 47 \\ 12 & 47 \\ $	+ 7	$ \begin{array}{ccccccccccccccccccccccccccccccccc$	- 7 - 8 - 9 0	1 23 53 29 8?	SS PS SS	$39.4 \\ 42.1 \\ 40.1 \\ 41.1 \\ 49.1$			
Lisbon San Fernando Victoria Granada Almeria		$90.7 \\ 91.0 \\ 91.4 \\ 93.2 \\ 93.7$	45 48 329 48 49		 	$\begin{array}{r} 23 & 37 \\ 23 & 48 \\ e & 24 & 14 \\ 24 & 22 \\ 24 & 20 \end{array}$	$-24 \\ -15 \\ + 7 \\ - 1 \\ - 7$	$\frac{-}{17}$ $\frac{4}{17}$	PP PP	$43 \cdot 2 \\ 46 \cdot 1 \\ 43 \cdot 1 \\ 46 \cdot 7 \\ 47 \cdot 1$			
Toledo Tortosa Sitka Kew Stonyhurst	N.	$94.5 \\ 97.7 \\ 102.8 \\ 103.3 \\ 103.5$	46 47 331 38 35	i 13 25 e 25 2	+ 2 	e 25 8? e 27 46 e 27 27	$\frac{+7}{PS}$ PS	30 50 e 26 24 e 27 36 e 38 40	SS PS	44.6 e 44.1 e 53.5 e 44.1 e 54.1			
Riverview Aberdeen Scoresby Sund Stuttgart Brisbane		$103.8 \\ 105.5 \\ 106.4 \\ 107.2 \\ 107.8 \\$	$216 \\ 32 \\ 16 \\ 44 \\ 222$	 e 16 30 1 20 16		$= \frac{28}{124} \frac{23}{10}$	PS ?	e 27 44 ? i 27 53 e 28 10 e 21 8 ?	PS PS PPP	e 48.7 e 53.0 e 55.4 e 53.1			
Triest Copenh agen Helwan Upsala Ksara	E,	$108.6 \\ 112.0 \\ 115.2 \\ 116.0 \\ 120.2$	48 37 70 35 68	e 18 56 e 18 473	$[+\frac{-}{13}]$ $[-\frac{-}{6}]$	e 25 8	[+ 2] 	28 59 e 19 38 e 29 31 e 22 1	PS PP PS	e 59·1 e 61·1			
Bombay New Delhi Calcutta	E. N. N.	$^{146 \cdot 1}_{153 \cdot 2}_{160 \cdot 6}$	$\begin{array}{r}102\\86\\110\end{array}$	$\begin{array}{ccc} 19 & 41 \\ e & 20 & 3 \\ e & 40 & 57 \end{array}$	$\begin{bmatrix} 0\\ +11\\ 7\end{bmatrix}$	2 <u>3</u> 1	SKP	19 51 F e 58 12	PKPa	63.0			
Bogota i = San Juan e Bermuda e Philadelphi St. Louis e eSSN = Florissant i Tucson i = Chicago e = Ottawa SSN	Additional readings : Bogota i =7m.14s., e =9m.12s, San Juan eSS =19m.31s. Bermuda e =15m.32s., eSS =23m.32s., e =26m.20s. Philadelphia e =15m.8s., and 20m.8s. St. Louis eN =11m.32s., ipPZ =11m.35s., iE =20m.52s., eN =20m.56s. and 21m.5s., eSSN =25m.28s., eN =26m.40s. Florissant ipPZ =11m.37s. Tucson i =12m.22s., ePP =14m.30s., e =14m.55s., e =26m.2s., eSSS =29m.4s. Chicago e =25m.28s. Ottawa SSN =26m.26s.?. Salt Lake City esSS? =28m.0s.												
				Continue	a on nex	t page.							

Continued on next page.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

٠

126

Logan e = 16m.5s., 23m.5s., and 25m.19s. Christchurch SSS = 32m.15s., Q = 35m.25s.Wellington iZ = 13m.33s. and 14m.28s., SS = 29m.28s., Q = 39m.38s.Granada PS = 25m.49s.Almeria PS = 25m.57s. Scoresby Sund e = 34m.11s. Stuttgart eZ = 19m.14s.?. Helwan eZ = 20m.14s., eNZ = 23m.54s., iZ = 24m.20s., and 24m.53s., eEN = 29m.29s., eE = 30m.38s.Upsala eN = 32m.8s.?. Bombay PKPN = 19m.44s., PPE = 23m.41s., SKSP = 33m.30s., SPSE = 35m.51s., SSE = 41m.50s.

Long waves were also recorded at College, Des Moines, Ivigtut, Tananarive, and other European stations.

April 7d. Readings also at 0h. (La Plata (2), La Paz, Fresno, near Berkeley, Branner, Lick, and Santa Clara), 2h. (La Plata (2), Bombay, and Calcutta), 3h. (Arapuni, Auckland, Wellington, Riverside (2), La Plata, and Cheb), 4h. (Cheb and La Plata (2)), 5h. (La Plata (2)), 6h. (La Plata (2), Helwan (2), Ksara (2), Bombay, and near Andijan), 7h. (La Plata, Bogota, and Fort de France), 8h. and 9h. (near Mizusawa), 10h. (Tashkent and near Andijan), 11h. (La Plata (3) and near Granada), 12h. (La Paz, La Plata (2), near Toledo, Almeria, and Granada), 13h. (near Toledo (2), Almeria and Granada), 14h. (La Plata, Mount Wilson, Riverside, Tinemaha, Tucson, and near Lick), 15h. (Stalinabad, near Andijan, and Tashkent), 16h. (La Paz and La Plata (5)), 17h. (La Plata and near St. Louis), 18h. (Andijan, Tashkent, and near Stalinabad), 20h. (Mount Wilson, Pasadena, Riverside, Tinemaha, and Tucson), 22h. (Fort de France, Santa Barbara, La Jolla, Pasadena, Palomar, Mount Wilson, Tinemaha, Haiwee, Riverside, Tucson, Wellington, Christchurch, Arapuni, Riverview, and Stuttgart), 23h. (La Plata, Cheb, and Sitka).

April 8d. 5h. 39m. 57s. Epicentre 32°.7S. 72°.0W. (as on 1940 April 8d.).

 $A = + \cdot 2605, B = - \cdot 8018, C = - \cdot 5377; \delta = -14; h = +1;$ D = -.951, E = -.309; G = -.166, H = +.511, K = -.843.

		Δ	Az.	P	•	0 – C.	s.	0 – C.	Su	pp.	L.
		0	0	m.	8.	8.	m. s.	8.	m. s.		m.
La Plata	E.	11.9	105	2	52	~ 2	5 3	- 6	2 59	\mathbf{PP}	5.6
	N.	11.9	105	3	1	+ 7	$ 5 3 \\ 5 3 \\ 5 3 $	- 6			5.9
	Z.	11.9	105		57	+ 3	5 3	- 6			5.8
La Paz	z.	16.5	14	i 3	49	- 5					8.8
Huancayo		20.8	351	e 4	46	+ 1	e 8 19	-14	e 5 17	PPP	e 9·2
Tucson	z.	74.3	326	e 11	46	+ 5					
Palomar	z.	78.1	323	i 12	9	+ 7		+ -			
Riverside	Z.	78.9	323	e 12	3	- 4			e 12 14	PeP	
Mount Wilson	z.	79.4	323	e 12	5	- 4			1 12 17	$\mathbf{P_cP}$	
Pasadena	z.	79.4	323	e 12	4	- 5	<u></u>	<u></u> -	i 12 16	PeP	
Haiwee	Z.	80.9	324	i 12	24	+ 7					

April 8d. 18h. 29m. 46s. Epicentre 32°.7S. 72°.0W. (as at 5h.).

		Δ	Az.	Р.		0-C.	s.	0-C.	Su	pp.	L.
		0	0	m.	8.	s.	m. s.	8.	m. s.	2.202	m.
La Plata	E.	11.9	105	3	6	PP	5 26	SS	3 12	PPP	6.2
1999994999339909009	N.	11.9	105	3	6	\mathbf{PP}	5 18	+ 9		_	6.1
	z.	11.9	105	3	7	PP	5 20	+11			6.2
La Paz	Z.	16.5	14	i 3 4	42k	-12	i 6 44	-14			8.3
Huancayo		20.8	351	i4 :	35	-10	e 8 14	-19	e 5 32	PPP	e 9.7
Tucson		74.3	326	e 11 4	41	0		-	the second s		e 38·4
Palomar	Z.	78.1	323	e 12	2	Õ					_
Riverside	Z.	78.9	323	e 12	7	Õ					
Mount Wilson	Z.	79.4	323		10	+ 1					
Pasadena	Z.	79.4	323	e 12	8	- 1					

Tucson also gives e = 12m.35s.

Long waves were also recorded at Montezuma.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

127

April 8d. 23h. 1m. 25s. Epicentre 32°.7S. 72°.0W. (as at 18h.).

A = + $\cdot 2605$, B = - $\cdot 8018$, C = - $\cdot 5377$; $\delta = -14$; h = +1; D = - $\cdot 951$, E = - $\cdot 309$; G = - $\cdot 166$, H = + $\cdot 511$, K = - $\cdot 843$.

		Δ	Az.	Р.	0 – C.	8.	0 - C.	Su	pp.	L,
		0	0	m. s.	в.	m. s.	8.	m. s.	S1664.02	m.
Montezuma		10.5	17			e 4 27	- 8	_		e 5·0
La Plata	E.	11.9	105	2 59	+ 5	5 11	$+$ $\tilde{2}$		1.224	
	N.	11.9	105	2 57	÷ 3	5 5	- Ã			5.7
	Z.	11.9	105	2 58	1 1	5 5	1	9 0	DD	5.7
La Paz		16.5		i 3 47 m	1 7	1647	- 4	3 6	\mathbf{PP}	5.8
1.0 1.02	Z. ,	10.0	14	10 418	- ·	10 41	-11	2000	1	8.8
Huancayo		20.8	351	i4 45	0	i 8 27	- 6	15 11	DDD	. 0.7
Bogota		37.2	357		14	10 21	- 0	15 41	PPP	e 9·7
Dogota Danas		and the second	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	e 7 1	-14			e79	f	
Fort de France		48.3	16	e 8 39	- 6	2000	2.41.19			
Tucson		74.3	326	i 11 41	0					e 38.5
Ottawa		77.8	357	e 11 58	- 3		-	8	-	43.6
Palomar	Z.	78.1	323	e 12 5	+ 3	_		1000	(<u>1</u>	
Riverside	z.	78.9	323	i 12 8	⊥ĭ			e 12 20	DD	
Mount Wilson	z.	79.4	323	1 19 11	1 3	434	100	e 12 20	PcP	
	100000-001			1 10 11	+ 2			1 10 00		
Pasadena	z.	79.4	323	i 12 11	+ 2		1000	i 12 22	PcP	e 33·0
Haiwee	z.	80.9	324	1 12 15	- 2			يستند		
Tinemaha		81.7	324	e 12 26	+ 4					

Tucson also gives ePP = 13m.28s. and e = 20m.25s. Long waves were also recorded at European stations.

April 8d. Readings also at 0h. (Zurich, Basle, La Plata (2), near Santa Clara, Berkeley, Branner, and Lick), 1h. (Ucele), 4h. (La Paz), 5h. (La Plata), 6h. (Logan), 8h. (La Plata), 9h. (Harvard, La Plata, and Bogota), 10h. (Stuttgart, Strasbourg, Basle, Triest, and Sofia), 11h. (La Plata, near Tashkent, and Andijan), 13h. (La Plata), 14h. (La Plata, near Andijan (3), Stalinabad, and Tashkent (2)), 15h. (Mount Wilson, Pasadena, Tucson, Tashkent, near Andijan), 17h. (Montezuma, La Plata (2), La Paz, Fort de France, and Tucson), 20h. (Tucson, Puebla, Vera Cruz, and Tacubaya), 23h. (Rio de Janeiro).

April 9d. 8h. 48m. 50s. Epicentre 18°·7N. 145°·4E. Depth of focus 0·010. Epicentre :—18°·0N. 145°·0E. Depth 165km. (Bombay). 19°·0N. 145°·0E. Depth 100km. (U.S.C.G.S.).

19°.0N. 146°.0E. Depth 170km. (Pasadena).

A = -.7802, B = +.5382, C = +.3187; $\delta = -6$; h = +5; D = +.568, E = +.823; G = -.262, H = +.181, K = -.948.

	Δ	AZ.	Р.	0-C.	S. 0-C.	Supp.	L.
	0	0	m. s.	8.	m. s. s.	m. s.	m.
Hatidyozima	15.2	342	13 29	- 1	6 19 + 3		
Misima	17.3	343	1 3 57	0	7 0 - 4		· · · · ·
Yokohama	17.4	345	3 58	0	760		
Nake	17.5	308	e4 8	+ 9	7 20 +12		
Tokyo	17.7	345	i4 0	+ 9 - 2	17 12 - 1		
Kôti	18.2	327	i4 8	0	7 14 -10		
Miyazaki	18.2	319	4 10	+ 2	7 32 + 8		_
Kőbe	18.3	334	e4 8	- 1	7 21 - 5		
Kyoto	18.4	335	e4 8	- 2	7 28 0		
Nagano	19.0	342	i 4 15	- 1	7 38 - 3		_
Hirosima	19.4	326	4 21	0	7 45 - 5	<u></u>	1000
Sendai	19.9	351	e 4 24	- 2	757 - 3		
Hamada	20.0	326	5 36	9			
Hukuoka	20.0	321	14 26a	- 1	7 59 - 3	4 56 pP	1000
Wazima	20.0	341	4 28	+ 1	8 0 - 2		—
Mizusawa	20.7	351	4 36	+ 4	8 15 0		
Mori	23.7	352	(5 3)	- ī	(9 6) - 2		1824
Sapporo	24.5	353	15 12	$+ \bar{1}$	918' - 4		
Nemuro	24.6	Ō	e 5 41	PP			
Zinsen	24.9	322	5 19	+ 4	9 26 - 3		_

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

128

		۵	Az.	P. m. s.	0 – C. s.	S. m. s.	0 – C. s.	m. s.	op.	L. m.
Irkutsk Brisbane	E. N.	46.3 46.5 46.5	$327 \\ 171 \\ 171 \\ 171$	e 8 19 i 10 21 i 8 27	+ 1 PeP + 8	e 14 54 14 52	- 57	i 17 53 i 10 17	SS PeP	e 19.5 e 21.7
Riverview Sydney		52.5 52.5	$\begin{array}{c}17\\17\\174\end{array}$	19 8 9 34 9	$^+_{+3}$ +29	i 16 23 e 16 22	- i	i 17 '5	sS_	e 23.9
Honolulu Calcutta Perth Dehra Dun Auckland	N. N.	$53 \cdot 2 \\ 53 \cdot 3 \\ 57 \cdot 8 \\ 61 \cdot 6 \\ 61 \cdot 8$	$77 \\ 285 \\ 209 \\ 296 \\ 154$	$i \begin{array}{c} 9 & 8 \\ e & 9 & 15 \\ e & 10 & 51 \\ \hline \end{array}$	$-\frac{2}{+}$	e 16 31 i 17 38 i 17 45 e 18 4 16 10	$^{-1}_{+64}_{+12}_{-18}$	$\begin{array}{c} e & 10 & 12 \\ e & 9 & 54 \\ i & 18 & 25 \\ i & 19 & 0 \end{array}$	PcP pP PPS PS	e 22-2 1 27 ·0 e 22 ·9 25 ·2
New Delhi Arapuni Hyderabad College Frunse	N. E.	$62 \cdot 5 \\ 63 \cdot 2 \\ 63 \cdot 3 \\ 63 \cdot 4 \\ 63 \cdot 6$	$294 \\ 154 \\ 280 \\ 26 \\ 309$	e 10 16 e 15 347 10 22 e 10 18 10 22	$ \begin{array}{c} 0 \\ ? \\ + \\ - \\ - \\ 1 \end{array} $	i 18 25 18 40? 18 39 e 18 32	-9 -2 -5 -13	$\begin{array}{r} 10 & 56 \\ 26 & 10? \\ 10 & 58 \\ 13 & 22 \end{array}$	pP SSS PcP PP	29 · 2 29 · 7 e 27 · 4
Tuai Colombo Wellington Kodaikanal Christchurch	E.	$64.5 \\ 64.7 \\ 65.6 \\ 66.0 \\ 66.8$	$153 \\ 268 \\ 157 \\ 274 \\ 159$	10 30 10 40 10 38 (e 10 37)	$^{+1}_{+10}_{+2}_{-1}$	18 53 (19 50) 19 9 (118 58) 19 27	$ \begin{array}{r} - 5 \\ \mathbf{PPS} \\ - 3 \\ - 19 \\ + 1 \end{array} $	$\begin{array}{c}$	ss_{pP} s_cs	$19.8 \\ 32.2 \\ 32.9$
Tashkent Bombay	E.	$67.6 \\ 68.2 \\ 68.2$	308 284	10 48 e 10 53	$+ \frac{0}{1}$	i 19 31 i 19 40	- 5 - 3	i 11 29	pP	
Stalinabad Sitka Sverdlovsk	N.	$68.3 \\ 68.7 \\ 71.7$	$284 \\ 305 \\ 35 \\ 325$	i 10 55 e 10 53 i 10 54 11 10	$+ 3 \\ - 1 \\ - 3$	e 19 39 i 19 46 e 19 40 20 13?	-4 + 2 + 2 - 9 - 11	$ \begin{array}{r} 11 & 32 \\ e & 11 & 35 \\ i & 11 & 49 \end{array} $	pP PcP pP	e 28.7
Victoria Seattle Ukiah Berkeley Branner		77.0 77.9 79.5 80.5 80.7	$43 \\ 44 \\ 52 \\ 53 \\ 53$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$^{+2}_{+58}$ $^{-5}_{-60}$	i 21 18 e 22 16 e 21 35 e 21 51 e 21 41	-5 + 43 - 15 - 9 - 21	$\begin{array}{c} e \ 15 \ 16 \\ e \ 12 \ 22 \\ e \ 15 \ 5 \end{array}$	PP pP PP	e 30 · 2 e 30 · 4 e 33 · 7 e 38 · 7
Santa Clara	E.	80.9	53	i 12 5	0	e 21 50	-14	_	_	e 36·1
Lick Fresno Santa Barbara Tinemaha	N.	$81.2 \\ 82.8 \\ 83.5 \\ 83.8$	53 53 56 53	e 11 10? i 12 19 i 12 18 i 12 20	-56 + 4 = 0 = 0	e 21 59 e 22 25 i 22 27	$-\frac{8}{-\frac{5}{6}}$	_		
Haiwee Moscow Butte Pasadena Mount Wilson		$84.3 \\ 84.4 \\ 84.8 \\ 84.8 \\ 84.9 \\ $	$54 \\ 327 \\ 43 \\ 56 \\ 56$	i 12 22 i 12 20 i 12 3? i 12 24k i 12 25k	$- { 0 \atop - 3 \atop - 22 \atop - 1 \atop 0 \atop 0 }$	e 22 25 i 22 24 i 22 29	$-\frac{13}{-15}$ $-\frac{14}{-14}$	i 12 58 i 13 5 i 15 41	pP pP PP	e 34·3 e 34·3
Riverside Bozeman Saskatoon La Jolla Palomar	E. Z.	$ \begin{array}{r} 85 \cdot 5 \\ 85 \cdot 9 \\ 85 \cdot 9 \\ 86 \cdot 0 \\ 86 \cdot 1 \\ 86 \cdot 1 \end{array} $	56 43 37 57 56	e 12 25 e 12 28 e 12 28 e 12 28 e 12 31 i 12 31	-32 - 20 = 0	e 22 33 e 23 51 i 22 46	$\begin{bmatrix} -17\\ \mathbf{PS}\\ [+2]\\ - \end{bmatrix}$	$13 \\ 13 \\ 13 \\ 13 \\ 15 \\ 15 \\ 15 \\ 15 \\ $	PeP SS PP	e 34.7 e 35.2
Logan Salt Lake City Scoresby Sund Upsala Tucson		$ \begin{array}{r} 86 \cdot 9 \\ 87 \cdot 2 \\ 90 \cdot 6 \\ 91 \cdot 0 \\ 91 \cdot 3 \end{array} $	$47 \\ 48 \\ 356 \\ 336 \\ 55$	i 12 36 e 12 35 e 12 53 e 13 52 i 12 54	$^+$ 1 - 1 + 58 - 2	i 22 45 i 22 35 e 23 29 23 27 e 23 39	$ \begin{bmatrix} - & 5 \\ -17 \\ - & 9 \\ [+11] \\ - & 5 \end{bmatrix} $	e 23 19 e 15 57 e 24 37 e 17 9? i 13 33	sS PP PS PP pP	e 35.4 e 35.8 e 38.8 e 43.2 37.6
Bergen Ksara Copenhagen Bucharest Lincoln		$94.8 \\ 95.0 \\ 95.9 \\ 96.3 \\ 97.4$	$341 \\ 307 \\ 335 \\ 320 \\ 42$	e 17 53 e 13 17? e 13 14 e 16 10? e 14 58	+ 3???	e 23 55 e 23 32 24 14 i 26 36 i 23 40	$ \begin{bmatrix} -19 \\ -6] \\ -9 \\ PPS \\ [-11] \end{bmatrix} $	$\begin{array}{r}$	PP PS PP	e 45.2
Potsdam Des Moines Prague Sofia Ivigtut		98.0 98.9 99.0 99.0 99.6	$332 \\ 40 \\ 330 \\ 320 \\ 6$	e 18 16? e 17 34 e 18 12? e 13 10? e 17 43	PP ? ? PP	e 25 1 i 23 54 e 25 10? e 25 10? e 24 45	C 1. C. C. & C. C. D. C. M. M. L. M. S. M.	i 25 6 e 31 25	s ss	e 49·2 e 41·8

Continued on next page.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

3.8

129

		Δ	Az,	P. m. s.	0 – C. s.	S. m. s.	0 – C. s.	m. s.	pp.	L. m.
Aberdeen Jena	E. N.	99.7 99.7 99.7	$342 \\ 331 \\ 331 \\ 221$	i 18 23 e 17 42 e 17 34	PP PP	i 25 0 e 27 10 e 26 46	$^{+}_{\mathrm{PPS}}$ PS	i 31 35 e 31 40?	ss ss	e 47 · 4 e 46 · 2 e 47 · 2
Cheb Helwan		$100.0 \\ 100.2$	$331 \\ 305$	e 18 19 14 58	PP	e 25 14 26 0	+16	32 35	ss	_
De Bilt Stuttgart Chicago Triest Florissant		$101 \cdot 4 \\ 102 \cdot 3 \\ 102 \cdot 4 \\ 102 \cdot 4 \\ 102 \cdot 6$	$335 \\ 332 \\ 37 \\ 327 \\ 41$	e 14 20 e 13 43 e 17 51 e 18 10 e 13 44	- 3 PP PP - 3	e 24 55 e 20 53 e 25 11 e 24 10 i 25 21	$ \begin{array}{c} -15 \\ ? \\ -7 \\ [-6] \\ +1 \end{array} $	$\begin{array}{c} e & 18 & 10 \\ e & 14 & 35 \\ 1 & 24 & 4 \\ e & 14 & 35 \\ e & 14 & 35 \\ \end{array}$	PP pP SKS pP	e 47.2 e 50.6 e 41.9
Stonyhurst St. Louis Uccle Tananarive Strasbourg		$102.6 \\ 102.8 \\ 102.8 \\ 103.0 \\ 103.1 \\$	$341 \\ 41 \\ 336 \\ 252 \\ 332$	e 13 10? e 13 58 e 17 59 e 27 57	+10 PP PPS	i 25 13 i 25 29 i 27 10 e 25 18	$-\frac{7}{8}$ PS $-\frac{6}{6}$	$ \begin{array}{ccccccccccccccccccccccccccccccccccc$	PS PP PPS PPS	i 49.9 e 48.2 54.3 e 55.2
Chur Zurich Basle Cape Girardeau Kew		$103.6 \\ 103.7 \\ 104.0 \\ 104.0 \\ 104.0 \\ 104.0 \\$	$330 \\ 331 \\ 331 \\ 42 \\ 338$	$\begin{array}{ccccccc} e & 18 & 8 \\ e & 17 & 35 \\ e & 17 & 36 \\ e & 18 & 6 \\ e & 14 & 50 \end{array}$	PP ? PP	e 24 13 e 25 23	$\begin{bmatrix} -10\\ -8 \end{bmatrix}$	e 25 27 e 26 56	ss PS	e 54·0
Neuchatel Florence Paris Ottawa Tacubaya	E. N.	$104.7 \\ 105.0 \\ 105.1 \\ 106.1 \\ 106.2$	$332 \\ 327 \\ 335 \\ 28 \\ 62$	$\begin{array}{r} e \ 18 \ 16 \\ e \ 23 \ 101 \\ e \ 17 \ 28 \\ e \ 18 \ 25 \end{array}$	PP ? PP	e 28 20 e 24 23	PPS [-10]	e 18 24	PP	e 59·2 43·2
Seven Falls Clermont-Ferran Pittsburgh New Kensington Fordham		$106.8 \\ 107.3 \\ 107.6 \\ 107.7 \\ 110.4$	$24\\333\\34\\34\\29$	e 18 29 e 19 54 e 18 32 i 18 54	PP PP pPKP	e 24 22? 1 26 4 e 33 46? e 24 44	s	e 25 39 e 20 30 i 26 54 i 19 44	S PPP sS pPP	44 · 2 e 49 · 8
Philadelphia Columbia Tortosa Toledo Almeria	E.	$110.5 \\ 111.4 \\ 112.4 \\ 115.1 \\ 117.0$	$31 \\ 40 \\ 331 \\ 334 \\ 331$	i 18 51 e 19 2 i 20 27 19 31	$\frac{PP}{PP}$	$\begin{array}{cccccccc} e & 24 & 38 \\ e & 24 & 47 \\ & 35 & 56 \\ & 30 & 7 \\ & 26 & 21 \end{array}$	[-13] [-8] PPS	i 28 21 e 28 37 30 9	PS PS PPS	e 48.0 e 47.9 e 53.2 58.2
Granada Lisbon San Fernando Bermuda San Juan		$117.2 \\ 118.1 \\ 118.9 \\ 121.6 \\ 131.9$	$332 \\ 337 \\ 334 \\ 29 \\ 41$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	PP pPP pPP PP PP	$\begin{array}{ccccccccc} 26 & 4 \\ 36 & 54 \\ e & 36 & 24 \\ e & 30 & 17 \\ e & 33 & 20 \end{array}$	ssp ss sp pps	$\begin{array}{cccc} 22 & 29 \\ 20 & 50 \\ e & 30 & 10 \\ e & 36 & 53 \\ e & 38 & 44 \end{array}$	SKP PS SS SS	55.2 54.5 59.7 e 48.0 e 54.0
Bogota Fort de France Huancayo La Paz		$134.7 \\ 137.7 \\ 140.2 \\ 148.0$	62 39 86 90	e 18 48 e 19 3 e 18 57 i 19 32k	$\begin{bmatrix} -20 \\ [-10] \\ [-21] \\ [+1] \end{bmatrix}$	e 33 30 26 17	8PS [-11]	$\begin{array}{ccc} e & 22 & 2 \\ e & 22 & 19 \\ i & 21 & 4 \end{array}$	PP PP PKP	e 53.5 74.9
Hyderabad I College e =1 Wellington S Kodaikanal : Christchurch Bombay sF	=8 s in NZ = N SPN SPN SPN SPN SPN SPN SPN SPN SPN SPN	m.52s. creased 18m.4s =9m.13 =9m.13 =11m.51 s. 17m.25s =11m.51 s. 17m.25s =11m.51 =11m. 43s., eS =20m.2s =24m.3 =11m. =24m.3 =11m. =39s., eS =39s., eS	, eQ s., iP s., iP s., iS s., iS s., SS 14s., M.25 37s., 0s., S os., S os., S os., S 58s., iE = 20 = 20	N = 19m.5 cPNZ = 10 SN = 22m SN = 22m SN = 22m.56 PSN = 190 S., sSSN = PSE = 190 9m.45s., c S = 23m.2 9m.45s., c S = 23m.2 ed by 30 s = 28m.35 PPE = 1 21m.20s., a.38s., eSS m.46s.	0m.17s., .13s. .13s. 	N = 19m.3 s., SSSN = SE = 22m. SE = 22m. 4s., eSSS = 27m.0s. = 27m.0s. = 24m.51s. s., esSS = 1000	$18., S_{c}$ = 25m.31 .27s. = 25m. , Q = 28 , Q = 28 .14m.55 . iE = 2	SN = 19m.3 is., sSSSN 50s. 50s. 2m. is., ipSE 6m.40s.	38s., s8 = 26m N = 20	S _c SN = .39s.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

18 E

180

Pasadena iZ = 13m.19s., iE = 23m.34s.Riverside iZ = 13m.32s. Bozeman $ePP = 15m.46s_{ess} = 22m.34s_{ess}$ and $28m.23s_{ess}$. Logan i=13m.20s. and 15m.16s., iPP=15m.54s., e=17m.42s., iPS=23m.58s., i= 24m.5s. Salt Lake City ePS = 24m.9s., eSS = 28m.49s., e = 29m.49s.Scoresby Sund e = 13m.56s. and 17m.9s., eSS = 29m.43s., e = 33m.6s. Upsala iPS = 24m.17s., eSSSE = 28m.10s.?, eN = 36m.32s. Tucson iPP = 16m.30s., e = 22m.56s., eSKS = 23m.14s., eSP = 24m.46s., ePS = 24m.56s.Copenhagen 14m.16s., 18m.0s., 20m.2s., 24m.41s., 26m.26s., and 30m.13s. Lincoln i = 24m.53s., eSS = 31m.3s.Potsdam eE = 18m.22s.?

```
Prague e = 22m.5s.
Jena eN =18m.17s., eEN =18m.22s.?, eN =31m.10s.?
Helwan eZ = 16m.37s., PPEN = 18m.37s.
De Bilt iPPP = 20m.46s., ePS = 27m.10s.
Stuttgart eSKP1Z =17m.10s., ePPP =18m.50s., e =25m.7s., ePPS1 = 27m.42s., eSS1 =
    33m.22s.
Chicago e = 18m.43s., ePS = 27m.0s., eSS = 32m.2s.
Florissant iPPZ = 17m.56s., iSKS?N = 24m.7s., isSN = 27m.5s.
Stonyhurst iPP =17m.29s., iPKS =20m.29s., iPS =26m.22s., eQ =45.2m.
St. Louis epPPN =18m.47s., iSKS?E = 24m.16s., eSKKS?EN = 25m.18s., eSSE =
    27m.7s., eE = 32m.19s.
Uccle ePPZ =18m.29s., i =18m.54s., ePPPZ =20m.56s., iSSN =33m.18s.
Tananarive E = 28m.52s.
Basle e = 21m.58s.
Kew iPP?=19m.4s., ePPP?=21m.7s., eEN=26m.32s., eEZ=27m.44s., ePS?EN=
    28m.3s., ePPS? = 28m.40s.?, eSS = 32m.10s.?
Florence iSE = 29m.8s., iPSE = 29m.51s.
Ottawa e = 25m.35s., eZ = 28m.10s.?, e = 33m.10s.?
Seven Falls e = 33m.28s. ?
Pittsburgh iSKS = 24m.31s.
Fordham iSP = 28m.28s., i = 29m.10s.
Philadelphia e = 25m.31s. and 29m.7s., eSS = 34m.3s., eSSS = 38m.26s.
Columbia e = 29m.22s., eSS = 34m.23s.
Toledo SSN = 36m.58s.
Almeria iPP = 20m.40s., pPP = 20m.55s., PPP = 23m.6s., PPS = 31m.24s.
Granada PP = 20m.35s., PPP = 23m.15s., S = 28m.51s., PS = 31m.24s., SS! = 35m.59s.
Bermuda eSSS = 41m.17s.
San Juan ePP = 21m.26s., e = 22m.14s.
Bogota e = 18m.56s., 20m.29s., and 23m.0s.
Huancayo ePKP = 19m.25s., e = 26m.53s. and 30m.20s., eSS? = 39m.59s., e = 40m.42s.
La Paz iZ = 20m.17s., isPKP = 21m.33s., iPPZ = 23m.5s., SSZ = 43m.10s.
```

April 9d. 19h. 46m. 44s. Epicentre 34°.0N. 28°.0E.

	+ ·7336, ·469, E		- ·3900, C 883 ; (6; $\delta = +7;$ 1, $H = +.261,$		
	Δ	Az.	P. m. s.	0 – C. s.	S. 0-C m. s. s.	. Supp. m. s.	L. m.
Helwan Ksara Sofia Bucharest Focsani	5.0 6.5 9.4 10.5 11.7	$ \begin{array}{c} 0 \\ 91 \\ 337 \\ 352 \\ 357 \\ $	e 1 22 e 1 43? e 2 16 e 2 30 e 3 52?	+ 4 + 4 + 2 - 2 - 5 - 5	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	1 43 Ps e 2 461 PPP	i 3.6
Triest Florence Prague Chur Chur Cheb	15.9 16.3 18.9 19.0 19.7	321 312 333 318 330	$ \begin{array}{c} e & 6 & 16 \\ e & 4 & 7 \\ e & 4 & 20 \\ e & 4 & 23 \\ e & 4 & 23 \\ \hline $	PP - 4 - 3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	e 4 49 pP	(e 9·2)
Zürich Stuttgart Basle Neuchatel Jena	$19.8 \\ 20.3 \\ 20.5 \\ 20.5 \\ 20.7 \\ 20.7 \\ $	318 322 318 317 331	e 4 30 e 4 35 e 4 39 e 4 39 e 4 39 e 4 39	- 5 - 5 3 3 5	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$e \overline{4} 59 PP$ $= \overline{4} 58 PP$	e 9·3
Strasbourg Potsdam Clermont-Ferrand Moscow Paris	$21.0 \\ 21.3 \\ 22.3 \\ 22.7 \\ 24.0 \\$	323 335 309 14 316	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} + & 7 \\ PP \\ - & 1 \\ - & 5 \\ 0 \end{array} $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	e 5 283 PPP	4 4 13

Continued on next page.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

131

	Δ	Az.	Р.	0 – C.	s.	0 – C.	Sur	op.	L.
	Ċ.	0	m. s.	8.	m. s.	8,	m. s.	9.02	m.
Uccle	24.0	322	5 16	- 1	i 9 27	- 5			
Copenhagen	24.2	339	i 5 15	- 4	9 19	PeP	9 31	S	
De Bilt	24.4	326	terre and a second		e 9 36	- 3			
Granada	25.8	286	5 49	+15	10 5	+ 3			12.4
Toledo	26.2	292	i 5 40	+ 2	_	-			
Upsala	26.8	349			e 10 16?	- 3		_	-
Sverdlovsk	31.8	35	i 6 25	- 3				_	
Tashkent	33-2	65	e 6 38	-2	e 12 0	0			-

Additional readings :---Helwan iNZ = 2m.4s., iE = 3m.1s. Bucharest eEZ = 4m.13s. Florence ePPIE = 5m.13s. Stuttgart eS = 8m.14s. Copenhagen 5m.30s. Long waves were also recorded at Kew and Aberdeen.

- April 9d. Readings also at 0h. (La Plata, near Andijan and Tashkent), 2h. (Angra do Heroismo), 3h. (near Lick, Fresno, Branner, and near Mizusawa), 7h. (La Plata), 9h. (La Paz and near Almeria), 10h., 13h. (2), and 14h. (La Plata), 15h. (La Plata and near Berkeley), 16h. (near Lick), 22h. (Berkeley), 23h. (Berkeley (2) and near Stalinabad).
- April 10d. Readings at 3h. (Salt Lake City, Ukiah, and Mizusawa), 4h. (Bogota and near Frunse), 5h. (Berkeley), 6h. (near Tashkent), 10h. (La Paz, La Plata, near Tchimkent, and Tashkent), 13h. (near Mizusawa), 14h. (La Plata), 20h. (Mount Wilson, Pasadena, Palomar, Riverside, Tucson, and near Balboa Heights), 21h. (La Plata), 23h. (La Plata, Logan, and Salt Lake City).

April 11d. 14h. 46m. 0s. Epicentre 36°·3N. 141°·5E. (as on 1943, March 14d.).

Intensity VI at Onahama, Kakioka, Hukusima ; V at Mito, Sendai, Maebasi ; IV at Tokyo, Yokohama, Yamagata, Misima, Iida, Miyako, Morioka ; II-III at Katuura, Sakata, and Hatinohe.

Epicentre 36°·3N. 141°·3E. Macroseismic radius 300km. Shallow.

Seismological Bulletin of the Central Meteorological Observatory, Japan, for the year 1943, Tokyo, 1950, pp. 16-17, macroseismic chart p.16.

22 - 22		ġ., ,						
	$\mathbf{A} = - \cdot 6322,$	$\mathbf{B} = +$	·5029, C	= + .589	$4; \delta =$	= -2;	h=0:	
	D = + .623, E		the second se	and the second	and the second se			
	Δ	Az.	Р.	0 – C.	s.	0 – C.	Supp.	L.
	0	ò	m. s.	8.	m. s.	8.	m. s.	m.
Onahama	0.8	323	0 18	0	0 29	- 2		
Mito	0.9	276	0 19k	- 1	0 29	- 5		
Kakioka	1.1	266	0 22	0	0 32	- 7		
Tukubasan	1.1	266	0 23	+ 1	0 37	- 2		
Utunomiya	1.4	281	0 26	- 1	0 35	-11		
Tokyo	1.5	247	0 30	+ 2	0 52	+ 3		
Hukusima	1.7	330	0 34 a	+ 2 + 3	1 6	Sz		-
Yokohama	1.7	240	0 38a	+ 7	0 59	+ 5		
Maebasi	2.0	273	0 36k	+1	1 1	<u> </u>		
Sendai	2.0	346	0 35a	0	1 3	+ 1		
Osima	2.3	228	0 38a	- 2	1 23	Sr		
Misima	2.4	240	0 40a	- î	1 17	+ 5		
Kohu	2·4 2·5	254	0 42	- 1	1 1 2	- ž		
Nagano	2.7	278	0 47a	+ 2	1 12	- 7		11년 13년 19
Mizusawa	2.8	354	0 48	+ 1	1 21	- i		
Shizuoka	2.8	242	0 48a	+ 1	1 25	+ 3		
Aikawa	3.1	304	0 53k	÷ 2	î 45	Sg		
Omaesaki	3.2	238	0 50a	- 2	1 33	+ 1		
Miyako	3.2	6	0 52a	- 3	1 30	÷ 7		
Hamamatu	3.5	243	0 57 a	Ō	1 46	+ 6	<u> </u>	

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

132

		∆ °.⁼	Az.	P. m. s.	0 – C. s.	m. s.	0 – C. s. – 8	m. + s.		L. m.
Hatidyozima Toyama Nagoya Wazima Gihu		3.5 3.5 3.8 3.9	$204 \\ 279 \\ 254 \\ 289 \\ 258 \\$	0 57 0 57 a 1 2 a 1 3 k 1 3 a	$+ 1 \\ + 2 \\ + 1 \\ + 1$	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	-8 -10 S_{g} -12 +8			
Hatinohe Hikone Kameyama Aomori Kyoto		4 ·2 4 ·4 4 ·4 4 ·6 4 ·9	$\begin{array}{r} 0 \\ 258 \\ 251 \\ 354 \\ 256 \end{array}$	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	-31 +21 -+21 +21	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- 3 - 5 - 5 + 7 - 5 + 7			
Owase Osaka Kôbe Siomisaki Toyooka		$4.9 \\ 5.2 \\ 5.4 \\ 5.5 \\ 5.5 $	$245 \\ 251 \\ 254 \\ 241 \\ 265$	1 18 1 20 1 23 a 1 23 1 28	$+ 1 \\ - 1 \\ - 2 \\ + 3$	$\begin{array}{cccc} 2 & 36 \\ 2 & 29 \\ 2 & 30 \\ 2 & 54 \\ 2 & 33 \end{array}$				
Wakayama Sumoto Mori Muroto Sapporo		5.6 5.7 5.9 6.7 6.8	$250 \\ 252 \\ 351 \\ 245 \\ 359$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$- 3 \\ - 2 \\ - 2 \\ - 5 \\ + 2$	$ \begin{array}{ccc} 2 & 47 \\ 3 & 0 \\ 2 & 46 \\ \overline{3} & 22 \end{array} $	s* + 6 s*			
Koti Matuyama Nemuro Hirosima Hamada		7 ·1 7 ·6 7 ·6 7 ·7 7 ·8	$250 \\ 253 \\ 21 \\ 257 \\ 262$	1 47 1 50 a 1 49 1 56 1 56 a	$-1 \\ -5 \\ -6 \\ 0 \\ -2$	3 21 3 27 3 13 3 43 3 47	$^{+11}_{+4}_{-10}$ s* s*			
Simidu Izuka Miyazaki Hukuoka Kumamoto		$7.8 \\ 9.2 \\ 9.4 \\ 9.5 \\ 9.5 \\ 9.5$	$246 \\ 256 \\ 245 \\ 257 \\ 252$	1 57 a 2 18 2 18 2 11 a 2 20	-12 + 20 + 20 + 20 + 20 + 20 + 20 + 20 +	$ \begin{array}{cccc} 3 & 44 \\ 5 & 1 \\ 3 & 59 \\ 4 & 28 \\ 4 & 22 \\ \end{array} $	S* S: +18 +12			
Unzendake Kagosima Tomie Keizyo Zinsen		$9 \cdot 9$ $10 \cdot 2$ $11 \cdot 1$ $11 \cdot 7$ $12 \cdot 0$	$\begin{array}{r} 252 \\ 246 \\ 254 \\ 281 \\ 280 \end{array}$	2 29 2 28 2 50 3 5 2 56 a	+ 4 - 3 + 7 PP + 1	$ \begin{array}{r} 4 & 42 \\ 4 & 28 \\ \hline 5 & 25 \\ 5 & 30 \end{array} $	$\frac{s}{+\frac{1}{ss}}$			
Nake Naha Dairen Miyakozima Calcutta	N.	$12.8 \\ 15.5 \\ 16.0 \\ 18.0 \\ 47.8 $	$235 \\ 233 \\ 286 \\ 235 \\ 269$	$ \begin{array}{r} 3 & 5 \\ 3 & 37 \\ 3 & 25 \\ 4 & 10 \\ i & 8 & 32a \\ \end{array} $	$ \begin{array}{c} -1 \\ -5 \\ -23 \\ -3 \\ -9 \end{array} $	5 45 6 41 6 54 7 34 1 15 50	$^{+15}_{+6}_{+8}_{+2}_{+12}$	 i 10 22	PP 6	
Almata College Dehra Dun Andijan New Delhi	N. E. N.	$49.0 \\ 49.7 \\ 52.5 \\ 53.0 \\ 53.9 \\ 53.9 \\ 53.9$	$300 \\ 32 \\ 283 \\ 297 \\ 281 \\$	e 9 3 e 8 49 e 8 33 e 9 18 i 9 27 i 9 23 a	$^{+13}_{-7}_{-44}_{-30}_{-44}_{-30}_{-44}$	$\begin{array}{r} \mathbf{i} \ 16 \ \ 11 \\ \mathbf{e} \ 16 \ \ 0 \\ 16 \ \ 52 \\ \mathbf{i} \ 16 \ \ 58 \\ \mathbf{i} \ 17 0 \end{array}$	+7 +43 +24 -42 -2	$\begin{array}{c} \mathbf{e} \ 11 \ 2 \\ 17 \ 17 \ 17 \\ 17 \ 20 \end{array}$		25.0
Honolulu Tashkent Sitka Hyderabad Bombay	Е. Е.	$54 \cdot 4 \\ 55 \cdot 0 \\ 56 \cdot 8 \\ 58 \cdot 3 \\ 62 \cdot 1$	$\begin{array}{r} 88 \\ 298 \\ 41 \\ 269 \\ 274 \end{array}$	$ \begin{array}{r} 9 & 33 \\ 9 & 53 \\ 9 & 58 \\ 1 & 10 & 22 \\ \end{array} $	-25 + 51 = 3	$\begin{smallmatrix} e & 17 & 10 \\ 17 & 16 \\ i & 17 & 43 \\ 18 & 0 \\ 18 & 50 \\ 18 & 50 \\ \end{smallmatrix}$	$+ 1 \\ + 1 \\ + 2 \\ + 1 \\ + 1 \\ + 1$	$\begin{array}{c} - \\ e & 19 & 25 \\ 12 & 4 \\ 1 & 19 & 5 \end{array}$	ScS PP PS	24.5 25.3 28.5
Kodaikanal Brisbane Victoria Moscow Seattle	E. N.	$63 \cdot 1 \\ 64 \cdot 4 \\ 66 \cdot 9 \\ 67 \cdot 9 \\ 68 \cdot 0$	$265 \\ 169 \\ 47 \\ 323 \\ 47 \\ 47$	$(\begin{array}{cccccc} 1 & 10 & 30 \\ e & 13 & 35 \\ 11 & 1 \\ 11 & 0 \\ \\ \end{array})$	$ \begin{array}{c} - & 2 \\ PP \\ + & 5 \\ - & 2 \end{array} $	$\begin{array}{cccc}(i 19 & 0)\\i 19 & 8\\& 19 & 45\\& 20 & 0\\e 19 & 36\end{array}$	$ \begin{array}{r} - & 2 \\ - & 10 \\ - & 4 \\ - & 1 \\ - & 26 \end{array} $	(12 42)	PP 	i 23.6 33.0 e 29.4
Riverview Ukiah Scoresby Sund Berkeley Santa Clara	z.	70·3 71·8 72·8 73·1 73·6	$172 \\ 55 \\ 355 \\ 56 \\ 56 \\ 56 \\ 56 \\ 56 \\ 5$	e 11 18 e 11 26 i 11 32 e 11 37	+1 $= \frac{6}{2}$ = 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- 45 32 2	i 20 48 e 25 16 e 14 6	SS (PP (e 30·4 e 29·6 e 33·8 e 33·6

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943				133			
		≙	Az. P. o m. s.	0 – C. s.	S. 0-C. m. s. s.	m. s.	m.
Upsala Saskatoon Butte Bozeman Tinemaha	z.	73.6 73.8 74.5 75.5 76.2	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$-\frac{4}{8}$ $-\frac{12}{4}$	$\begin{array}{r} 20 & 58 ? & - & 9 \\ e & 20 & 51 ? & - & 26 \\ 1 & 21 & 22 & - & 6 \end{array}$	_	$s_{e}s = \frac{8}{33 \cdot 0} = \frac{33 \cdot 0}{33 \cdot 0} = \frac{33 \cdot 0}{6} = \frac{33 \cdot 4}{2} = \frac{33 \cdot 2}{2}$
Yalta Santa Barbara Haiwee Bergen Logan	z.	$76 \cdot 2 \\ 76 \cdot 7 \\ 76 \cdot 9 \\ 77 \cdot 2 \\ 77 \cdot 4$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-3 + 7 + 13 + 13 PPP	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	 e 26 25 e 22 10	$ \begin{array}{c} - & - \\ - & - \\ - & - \\ - \\ - \\ - \\ - \\$
Pasadena Mount Wilson Salt Lake City Cernauti Copenhagen	z.	$77.9 \\ 78.0 \\ 78.0 \\ 78.1 \\ 78.6$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- 2 - 3 - 2 - 1 - 3	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} P_{e}P & e & 32 \cdot 9 \\ P_{e}P & - \\ SS & e & 33 \cdot 4 \\ PS & - \\ PP & - \end{array}$
Riverside Bacau Auckland Focsani La Jolla	z. z.	$78.6 \\ 78.8 \\ 79.1 \\ 79.2 \\ 79.3$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$\begin{array}{c} 22 & 36? & +\overline{32} \\ 22 & 7 & 0 \\ \hline \\ \hline \\ \end{array}$	27 30 ?	$\frac{1}{38 \cdot 0}$
Palomar Arapuni Bucharest Campulung Potsdam	z.	79-3 80-5 80-6 80-6 80-9	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$^{-3}_{PP} \\ ^{-11}_{-4} \\ ^{+3}$	$\begin{array}{r} 22 & 18? & -4 \\ e & 22 & 29 & +6 \\ i & 22 & 26 & 0 \end{array}$	e 12 10 I	$\frac{SS}{cP} = \frac{1}{C}$ $S_{cS} = 40.0$
Ksara Aberdeen Prague Ivigtut Jena		$81.6 \\ 82.0 \\ 82.1 \\ 82.5 \\ 82.6$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$+ \frac{1}{7}$ - 5 - 3	$\begin{array}{cccccccccccccc} e & 22 & 33 ? & & 0 \\ i & 22 & 30 & - & 7 \\ e & 22 & 31 & - & 7 \\ e & 22 & 37 & - & 5 \\ e & 22 & 43 & & 0 \end{array}$	e 15 21]	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Cheb Wellington Belgrade Edinburgh Sofia		$83.0 \\ 83.0 \\ 83.2 \\ 83.3 \\ 83.3 \\ 83.3$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-1 + 4 - 6 - 1	$\begin{array}{cccccccccc} e & 22 & 43 & - & 4 \\ & 22 & 37 & -10 \\ e & 22 & 50 & + & 1 \\ e & 22 & 38 & -12 \\ e & 22 & 52 & + & 2 \end{array}$	i 12 39 1	$\begin{array}{ccc} PP & e & 46 \cdot 0 \\ PS & 39 \cdot 0 \\ PcP & e & 44 \cdot 2 \\ \hline PS & 40 \cdot 5 \end{array}$
Tucson De Bilt Christchurch Stonyhurst Stuttgart		$84.0 \\ 84.1 \\ 84.3 \\ 85.0 \\ 85.3$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{+5}{8}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	i 15 44 I 28 30 i 28 40 i	$\begin{array}{cccc} {}^{\rm PP} & {\rm e} & 35 \cdot 2 \\ {}^{\rm PP} & {\rm e} & 40 \cdot 0 \\ {}^{\rm SS} & 39 \cdot 6 \\ {}^{\rm SS} & 42 \cdot 7 \\ {}^{\rm Pc} {}^{\rm P} & {\rm e} & 43 \cdot 1 \end{array}$
Uccle Triest Strasbourg Kew Lincoln		$ \begin{array}{r} 85 \cdot 4 \\ 85 \cdot 8 \\ 86 \cdot 0 \\ 86 \cdot 4 \\ 86 \cdot 5 \end{array} $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	i 15 37 I e 12 54 I i 12 58 P	$\begin{array}{cccc} P & e & 42 \cdot 0 \\ P & - & - \\ P & e & 43 \cdot 1 \\ e & - & 24 \cdot 0 \\ e & 34 \cdot 0 \\ e & 39 \cdot 4 \end{array}$
Chur Zürich Basle Helwan Neuchatel		86·7 86·7 86·9 87·1 87·6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+ 5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$\vec{\mathbf{ks}} \stackrel{e 45 \cdot 0}{=}$
Paris Milan Florence Clermont-Ferrar Florissant	E. nd	$87.8 \\ 87.9 \\ 88.4 \\ 90.1 \\ 91.3$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-4 +28 -6 -9	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$ \begin{array}{c} - & 39 \cdot 0 \\ - & 46 \cdot 2 \\ P \\ - & - \\ P \\ - & e \\ \end{array} \begin{array}{c} 39 \cdot 0 \\ 46 \cdot 2 \\ - & - \\ 6 \\ - \\ 6 \\ - \\ 6 \\ - \\ 6 \\ - \\ - \\$
Ottawa Seven Falls Vermont Barcelona New Kensington	n	$\begin{array}{r} 92 \cdot 0 \\ 92 \cdot 0 \\ 93 \cdot 7 \\ 94 \cdot 2 \\ 94 \cdot 7 \\ 94 \cdot 7 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$-\frac{3}{1}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	e 31 19 S	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
Pittsburgh Tortosa Fordham Philadelphia Toledo	Е.	94.7 95.3 96.6 96.9 97.8	$\begin{array}{c} 31 \\ 331 (e 13 35) \\ 26 e 17 29 \\ 28 \\ 334 13 39 \end{array}$	$+\frac{8}{PP}$ + 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	e 31 39 S e 31 27 1	$ \begin{array}{c} - & e & 53 \cdot 7 \\ P & (e & 44 \cdot 0) \\ SP & - \\ SP & - \\ SS & e & 45 \cdot 3 \\ P & 52 \cdot 0 \end{array} $

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

		Δ	Az.	1	Ρ.	0 – C.	s.	0 – C.	Su	pp.	L.
		4	0	m.	s.	8.	m. s.	8.	m. s.	A Marte	m.
Columbia		99.6	35	e 16	4	3	e 25 15	- 2	e 24 30	SKS	e 46·1
Almeria		99.9	331	e 13	and the second se	-11	23 30	7	17 14		50.0
Granada		100.0	333	13	47	- 1	24 24	[-3]	1 18 25	pP PP	51.0
Lisbon		100.6	337	17	531	\mathbf{PP}	24 45	[+16]	32 421	SSP	45.9
San Fernando		101.6	334	e 17	55	$\mathbf{P}\mathbf{P}$				_	49.0
Bermuda		107.4	23	e 19	12	\mathbf{PP}	e 26 14	- 9	034 1	SSP	e 44·3
San Juan		119.7	30	e 20	11	$\overline{\mathbf{PP}}$	e 27 8	$\{-4\}$	· · _ ·	~~~	e 50.6
Huancayo		139.0	64	e 22	51	\mathbf{PP}	e 27 0	(+22)	e 40 38	SS	e 55·1
La Paz	Z.	147.1	61	i 19	43	[0]				~~	70.0
The second s	5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	A 45 A 46	10.00	0.0	14 PM		The second second	10000-0000	 An and the second se Second second sec	 And the second se	

```
Toyama S = 1m.23s, and 1m.28s.
College ePPP = 11m.47s., eS_cS = 18m.30s.
New Delhi PPN =11m.25s., PPPN =12m.51s., PcSN =14m.51s., PSE =17m.28s.,
     PSN = 17m.32s., SSN = 20m.52s., SSSN = 22m.51s.
Sitka e = 23m.55s.
Hyderabad iE = 18m.15s., S_cSE = 19m.44s., SSE = 21m.58s.
Bombay iE = 10m.37s., PcPE = 10m.55s., PPE = 12m.45s., PPPE = 14m.44s., PPSE =
     19m.45s., S_cSE = 20m.26s., SSE = 23m.7s., iE = 23m.20s.
Kodaikanal SSE = (23m.30s.). Readings increased by 30 seconds.
Brisbane iSS?N = 20m.29s.
Victoria e = 28m.08.3.
Riverview iZ = 11m.29s., iN = 11m.55s., iE = 21m.25s., iSSE = 24m.45s., iSSN =
     24m.50s.
Scoresby Sund e = 24m.51s, and 25m.52s, eSSS = 28m.57s.
Berkeley iSZ = 20m.53s.
Upsala ePS?E = 14m.10s., ePS?N = 14m.16s., ePPSN = 15m.52s., ePPS?E = 16m.0s.?,
     eSSS = 26m.0s.?, eN = 30m.0s.?, eE = 34m.0s.?. Phases wrongly identified.
Bergen iZ = 10m.0s.
Logan ePPP = 16m.47s., e = 17m.19s., iS = 21m.56s., eSSS = 30m.14s.
Pasadena eEN = 26m.30s.?.
Cernauti eN = 22m.9s.
Copenhagen 22m.17s., 24m.9s., and 27m.9s.
Bucharest eSKSN = 22m.33s.
Potsdam iPSE = 23m.3s.
Aberdeen iE = 27m.2s., eSSSN = 31m.11s., eQE = 39m.41s.
Jena eS?EN = 22m.39s., eEN = 22m.58s.
Cheb ePPPE = 17m.38s., eSSE = 28m.19s.
Wellington iZ =13m.36s. and 18m.10s., e=24m.17s.?, SS =29m.8s., e=31m.42s.,
    Q = 35m.
Belgrade ePP = 15m.39s.
Tucson epPP = 16m.14s., ePS = 23m.50s.
De Bilt eSS = 28m.20s.
Christchurch SSS = 32m.8s., Q = 34m.53s.
Stonyhurst iS =23m.13s., eSSS =32m.55s., eQ =37m.?.
Stuttgart ePPZ = 15m.27s., ePPPZ = 17m.50s., i = 23m.13s., eSP = 24m.12s., eSS =
    24m.12s., eSS = 28m.57s., eSSS = 32m.21s.
Uccle eSE = 22m.55s., SSE = 28m.7s.
Triest SS = 29m.0s.
Strasbourg esS = 23m.30s.
Kew iPP =16m.3s., iScS =23m.19s., iPSEZ =23m.39s., eSSEN =28m.59s.
Chur e = 14m.5s.
Helwan iZ = 13m.18s., PPZ = 16m.24s., SKSEN = 23m.11s., iN = 24m.24s.
          ePPP?Z =18m.15s., iSKSN =23m.16s., iSKKSN =23m.36s.,
Florence
                                                                          ePSN =
    24m.52s., ePPSN = 25m.17s., eSSN = 29m.44s., eSSSN = 33m.34s.
Clermont-Ferrand iP = 12m.58s., ePP = 16m.17s., and 16m.29s., iPPP = 18m.13s.
Florissant iE = 29m.32s.
Seven Falls e = 34m.48s.?.
Barcelona SSS given as L.
Pittsburgh i = 37m.37s.
Tortosa PSE = (25m.51s.), SSE = (31m.35s.), Q = (38m.35s.). Readings increased by 1
    minute.
Philadelphia eSSS = 35m.15s.
Columbia eSS = 32m.8s.
Almeria PPP =19m.30s., PKS =20m.3s., PS =26m.27s., PPS =27m.40s., SS =32m.29s.,
    SSS = 36m.32s.
Granada iPKP =17m.31s., pPKP =17m.49s., sPKP =17m.57s., sPP =19m.4s., sSKS =
    24m.51s., SKKS = 25m.30s., PS = 28m.21s.
San Fernando eSS?E = 31m.37s.
San Juan e = 29m.38s., eSS = 36m.34s,
Huancayo e = 46m.14s.
La Plata E =35m.54s., PPSN =41m.18s., PSSN =48m.42s.
Long waves were also recorded at Marseilles, Besancon, and Tananarive.
```

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

135

April 11d. Readings also at 0h. and 1h. (La Plata), 2h. (near Lick (2), Berkeley (3), and Branner), 5h. (near Fort de France), 7h. (Stuttgart), 8h. (Tinemaha, Mount Wilson, Palomar, Riverside, Tucson, San Juan, Huancayo, La Paz, and La Plata), 9h. (Stuttgart, De Bilt, Kew, Granada, Tinemaha, Mount Wilson, Palomar, Riverside, Tucson, Bogota, La Plata (2), La Paz, and near Huancayo), 10h. (Sydney), 11h. (La Plata), 13h. (Pittsburgh), 14h. (La Plata), 15h., 16h. (3), 18h., 19h. (2), 20h., 23h. (3) (Mizusawa).

April 12d. 4h. 13m. 45s. Epicentre 22°.5N. 123°.5E. (as on 1937 Jan. 29d.).

Bombay suggests depth 45 km.

1

 $A = -.5104, B = +.7712, C = +.3805; \delta = +4; h = +4;$ $D = + \cdot 834$, $E = + \cdot 552$; $G = - \cdot 210$, $H = + \cdot 317$, $K = - \cdot 925$.

		Δ	Az.	Р.	0 - C.	s.	0 – C.		pp.	L.
		0	0	m. s.	8.	m. s.	s.	m. s.		m.
Mizusawa	E.	 Adda Adda Adda Adda Adda 	38	e 5 2	0	9 1	- 3		2515	
	N.		38	e 4 56	- 6	8 56	- 8			10 (10 17 1 7
Calcutta	N.		278	e 5 41	53	i 11 46	- 2	e 13 37	SS	i 15·9
New Delhi	N.	42.0	288			i 14 13	- 1	16 42	SS	17.3
Hyderabad	E.	A star Control Control of Control 1	272	e 7 52	- 7	14 25	+ 3			21.8
Kodaikanal	E.	45.6	263	e 7 36	-48	e 14 16	50	17 57	ss	-
Andijan	33.93	46.5	305	8 29	-2	15 19	0			\rightarrow
Bombay	E.	47-4	275	i 8 48	+10	i 15 33	+ 1	9 1	\mathbf{pP}	-
Tashkent	277	48.9	306	8 45	- 5	i 15 55	+ 2	<u>2</u> _2	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	
Riverview		61.9	154			e 19 9?	+22			e 29·2
College		69.3	27	e 15 34	\mathbf{PP}	e 20 15	- 2			e 38·4
Moscow		69.5	323	11 20	+ 8	20 20	0			
Upsala		78.4	331			e 21 50	-10			e 38·2
Helwan		80.9	299	e 12 36	-1-19	e 22 27	+ 1		<u> </u>	
Copenhagen		82.8	328	e 12 32	$^{+19}_{+5}$	$e \begin{array}{ccc} 22 & 27 \\ 22 & 41 \end{array}$	- 4		120	
Cheb		85.6	324			e 23 34	+21			e 45·2
Triest		87.0	319			e 23 25	- 2			c 44.2
Stuttgart		88.1	323	e 12 57	+ 3	e 23 31	- 6	e 24 43	\mathbf{PS}	e 43·2
De Bilt		88.3	328		·	1 23 35	-4		- <u></u>	e 41·2
Aberdeen		88.5	334			i 23 36	- 5			44 · 6
Uccle		89.5	327	e 13 16?	+16	e 23 50	0			e 41·2
Tinemaha	Z.	and the second sec	46	i 13 49	+14					
Mount Wilson	z.	98.7	48	e 14 2	+20	· · · · · · · · · · · · · · · · · · ·	0145			
Riverside	z.	99.3	48	e 13 57	+12	2			-	
Almeria	2,	102.0	319	e 18 10	PP			<u> </u>	_	$54 \cdot 2$

Granada						28 23		1.000	 50.6
Tucson	104.8	46	e 14	23	+13	e 18 30	\mathbf{PP}		 e 50·8

Additional readings :---

Bombay PPE =10m.35s., PPN =10m.38s., sSEN =15m.53s., SS?E =19m.15s.

Riverview iN = 19m.15s., iE = 19m.20s.

Granada S = 28m.3s., PPS? = 32m.24s.

Long waves were also recorded at Huancayo, La Plata, San Juan, Pasadena, Philadelphia, Scoresby Sund, and other European stations.

April 12d. 9h. 1m. 35s. Epicentre 31°.8N. 131°.8E.

Intensity VI at Miyazaki; V at Oita; IV at Uwazima; II-III at Kagoshima, Matuyama. Epicentre 32° 1N. 131° 9E. Macroseismic radius 200-300 km. Shallow. See Seismological Bulletin of the Central Meteorological Observatory, Japan, for the year 1943, Tokyo 1950, pp. 17-18. Macroseismic chart p. 17.

> $A = -.5675, B = +.6348, C = +.5244; \delta = +2; h = +1;$ D = +.745, E = +.666; G = -.350, H = +.391, K = -.851.

	Δ	AZ.	Р.	O - C.	s.	0 – C.
	0	0	m. s.	в.	m. s.	8.
Miyazaki	0.3	292	0 12]	c + 1	0 18	0
Simidu	1.4	41	0 25	- 2	0 46	0
Kumamoto	1.4	315	0 27	a 0	0 46	0
Unzendake	1.6	305	0 27	- 3	0 48	- 3
Izuka	2.1	333	0 37	a 0	1 9	+ 5

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

136

		Δ	Az.	Р.	$\mathbf{O} - \mathbf{C}$.	S.	0 – C.
		0	o	m. s.	s.	m. s.	s.
Hukuoka		2.1	329	0 43a	+ 6	1 20	8
Matuyama		2.2	21	0 40	$+ \frac{3}{2}$	î îĭ	5
Koti		$\tilde{2} \cdot \tilde{3}$	40	0 38	$- \tilde{2}$	î îŝ	- B
Muroto		2.5	55	0 57	Pr		1_
Tomie		2.7	288	0 42a		1 27	S.
Hamada		3.2	3	0 48k	- 4	1 10	Pe
Sumoto		3.7	45	0 57 a		1 57	Sr
Nake		3.9	211	1 4	+ 2	1 49	- 1
Toyooka		4.5	33	1 31	Pr	2 24	S.
Kyoto		4.6	45	1 12	Ô	2 45	. 1
Kameyama		4.9	51	1 22	+ 5		
Hikone		$5 \cdot 1$	46	1 24	+ 4	2 12	- 8
Nagoya		5.5	51	1 25	0	3 7	Se
Hamamatu		5.8	58	(1 38)	+ 9	(2 25)	-13
Shizuoka		6.4	58			(2 25) 2 59	+ 6
Kohu		6.8	54	1 45	+ 1	3 19	S.
Misima		6.8	59	2 5	P*		
Wazima		7.0	59 36	1 49	+ 3		
Zinsen		7.1	325	(1 51)	+ 3	(2 47)	3
Nagano		7.2	45	1 56	+ 7	$(2 47) \\ 3 25$	+12
Kakioka		8.2	55	2 5	+ 2	2 <u>011</u> 20	
Stuttgart	Z.	84.9	327	e 12 50	+12		
Tinemaha	Z.	85.3	51	i 12 39	- 1	100	_
Pasadena	Z.	87-1	52	e 12 45	- 4		
Mount Wilson	z.	87.1	52	e 12 46	- 3		—
Riverside	z.	87.7	52	e 13 1	+ 9	·	
Palomar	Z.	88.4	52	e 13 6	+11		
Tucson		93.1	49	e 13 16	- 1	1000	

Readings at Hamamatu, Zinsen, and Shizuoka, have been reduced by one minute. Long waves were also recorded at Bombay and other European stations.

April 12d. 19h. 43m. 23s. Epicentre 36°·3N. 141°·5E. (as on 11d.).

Intensity V at Onahama, Shirakawa; IV at Tokyo, Mito, Kakioka, Yokohama; II-III at Iida, Tyosi, Sendai, Kohu, and Yamagata. Macroseismic radius 300 km. Epicentre 36°·3N. 141°·6E. Shallow.

See Seismological Bulletin Central Meteorological Observatory Japan, for the year 1943. Tokyo 1950, pp. 18-19, macroseismic chart, p. 18.

 $A = -6322, B = +5029, C = +5894; \delta = -2; h = 0.$

	Δ	Az.	Р.	0 - C.	s.	0 - C.	Su	pp.	L.
	•	•	m. s.	8.	m. s.	8.	m. s.		m.
Tyosi	0.8	222	0 17	- 1	0 27	+ 4			
Onahama	0.8	323	0 20	+ 2	0 35	+ 4			8. 1
Mito	6.0	276	0 20k	0					
Kakioka	1.1	266	0 21k	- 1	0 38	- 1			
Utunomiya	1.4	281	0 24	- 3				_	
Tokyo	1.5	247	0 29	+ 1	0 47	- 2	·		
Hukusima	1.7	330	0 33a	$^{+1}_{+2}$	0 57	+ 3			
Yokohama	1.7	240	0 32a	+ 1	. 0 59	+ 5			-
Sendai	2.0	346	0 37	+ 2	1 6	+ 4			
Osima	2.3	228	0 36	- 4	1 19	+10		-	-
Misima	2.4	240	0 40a	- 1	1 16	+ 4			
Kohu	2.5	254	0 42a	- 1	1 30	+16			
Nagano	2.7	278	0 47	+ 2	1 13	- 6			—
Mizusawa	2.8 2.8	354	e 0 49	+ 2	$ \begin{array}{c} 1 & 24 \\ 1 & 26 \end{array} $	+ 2			
Shizuoka	2.8	242	0 46a	- 1	1 26	+ 4			
Aikawa	3.1	304	0 49	- 2	1 41	+12			_
Omaesaki	3.2	238	0 49	- 3	1 47	+15			
Miyako	3·4 3·5	6	0 52	- 3	1 44	S*			
Hamamatu	3.5	243	0 58k	+ 1	1 49	S* S*			-
Hatidyozima	3.5	204	0 54	- 3	1 39	- 1			
						100 S 1			

Continued on next page.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1.0

11

1943					137					
		Δ	Az.	P. m. s.	0 – C. s.	S. m. s.	0 C. s.	m. s.	op.	L. m.
Toyama Akita Wazima Nagoya Hatinohe		3.5 3.6 3.8 3.8 4.2	$279 \\ 343 \\ 289 \\ 254 \\ 0$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	+ 4 + 7 + 3 = 2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	S. S. -13 - 3			
Hikone Kameyama Aomori Kyoto Owase		4 · 4 4 · 4 4 · 6 4 · 9 4 · 9	$258 \\ 251 \\ 354 \\ 256 \\ 245$	1 8 1 10 1 14 1 20 1 16k	$ \begin{array}{r} - & 2 \\ 0 \\ + & 2 \\ + & 3 \\ - & 1 \end{array} $	$\begin{array}{ccccccc} 1 & 51 \\ 2 & 23 \\ 2 & 22 \\ 2 & 15 \\ 2 & 42 \end{array}$	-11 S* S* S*			
Osaka Kõbe Siomisaki Toyooka Sumoto		$5 \cdot 2 \\ 5 \cdot 4 \\ 5 \cdot 5 \\ 5 \cdot 5 \\ 5 \cdot 5 \\ 5 \cdot 7 \\ 5 \cdot 7 \\ $	$\begin{array}{r} 251 \\ 254 \\ 241 \\ 265 \\ 252 \end{array}$	$\begin{array}{cccc} 1 & 20 \\ 1 & 26 \\ 1 & 22 \\ 1 & 27 \\ 1 & 28 \end{array}$	-1 + 2 + 3 + 2 + 2 + 0	$ \begin{array}{cccc} 2 & 26 \\ 2 & 36 \\ 3 & 5 \\ 2 & 45 \\ 2 & 52 \\ \end{array} $	48 ++\$\$\$\$			
Mori Muroto Sapporo Koti Matuyama		$5.9 \\ 6.7 \\ 6.8 \\ 7.1 \\ 7.6$	$351 \\ 245 \\ 259 \\ 250 \\ 253$	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$^{+ 9}_{+ 12} \\ ^{- 1}_{- 2}$	$ \begin{array}{r} 2 & 54 \\ 3 & 5 \\ 3 & 27 \\ 3 & 44 \end{array} $	s* + 2 * *		1111	
Nemuro Hirosima Hamada Simidu Izuka		7.6 7.7 7.8 7.8 9.2	$\begin{array}{r} 21 \\ 257 \\ 262 \\ 246 \\ 256 \end{array}$	$ \begin{array}{ccc} 2 & 1 \\ 1 & 19 \\ 1 & 59 \\ 1 & 48 \\ 2 & 17 \\ \end{array} $	$+ 6 \\ + 1 \\ -10 \\ + 1$	$ \begin{array}{r} 3 & 29 \\ 4 & 50 \\ 4 & 1 \\ 3 & 41 \\ 4 & 53 \\ \end{array} $	+ 6 ? \$* +13 S*			
Miyazaki Hukuoka Unzendake Husan Taikyu		$9.4 \\ 9.5 \\ 9.9 \\ 10.2 \\ 10.4$	$\begin{array}{r} 245 \\ 257 \\ 252 \\ 267 \\ 271 \end{array}$	$ \begin{array}{ccccccccccccccccccccccccccccccccccc$	$^{+ 2}_{+ 1}_{- 4}_{- 13}_{+ 1}$	$ \begin{array}{r} 4 & 6 \\ 4 & 53 \\ 4 & 9 \\ 5 & 22 \\ 4 & 42 \\ \end{array} $	-11 S^* -11 ? +10			
College Andijan New Delhi Tashkent Sitka	N.	$49.7 \\ 53.0 \\ 53.9 \\ 55.0 \\ 56.8$	$32 \\ 297 \\ 281 \\ 298 \\ 41$	$ \begin{array}{r} \overline{9} & 19 \\ \underline{1} & 9 & 21 \\ \underline{1} & 9 & 37 \\ \underline{9} & 37 \\ $	$-\frac{2}{6}$	$e 16 0 \\ 16 41 \\ 1 17 13 \\ 17 21 \\ 17 45$	-4 -9 +11 +4 +4			e 27.5
Hyderabad Bombay Kodaikanal Victoria Moscow	Е. Е.	$58.3 \\ 62.1 \\ 63.1 \\ 66.9 \\ 67.9 \\ 67.9$	$269 \\ 274 \\ 265 \\ 47 \\ 323$	$ \begin{array}{r} 9 & 57 \\ i & 10 & 21 \\ e & 9 & 2 \\ 10 & 59 \\ 10 & 59 \end{array} $	$-\frac{2}{4}$ $-\frac{2}{4}$ $-\frac{2}{3}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	PPS - 1 + 6 - 4 - 5	19 7 7	PS 	29·2 41·6
Riverview Scoresby Sund Bozeman Tinemaha Santa Barbara	z. z.	70-3 72-8 75-5 76-5 76-7	$172 \\ 355 \\ 44 \\ 55 \\ 58$	 i 11 56 e 11 55	$+\frac{2}{0}$	i 20 22 e 20 49 e 21 27	- 7 - 9 - 1	i 20 40 e 26 0 	sss	e 35.8 e 37.7 e 42.2
Haiwee Pasadena Mount Wilson Copenhagen Palomar	z. z. z.	76.9 77.9 78.0 78.6 79.3	$54 \\ 56 \\ 56 \\ 333 \\ 57 \\ 57 \\ $	$\begin{array}{cccccccc} i & 12 & & 3 \\ e & 11 & 58 \\ e & 11 & 54 \\ e & 12 & & 2a \\ e & 12 & & 6 \end{array}$	$+ 7 \\ - 3 \\ - 3 \\ - 3$	e 21 49? 21 59	$-\frac{5}{-3}$	$\begin{array}{r} & & & \\ \mathbf{i} \ 12 & 8 \\ \mathbf{i} \ 12 & 9 \\ & 22 & 18 \\ \mathbf{i} \ 12 & 16 \end{array}$	pP pP sS pP	e 36-0
Jena Wellington Sofia Tucson De Bilt		$\begin{array}{r} 82 \cdot 6 \\ 83 \cdot 0 \\ 83 \cdot 3 \\ 84 \cdot 0 \\ 84 \cdot 1 \end{array}$	$331 \\ 156 \\ 319 \\ 54 \\ 335$	e 12 24 e 12 32 i 12 29 i 12 32	-2 +2 -4 -2	$\begin{array}{c} e & 23 & 7 \\ e & 22 & 37 \\ e & 22 & 51 \\ e & 22 & 51 \\ i & 22 & 54 \end{array}$	PS - 10 + 1 - 4	e 27 37? i 12 46 e 28 37	ss pP ss	e 39.6 42.6 46.6 e 39.7 e 37.6
Stuttgart Uccle Triest Strasbourg Zürich		85.3 85.4 85.8 86.0 86.7	331 335 327 332 331	e 12 38 a e 12 37 e 12 48 e 12 49 e 12 43 a	- 2 - 3 + 6 + 4	$\begin{array}{cccc} e & 23 & 1 \\ e & 23 & 0 \\ 1 & 23 & 0 \\ e & 23 & 13 \\ \end{array}$	$ \begin{bmatrix} - & 9 \\ - & 3] \\ [- & 6] \\ [- & 1] \end{bmatrix} $	$e 12 49$ $e 1\overline{4} 10$	pP ?	e 44 ·1 e 38 ·6 e 49 ·6
Basle Helwan Neuchatel Milan Florence		86 ·9 87 ·1 87 ·6 87 ·9 88 ·4	$331 \\ 305 \\ 331 \\ 329 \\ 326$	e 12 45 i 12 44 e 12 48 13 3 e 12 53	$-3 \\ -5 \\ -3 \\ +10 \\ -2$	$\begin{array}{r} \mathbf{e} \ \begin{array}{c} 23 \ \ 24 \\ 23 \ \ 10 \end{array} \\ 1 \ \begin{array}{c} 23 \ \ 32 \\ 1 \ 23 \ \ 52 \end{array}$	$\begin{bmatrix} - & 2 \\ - & 5 \end{bmatrix} \\ - & 3 \\ + & 12 \end{bmatrix}$	11255 	pP sks	49-5

Continued on next page.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1	9	4	3	ł.

138

	Δ	Az,	Р.	0 – C.	S.	0 – C.	Supp.	L.
	0	n	m. s.	s.	m. s.	s.	m. s.	m.
Chicago	90.2	35			e 33 30	SSS		e 45.5
St. Louis	91.5	38	i 13 18	+ 8	e 24 1	- 7	e 25 45 PPS	· 10 0
Ottawa	92.0	25	e 13 8	- 4	e 24 9	- 3		e 45·6
Toledo	97.8	334	e 13 46	+ 8			17 48 PP	51.6
Granada	100.0	333	i 14 40	1	25 31	+11	17 51 PP	53.7
Additional re Bombay P	eadings : PePEN =11m	9a 1	PPSN -19	m 10s	SSE - 93n	n 19a		
Scoresby S	sund $e = 29m$.258.			0012-2011	u.195.		

Copenhagen 15m.1s. Wellington Q = 39.6m. Tucson e = 14m.52s. and 16m.22s. Helwan iZ = 16m.10s., PPZ = 16m.22s., SE = 23m.53s. Florence ePPZ = 16m.18s., ePPPZ = 18m.22s., iSKKSE = 23m.38s., ePSE = 24m.53s., ePPSE = 25m.14s. St. Louis eE = 24m.6s. and 30m.22s. Granada PP = 19m.58s., SKKS = 26m.58s., S = 27m.37s., SS = 35m.34s. Long waves were also recorded at Huancayo, Philadelphia, and at other European stations.

April 12d. 19h. 51m. 12s. Epicentre 36.3N. 141°.5E. (as at 19h. 43m.).

 Intensity IV at Tukubasan, Kakioka, Onahama, Mito, Shirakawa; II-III at Yokohama, Aikawa, Tokyo.
 Epicentre 36°.4N. 141°.6E. Macroseismic radius 200.300km. Very Shallow.
 See Seismological Bulletin of the Central Meteorological Observatory of Japan for the

year 1943. Tokyo 1950, pp. 19-20. Macroseismic chart p. 19.

Onahama		∆ 0`-8	Az. 323	P. m. s. 0 15	0-C. s. - 3	m. s. 0 30	0 – C. s. – 1	m. s.	ор. 	L. m.
Mito Kakioka Tukubasan Shirakawa		$ \begin{array}{c} 0 \cdot 9 \\ 1 \cdot 1 \\ 1 \cdot 1 \\ 1 \cdot 3 \end{array} $	$276 \\ 266 \\ 266 \\ 308$	$\begin{array}{c}0&19\\(0&20)\\(0&18)\\0&25\end{array}$	$-1 \\ -2 \\ -4 \\ 0$	$\begin{array}{c}0&34\\(0&37)\\(0&37)\\0&45\end{array}$	$ \begin{array}{c} - & 2 \\ - & 2 \\ + & 1 \end{array} $			
Utunomiya Tokyo Hukusima Kumagaya Yokohama		$1 \cdot 4 \\ 1 \cdot 5 \\ 1 \cdot 7 \\ 1 \cdot $	$281 \\ 247 \\ 330 \\ 265 \\ 240$	$\begin{array}{ccc} 0 & 24 \\ 0 & 29 \\ 0 & 30 \\ 0 & 48 \\ 0 & 44 \end{array}$	-3 + 1 + 1 + 1 + 1 + 2 + 2 + 2 + 2 + 2 + 2	$\begin{array}{c} 0 & 42 \\ \hline 0 & 53 \\ 1 & 12 \\ \hline \end{array}$	- 4 - 1 ?			
Mera Maebasi Sendai Titibu Yamagata		${1 \cdot 9 \atop 2 \cdot 0 \atop 2 \cdot 0 \atop 2 \cdot 0 \atop 2 \cdot 1}$	$\begin{array}{r} 224 \\ 273 \\ 346 \\ 261 \\ 335 \end{array}$	$\begin{smallmatrix} 0 & 32 \\ 0 & 33 \\ 1 & 2 \\ 0 & 41 \\ 0 & 36 \end{smallmatrix}$	-22 -22 +6 -1	$\frac{1}{1}$ 17 $\frac{1}{1}$ 24	+15 S.			
Osima Hunatu Misima Kohu Nagano		$2 \cdot 3 \\ 2 \cdot 4 \\ 2 \cdot 4 \\ 2 \cdot 5 \\ 2 \cdot 5 \\ 2 \cdot 7$	$228 \\ 250 \\ 240 \\ 254 \\ 278$	$\begin{smallmatrix} 0 & 33 \\ 0 & 38 \\ 0 & 37 \\ 0 & 31 \\ 0 & 33 \end{smallmatrix}$	- 7 - 3 - 4 ?	$ \begin{array}{r} 1 & 15 \\ 1 & 16 \\ 1 & 14 \\ \hline 0 & 57 \end{array} $	Sr Sr Sr ?			
Mizusawa Shizuoka Matumoto Aikawa	E. N.	$2.8 \\ 2.8 \\ 2.9 \\ 3.1$	$354 \\ 354 \\ 242 \\ 269 \\ 304$	$\begin{array}{ccc} 0 & 54 \\ 0 & 51 \\ 0 & 44 \\ 0 & 52 \\ 0 & 52 \end{array}$	+ 7 + 4 + 3 + 4 + 1	$ \begin{array}{r} 1 & 33 \\ 1 & 21 \\ 1 & 24 \\ \hline 1 & 28 \end{array} $	$ \frac{S_{s}}{-1} + \frac{2}{-1} - 1 $			
Omaesaki Miyako Morioka Hatidyozima Wazima		$3 \cdot 2 \\ 3 \cdot 4 \\ 3 \cdot 4 \\ 3 \cdot 5 \\ 3 \cdot 8 \\ 3 \cdot $	$238 \\ 6 \\ 356 \\ 204 \\ 289$	$\begin{pmatrix} 2 & 33 \\ (0 & 43) \\ (0 & 51) \\ 1 & 0 \\ 1 & 5 \end{pmatrix}$	-12 -12 -4 +3 +4	(<u>1</u> 35) 	- 2			
Nagoya Gihu Hatinohe Kameyama Kyoto		3.8 3.9 4.2 4.4 4.9	$254 \\ 258 \\ 0 \\ 251 \\ 256$	$ \begin{array}{cccc} 2 & 32 \\ 1 & 10 \\ 1 & 10 \\ 1 & 6 \\ 1 & 30 \\ 1 & 32 \\ \end{array} $	$+ 8 \\ + 8 \\ - 1 \\ P_{s} \\ + 15$	$\frac{\overline{2}}{\overline{2}} 0$	$+\overline{10}$ $+\overline{17}$			

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10000	100	100 C
- 10 - 10 - 10	100 C 100 C	- 1 - 1	
- C - 200			- 1 - 1
- 10 - 1			
	- 19		
	- 19 -1977		

139

ŧ.

		Δ	Λz.	Р. m. s.	0 - C. s.	m. s.	0 – C.	Suj	op.	L.
Owase Osaka Kôbe Toyooka		4·9 5·2 5·4 5·5	$245 \\ 251 \\ 254 \\ 265$	$ \begin{array}{c} 1 & 20 \\ 1 & 51 \\ (1 & 36) \\ 1 & 32 \end{array} $	+ 3 P P + 7	$\frac{2}{2}$ 45 $\frac{-}{2}$ 44	s. Se S*	m. s.		m.
Sumoto		5.7	252	1 36	\mathbf{P}^{\bullet}	2 52	s.		-	\equiv
Sapporo Koti Matuyama Miyazaki College		$6.8 \\ 7.1 \\ 7.6 \\ 9.4 \\ 49.7$	$359 \\ 250 \\ 253 \\ 245 \\ 32$	$(1 \ 44)$ $2 \ 14$ $1 \ 53$ $2 \ 31$	$-\frac{0}{2}+\frac{2}{13}$	 e 15 59	+ 6 5	= e 16 14	 	
Upsala Pasadena Mount Wilson Copenhagen Riverside	Z. 2. Z.	73-6 77-9 78-0 78-6 78-6	$335 \\ 56 \\ 56 \\ 333 \\ 56 \\ 56$	i 13 13 e 12 3 e 11 56 e 11 59 e 12 32	$+ \frac{2}{- \frac{6}{- \frac{6}{$	e 21 36	+29	e 25 48? i 12 27 e 12 27	SS PeP PeP	e 32·8
Prague Palomar Cheb Tucson Stuttgart	z.	$82 \cdot 1 \\ 79 \cdot 3 \\ 83 \cdot 0 \\ 84 \cdot 0 \\ 85 \cdot 3$	$329 \\ 57 \\ 330 \\ 54 \\ 331$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} \mathbf{PP} \\ \mathbf{PeP} \\ \mathbf{PP} \\ \mathbf{-7} \\ \mathbf{-7} \end{array}$			24 24? 20 48? e 12 45	$\frac{?}{?}$ PcP	e 29.8 e 37.8

Upsala also gives iPN =13m.18s.?.

Readings at Kakioka and Tukubasan have been increased by 1m.; readings at Miyako, Morioka, Kôbe, and Sapporo have been reduced by 1m. Long waves were also recorded at Lisbon.

April 12d. Readings also at 4h. (Bogota), 5h. (near Granada (2), and near Lick, Berkeley, and Branner), 6h. (near Reykjavik), 8h. (Bogota), 11h. (La Plata), 12h. (Mizusawa), 13h. (Aberdeen, Granada, Stuttgart, near Andijan, and Taskhent), 14h. (near Bogota), 19h. (La Plata), 20h. (near Mizusawa), 21h. (Mizusawa, near Lick (4), Berkeley (4), and Branner (4)), 22h. and 23h. (near Mizusawa).

April 13d. 6h. 37m. 26s. Epicentre 36°·3N. 141°·5E. (as on 12d.).

Intensity IV at Kakioka, Mito, Onahama, Shirakawa; II-III at Tokyo, Yokohama, Hukusima, Morioka, and Kohu. Epicentre 36°·1N. 141°·6E. Macroseismic radius 200-300km; very shallow. Seismological Bulletin of the Central Meteorological Observatory, Japan for the year 1943, Tokyo 1950, pp. 21-22; macroseismic chart p. 21.

 $A = -6322, B = +5029, C = +5894; \delta = -2; h = 0.$

Az.	Р.	0 – C.	S. 0-C.	Supp.	L.
0	m. s.	8.	m. s. s.	m. s.	m.
323	0 17a	- 1	$0\ 32\ +\ 1$		
222	0 14	- 4	the second se		
276	0 17k	- 3			
266	0 9k	-13			
266	0 20	- 2	0 37 - 2		
281	0 21	- 6	0 41 - 5		<u>255</u> 0
247		- 2			÷
330		Ō			
265	the second se	+ 2			
240	0 29	- 2	056 + 2		
224	0 34 k	0			
		Ô	1 2 0		22-26
	0 35	- 5	1 1 - 8		
240	0 37	- 4	1 7 - 5		<u> </u>
254	0 40	$-\bar{3}$	1 24 Sg	· · · · · · · · · · · · · · · · · · ·	
278	0 44	- 1	1 10 - 9		-
254	the second se	+ 4		1 37 S.	
		- 8	$\hat{1}$ $\hat{7}$ -15		
the second se		+ 8	1 42 8-		
		$-\tilde{2}$			_
	$323 \\ 222 \\ 276 \\ 266 \\ 266 \\ 266 \\ 247 \\ 330 \\ 265 \\ 240 \\ 224 \\ 346 \\ 228 \\ 240 $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	s m. s. s. m. s. s. m. s. 323 0 17 a -1 0 32 +1

Continued on next page.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

100			
1.46	1000 100	1. AND 1.	
200 J	678 A		
ा ।	1.4 .61	1 1 1 1 1	
- R -	278.86		
1. 1 8 - 1	1990 - C. 19		

140

 \mathcal{F}_{i}

		A	Az.	P. m. s.	0 – C. s.	S. m. s.	O - C.	m. s.	op.	L. m.
Miyako Hamamatu Hatidyozima Wazima Hatinohe		$3.4 \\ 3.5 \\ 3.5 \\ 3.8 \\ 4.2$	$ \begin{array}{r} 6 \\ 243 \\ 204 \\ 289 \\ 0 \end{array} $	$egin{array}{ccc} 0 & 49 \\ 1 & 1 \\ 0 & 53 \\ 1 & 2 \\ 1 & 6 \end{array}$	$ \begin{array}{r} - & 6 \\ + & 4 \\ - & 4 \\ + & 1 \\ - & 1 \end{array} $	$ \begin{array}{cccc} 1 & 45 \\ 1 & 54 \\ 1 & 28 \\ 1 & 57 \\ 1 & 53 \\ \end{array} $	$+ 8 \\ S_{g} \\ -12 \\ S^{*} \\ - 4$			
Hikone Kameyama Aomori Kyoto Owase		$4 \cdot 4 \\ 4 \cdot 4 \\ 4 \cdot 6 \\ 4 \cdot 9 \\ 4 \cdot 9 \\ 4 \cdot 9$	$258 \\ 251 \\ 354 \\ 256 \\ 245$	$\begin{array}{cccc} 1 & 11 \\ 1 & 14 \\ 1 & 7 \\ 1 & 18 \\ 1 & 15 \end{array}$	+ 1 + 4 + 5 + 5 + 1 + 2	$ \begin{array}{r} 2 & 16 \\ 2 & 20 \\ \hline 2 & 54 \\ 2 & 45 \end{array} $	s* s* s* s*			
Kôbe Siomisaki Toyooka Sumoto Muroto		$5 \cdot 4 \\ 5 \cdot 5 \\ 5 \cdot 5 \\ 5 \cdot 7 \\ 6 \cdot 7 \\ 6 \cdot 7$	$254 \\ 241 \\ 265 \\ 252 \\ 245 \\ 245 \\$	$egin{array}{cccc} 1 & 29 \\ 2 & 4 \\ 1 & 39 \\ 1 & 26 \\ 1 & 52 \end{array}$	+ 5 P P - 2 P*	$\frac{2}{2} \frac{40}{43}$ $\frac{3}{3} \frac{46}{46}$	S* S* Sg			
Sapporo Kôti Vladivostok Irkutsk New Delhi	N.	$\begin{array}{r} 6\cdot 8 \\ 7\cdot 1 \\ 10\cdot 1 \\ 30\cdot 6 \\ 53\cdot 9 \end{array}$	$359 \\ 250 \\ 316 \\ 314 \\ 281$	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	+ 8 P* +12 +16	$\begin{array}{r} 3 & 14 \\ 4 & 32 \\ 11 & 34 \\ e & 16 & 55 \end{array}$	+11 + 7 + 14 + 14 + 14 + 77 + 77 + 77 +			
Tashkent Sverdlovsk Bombay Tinemaha Haiwee	z. z.	$55.0 \\ 55.7 \\ 62.1 \\ 76.2 \\ 76.9$	$298 \\ 319 \\ 274 \\ 55 \\ 54$	i 9 32 i 9 36 e 10 18 e 11 48 e 12 2	- 3 - 4 - 7 4 - 6	e 18 45	-4	$e_{19}^{17}_{19}^{40}_{7}_{7}$	PS PS	
Pasadena Mount Wilson Copenhagen Riverside Palomar Tucson Stuttgart	Z. Z. Z.	$\begin{array}{c} 77.9 \\ 78.0 \\ 78.6 \\ 78.6 \\ 79.3 \\ 84.0 \\ 85.3 \end{array}$	56 333 56 57 54 331	i 12 2 e 12 4 12 12 e 12 10 e 12 14 e 11 29 e 12 35	+++++ -					e 38.6 41.6 e 46.0

Tucson also gives e = 13m.39s.

Long waves were also recorded at other European stations.

April 13d. 8h. 57m. 18s. Epicentre 18°-8S. 71°-5W.

Felt at Arequipa and throughout Chili. Intensity V-VI as far south as latitude 23°. "Annales de l'Institute de Physique du Globe," Strasbourg, p. 23. United States Earthquakes 1943, p. 31 (U.S.C.G.S.). Epicentre 17°.5S. 73°.5W.

> A = $+\cdot 3006$, B = $-\cdot 8983$, C = $-\cdot 3203$; $\delta = -10$; h = +5; D = $-\cdot 948$, E = $-\cdot 317$; G = $-\cdot 102$, H = $+\cdot 304$, K = $-\cdot 947$.

		Δ	Az.	Р.	0 – C.	s.	0 – C.		pp.	L.
65 3533 IN		•	0	m. s.	s.	m. s.	s.	m. s.		m.
La Paz		4.0	54	i1 4	0	i1 48	- 4			2.1
Montezuma		4.5	147	o 1 54	$\mathbf{P}_{\mathbf{g}}$	e 2 39	Sr			
Huancayo		7.7	331	e 2 3	+ 7	i 3 23	- 2	-		i 3.9
La Plata	E.	20.1	146	i 4 38	Ó	8 16	- 3			11.1
	N.	20.1	146	i 4 38	õ	8 27	+ 8	5 0	PP	11.3
	Z.	20.1	146	i 4 38	ŏ	8 24	+ 5	—		11.0
Bogota		23.4	354	i5 9	- 2	(e 9 20)	- 1	i 5 26	\mathbf{PP}	
Fort de France		34.8	18	e 5 42	-72					
San Juan		37.3	8	e 7 21	+ 5	i 12 41	-23	e 8 38	\mathbf{PP}	e 15.0
Columbia		53.3	350	· · · · ·		e 16 45	- 9		_	
Cape Girardeau	N.	58.4	343	e 9 56	- 4	e 17 54	- 8		_	
St. Louis		59.8	343	e 10 9	0	e 18 10	-10			—
Tueson		63.2	323	1 10 32	0	i 18 58	- 5	e 39 37	P'P'	1 32.2
La Jolla		67.5	319	i 11 1	+ 1					_
Palomar	Z.	67.6	320	i11 1k	Ō			+		
Riverside		68.3	320	i 11 5k			-	i 39 45	P'P'	—
Mount Wilson		68.9	320	i11 9k	0	_	_		_	
Pasadena		68.9	320	i11 9k	Ū.			i 39 21	P'P'	
Haiwee	Z.	70.1	321	i 11 16	Õ			- 77 <u>- 7</u> 7 -	- <u>-</u>	
Tinemaha	Z.	70.9	321	i 11 22k	+ 1			e 39 16	P'P'	
Granada	1740	84.7	48	$\hat{1} \hat{1} \hat{2} 5 \hat{1}$	$+1\hat{4}$	i 22 55	- 9	23 45	\mathbf{PS}	38.9

Continued on next page.

.

(A) (A)

(0,0)

36.5

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

141

	Δ	Az,	P	0-C.	S.	0 – C.	Supp.	L.
	0		m. s.	s.	m. s.	s.	·m. s.	m.
Coledo	85.7	45	i 12 41	- 1	e 23 5	- 9	23 57 PS	
Jecle	95.8	38	the second second		e 23 59	[-6]	e 24 35 S	
stuttgart	98.0	41	e 13 37	- 2	e 24 9	[-8]		
lashkent	139.8	47	e 19 31	[+1]	e 23 10	PKS		
Bombay	146.3	84	e 19 45	[+ 4]	e 23 49	PKS	e 20 1 PKP ₁	
Additional rea	dings						*£1:	
La Plata N	the second se					a		
AJU A AUVIN A1	The # 0.0-	40.00	Care Da -	39 _ Qm /	190 0000	- 0m 2	6s., true S is given	00 00

St. Louis eE = 19m.56s. Tucson i = 11m.20s. Riverside iZ = 11m.26s. and 11m.36s. Mount Wilson iZ = 11m.24s. Pasadena iZ = 11m.25s. Granada $P_cP = 12m.59s$. Long waves were also recorded at Wellington and other European stations.

April 13d. 12h. 29m. 14s. Epicentre 3°.7N. 128°.5E. (as on 1941 February 27d.).

A = -6212, B = +7810, C = +0641; $\delta = -4$; h = +7; D = +783, E = +623; G = -040, H = +050, K = -998.

		Δ	Az.	P.	0-C.	"S.	0 – C.	Suj	pp.	L.
Brisbane	E.	39.0	143	m. s. i 7 24	в. — б	m. s. i 13 18	в. -11	m. s. i 8 56	PP	m. e 19 :
	N.	39.0	143	17 29	- 1	e 13 19	-10	i 8 58	\mathbf{PP}	e 16.
Riverview	2023	43.0	153	i8 2	- 1	i 14 19	-10	e 9 41	\mathbf{PP}	
Sydney		43.0	153			e 14 47	-25	-		
Hyderabad	E.	50.9	290	e 9 4	- 1	16 16	- 5			24 -
Kodaikanal	E.	51.0	280	(i 9 14)	+ 8	(i 16 24)		(11 16)	PP	-
New Delhi	N.	54.6	303	e 9 39	+ 7	i 17 19	+ 8	i 19 15	1	-
Bombay		56.4	291	e 9 47	+ 2	i 17 29	- 7	17 48	\mathbf{PS}	
Auckland		59.0	137			18 4	- 6	and the state of the second		27 .
Inristehurch		61.5	145	18 30	s	(18 30)	-12	(25 25)	SSS	32.
Wellington		61.5	143	(10 24)	+ 3	18 21	-21	(25 16)	SSS	30 .
Stalinabad		64.3	312	10 46	+ 7					
lashkent		64.7	315	10 46	+ 4	19 26	+ 4			
Tchimkent		64.8	316	111 6	PcP	19 53	PPS		_	
Sverdlovsk		74.9	329	e 11 47	+ 3	21 51	\mathbf{PS}			-
Jpsala	N.	97.1	331	e 33 11	7					e 51 ·
Victoria		99.1	40		المنبعة	e 24 22	[-1]			40.1
Stuttgart		106.0	323	e 18 47	\mathbf{PP}	e 29 16?	PPS	e 55 4?	Q	e 57 ·
Cinemaha	Z.	106.0	50	e 18 51	\mathbf{PP}					-
Mount Wilson	z.	107.0	53	e 18 54	\mathbf{PP}		1000 P	1000		
Pasadena		107.0	53	e 14 43	, P	10000 C				e 50 ·
Riverside	Z.	107.7	53	e 14 47	P		. – – (e 18 58	\mathbf{PP}	
Jecle		107.8	327	e 19 10	\mathbf{PP}	e 25 0	[-3]	e 28 19	PS	e 52-8
Palomar	z.	108.3	53	e 18 57	\mathbf{PP}	÷	·		-	
Kew		110.0	328	e 19 27	\mathbf{PP}					e 51-8
ucson		113.4	52	e 19 39	\mathbf{PP}		8		() <u> </u>	54.6
oledo	z.	118.6	320	0 19 58	\mathbf{PP}	-	_			
Imeria		119.1	316	e 20 23	PP	e 31 7	PPS	8		e 63-8
Franada		119.7	317	1 20 45	PP	29 2	PS		-	e 62·1

Riverview iZ = 9m.45s., iN = 14m.37s., iSSN = 17m.29s., iEZ = 17m.32s., iE = 17m.59s.Kodaikanal readings increased by 1 minute. Bombay pPE = 9m.55s., sPEN = 10m.5s., PPPE = 12m.59s., eN = 18m.23s., iE =

18m.26s. and 20m.18s., SSE = 21m.22s., iE = 21m.41s.Christehurch Q = 28m.6s., S is given as P and SS as S.

Wellington P is given as PcP?, SSS given as Q?.

Upsala eN =37m.14s., eSE =41m.19s., eSN =41m.35s., probably some unspecified clock error.

Pasadena eZ = 19m.9s.

Uccle eE = 34m.25s.

Kew eZ =19m.40s.

Granada iS = 33m.5s., SS = 40m.58s.

Long waves were also recorded at Huancayo, La Paz, Bozeman, and other European stations.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

142

April 13d. Readings also at 1h. 2h. (2), and 3h. (2) (La Plata) 8h. (Bombay), 9h. (La Plata and near Mizusawa), 11h. (La Plata), 13h. (near La Paz), 15h., 16h., and 17h. (near Mizusawa), 18h. (Huancayo, La Paz, and Tacubaya), 19h. (near St. Louis), 20h. (near Mizusawa).

April 14d. 6h. 16m. 21s. Epicentre 30°.9S. 72°.0W. (as on 7d.).

A = + ·2656, B = - ·8175, C = - ·5110;
$$\delta = -3$$
; $h = +2$;
D = - ·951, E = - ·309; G = - ·158, H = + ·486, K = - ·860.
 \triangle Az. P. O-C. S. O-C. Supp. L.

		and a							the set of		
		o	٥	m.	8.	8.	m. s.	8.	m. s.	2000	m.
La Plata	E.	12.5	112	3	3	+ 1	5 15	- 8			6.2
	N.	12.5	112	3	3	+1	5 9	-14	<u>1997</u>	_	6.0
	z.	12.5	112	2	59	- 3	5 27	+ 4	1111 2		6.0
La Paz	z.	14.8	15	3	31	- 1	6 28	+10		-	
Huancayo		19.0	351	e 4	26	0	e 8 7	+12	e 5 22	9	e 9·3
Tucson		72.8	327	i 11	33	+ 1					
Palomar	Z.	76.7	323	e 11	55	0		_			
Riverside	Z,	77.5	323	e 12	0	+ 1					·
Mount Wilson	Z.	78.0	323	i 12	2	0					-
Haiwee	Z.	79.5	325	i 12	10	0	1 <u></u>				T and the second
Tinemaha	Z.	80.3	325	i 12	15	+ 1				-	

April 14d. 8h. 15m. 34s. Epicentre 39°.8N. 29°.6E. (as on 1943 Jan. 8d.).

e

Felt strongly near Kutahya, Burs, Inegol, and Kodha. Damage sustained at Emek. Bulletin Météorologique, Séismique et Magnétique de l'Observatoire d'Istanbul. Istanbul 1948. Epicentre 40°.2N. 29°.6E.

A = + .6698, B = + .3805, C = + .6376; $\delta = -5$; h = -2: $D = + \cdot 494$, $E = - \cdot 869$; $G = + \cdot 554$, $H = + \cdot 315$, $K = - \cdot 770$. Supp. Р. 0 – C. 0 – C. AZ. s. L. Δ m. s. 8. m. s. m. s. 8. m. S. $\frac{1 \cdot 3}{5 \cdot 3}$ Istanbul $\mathbf{P}_{\mathbf{z}}$ 3 342 33 1 0 $\mathbf{P}_{\mathbf{x}}$ Bucharest 330 29 8 e 1 49 e 1 i 3 + 11 5.5 13 Sofia 303 $\mathbf{25}$ 12 $\mathbf{30}$ 1 0 5.8 **⁺**₽•` Yalta 3533 e 1 3.7 6.2 e 1 Focsani 342 567 Campulung 329P* e 2 263.4 6.4 e 1 507 -277.0 343 e 2 21 $\mathbf{p}\bullet$ Bacau S* 7.8 138 2 + 7 e 3 55 Ksara 51

Belgrade Cernauti		309 343	e 2 1 e 2 8?	-5 - 4	ē 4 11	S •	1 2 27	P •	4.4
Helwan Triest Florence Z. Milan Chur	$13.0 \\ 14.3 \\ 16.0$	$172 \\ 302 \\ 292 \\ 297 \\ 302 \\ 302 \\$	i 2 16 e 3 16 e 3 31 3 56 e 3 54 a	-11 + 7 + 5 + 8 + 4	$ \begin{array}{r} 3 52 \\ 9 \overline{6} 4 \\ 1 7 58 \end{array} $	- <mark>2</mark>	4 26 e 4 31	s PP	6.8 (18.0) e 9.1
Jena Moscow Zürich Stuttgart Basle	$16.8 \\ 17.0 \\ 17.1$	317 18 303 308 304	e 4 5 3 52 e 4 0 1 4 3k e 4 9	+7 -6 -1 +1 +1	$e \frac{\overline{7} 17}{7 26}$	$+\frac{12}{14}$			e 9.7 e 9.6 e 9.4 e 9.7
Neuchatel Strasbourg Copenhagen Clermont-Ferrand De Bilt	$17.9 \\ 19.5 \\ 20.3$	$301 \\ 309 \\ 331 \\ 296 \\ 316$	e 4 10 4 13 e 4 35 i 4 36 e 8 50	-2^{+}_{+1}	= 8 16 (e 8 50)	$+\frac{10}{10}$ + $\frac{17}{17}$		1111	i 10.3 11.4 e 11.4
Uccle Upsala Sverdlovsk Additional reading	21·4 26·4	310 344 39	e 4 44 e 4 51 e 5 44	$-1 \\ 0 \\ +4$	e 8 36 e 9 0 10 34	$^{+3}_{+15}_{+22}$			e 10·8

Bucharest eN = 1m.55s., eEN = 2m.47s.Sofia iE = 2m.44s., iEN = 3m.14s. Belgrade i = 2m.8s., e = 3m.5s., i = 4m.30s. and 4m.39s.De Bilt eS? = 10m.56s.Upsala ePE = 4m.598. Long waves were also recorded at Cheb, Potsdam, Kew, and Granada.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

143

April 14d. Readings also at 0h. (Aberdeen), 1h. (Mount Wilson, Tucson, and Riverside), 2h. (Tacubaya), 3h. (La Plata), 4h. (near Bogota), 7h. (Wellington), 8h. (Mount Wilson, Riverside, Tucson, and Tinemaha), 9h. (La Plata), 11h. (Haiwee, Mount Wilson (2), Pasadena, Palomar (2), Riverside (2), Tucson (2), and Tinemaha (2)), 12h. (Basle, Bombay, near Calcutta, and near Mizusawa), 13h. (La Plata, Mount Wilson, Palomar, Riverside, Tucson, and Tinemaha), 15h. (Fort de France), 20h. (Riverside and Tucson), 21h. (La Plata, near Branner and Lick).

April 15d. 10h. Pacific shock.

San Francisco 54m. Logan eP = 55m.30s., eS = 59m.30s., eL = 60m.19s.Tinemaha ePZ = 55m.49s., 1 = 55m.54s.Salt Lake City e = 55m.53s. and 58m.7s., eL = 60m.44s. Haiwee ePZ = 56m.28. Pasadena ePZ = 56m.19s.Mount Wilson iPZ = 56m.21s., iZ = 56m.59s.Palomar ePZ = 56m.36s. Tucson e = 57m.9s., iP = 57m.12s., e = 62m.19s., eL = 64m.2s.Ferndale ePN = 57m.20s., ePE = 57m.24s.Berkeley iPZ = 57m.58s., iPN = 58m.11s.St. Louis iPZ = 58m.19s., eSN = 67m.17s. Ottawa eZ = 59m.11s., L = 70m.Bozeman e = 59m.33s., eL = 60m.20s.Santa Clara eE = 59m.42s.Long waves were also recorded at other American stations.

April 15d. 11h. 34m. 43s. Epicentre 31°.5S. 71°.0W. (as on 1941 August 3d.)

 $A = + \cdot 2781, B = - \cdot 8077, C = - \cdot 5199; \delta = +1; h = +1;$ D = -.945, E = -.326; G = -.169, H = +.492, K = -.854.Az. Р. 0 – C. S. 0 – C. Supp. L. 8. m. s. m. s. s. m. s. 0 m, 0 2 45 2 53 2 47 1 3 43 a $- {2 \atop + 6 \atop 0}$ $5 11 \\ 5 17 \\ 5 11 \\ 1 6 57$ La Plata 11.4 111 SS SS Е. 5.811.4 111 N. 6.0 11.4 111 SS Z. 5.9 52 $15 \cdot 2$ 10 La Paz + SS $\begin{array}{rrrr} 1 & 4 & 2 \\ 1 & 5 & 26 \end{array}$ PP 8.5 19.8 e 4 18 3493719 Huancayo \mathbf{PP} 6 i 10.9

Rio de Janeiro Fort de France San Juan Columbia Philadelphia	N.	$26 \cdot 1$ $46 \cdot 9$ $49 \cdot 8$ $65 \cdot 8$ $71 \cdot 2$	78 15 7 352 358	i 5 47 e 8 33 e 8 56 e 13 29 e 11 23	+10 - 1 0 PP 0	$\begin{array}{rrrr}1 & 10 & 35\\ e & 15 & 56\\ e & 19 & 38\\ e & 20 & 43\end{array}$	$+\frac{28}{-10}$ $+\frac{3}{-3}$	e 10 55 e 13 50	$\frac{-}{PP}$	1 14 · 3 e 24 · 8 e 27 · 3 e 31 · 7
Fordham St. Louis Pittsburgh Florissant Harvard		72.072.072.172.273.6	$359 \\ 345 \\ 354 \\ 345 \\ 0$	e 11 27 i 11 25 i 11 29 e 11 40	$-\frac{1}{3}$ + $\frac{0}{3}$	e 21 1 1 20 47 e 21 54 1 20 49 e 21 17	$^{+12}_{-2}$ PPS $^{-2}_{+10}$	e 11 40 1 25 23	PeP SS	e 48·3
Tucson Chicago Ottawa La Jolla Palomar	z. z.	73.8 74.5 76.6 77.5 77.7	326 348 357 322 323	i 11 33 e 11 30 11 56 12 4 e 11 58	$-5 \\ -12 \\ + 2 \\ + 5 \\ - 2$	e 21 8 e 21 3 21 42	-1 -14 +2 -14	e 14 6 30 17?	PP SSS	e 34.6 e 32.8 e 38.3
Seven Falls Mount Wilson Pasadena Haiwee Salt Lake City	z. z.	$78.3 \\ 79.0 \\ 79.0 \\ 80.4 \\ 81.2$	2 323 323 324 331	$\begin{array}{c} i \ 12 & 4 \\ e \ 12 & 4 \\ i \ 12 & 12 \\ \hline 1 \ 12 & 12 \end{array}$	- 3 - 3 - 3	e 22 0 1 22 4 e 22 23	+1 -2 -6	e 27 177 e 28 1	ss ss	41 · 3 e 37 · 7 e 41 · 3
Tinemaha Logan Santa Clara Berkeley	E. N. Z,	81 · 3 82 · 0 83 · 4 84 · 0 84 · 0	324 332 323 323 323	$\begin{array}{r} e & 12 & 16 \\ e & 12 & 30 \\ \hline 1 & 12 & 51 \\ i & 12 & 32 \end{array}$	- 4 + 7 PeP	e 22 32 e 22 32 e 22 49 1 22 55 1 23 28	+ 2 - 5 - 2 PS	e 15 43	PP 	e 35·4 e 43·3 e 41·6 e 41·4

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1.1

		2223
1	A 1	0
- 1	чĸ	1.15
: B	9 7	rv.

		Å	Az.	P. m. s.	0 – C. s.	S. m. s.	0 – C. s.	m. s.	pp.	L. m.
Bozeman Ukiah Christchurch Wellington Butte		85.0 85.4 85.4 85.6 85.8	334 323 221 224 333	$12 \ 41 \ 12 \ 38$	+ 1 - 3	e 23 0 0 e 23 11 22 41 23 27 22 28	$-70 \\ -30 \\ +14 \\ 7$	e 28 53 15 38 29 22	SS PP SS	e 43.6 e 41.9 38.9 42.3 e 46.5
Arapuni Auckland Saskatoon Seattle Victoria		$87.0 \\ 88.3 \\ 88.9 \\ 91.3 \\ 92.4$	$227 \\ 228 \\ 339 \\ 329 \\ 329 \\ 329$	 13 28	+14	$\begin{array}{r}23&17\\23&7\\e&23&39\\e&21&26\\24&17\end{array}$	$ \begin{bmatrix} + & 3 \\ - & 15 \\ - & 5 \\ + & 1 \end{bmatrix} $			$ \begin{array}{r} 39 \cdot 3 \\ 41 \cdot 0 \\ 36 \cdot 3 \\ 41 \cdot 3 \end{array} $
Granada Tortosa Kew Paris Riverview	E.	$92.9 \\ 97.6 \\ 103.2 \\ 103.3 \\ 103.8 \\ 103.8 \\ $	49 48 38 41 216	$\begin{array}{r} 16 & 41 \\ e & 18 & 47 \\ e & 18 & 50 \\ \hline \end{array}$	PP PP PP	$\begin{array}{r} 26 & 24 \\ e & 24 & 56 \\ e & 24 & 53 \\ \hline 1 & 24 & 39 \end{array}$		$ \begin{array}{c} 31 & 2 \\ 31 & 4 \\ \hline 1 & 27 & 30 \end{array} $	$\frac{ss}{ss}$	e 49·3 e 44·3 54·3 e 47·3
Sitka Uccle Aberdeen De Bilt Stuttgart	24	$103.8 \\ 105.3 \\ 105.6 \\ 106.5 \\ 107.1 \\$	330 39 33 39 43	e 21 40 e 21 11? e 18 47 e 14 19	PKS PPP PP P	e 25 54 e 24 53 e 28 47 e 25 7 e 25 2	$^{+ 2}_{[+ 1]}$ PS $^{[+10]}_{[+ 2]}$	e 27 49 e 27 56 e 28 12 e 18 47	$\frac{\mathbf{PS}}{\mathbf{PS}}$	e 37.0 e 48.3 57.5 e 50.3 57.2
Scoresby Sund Cheb College Sofia Helwan		$107.5 \\ 109.5 \\ 112.8 \\ 113.5 \\ 114.6$	$15 \\ 43 \\ 333 \\ 54 \\ 70$	e 18 17 ?	PP 	e 28 18 e 28 50 e 24 24 e 29 23 e 25 41	$PS \\ PS \\ [-59] \\ PS \\ [+10]$	e 38 10 e 29 31	sss PS	e 58.8 e 56.3 e 26.0 e 65.3
Upsala Kodaikanal Bombay Tashkent Hyderabad	Е. Е.	$116.0 \\ 143.9 \\ 145.1 \\ 146.8 \\ 149.0$	$35 \\ 119 \\ 103 \\ 61 \\ 111$		$[-38] \\ [+2] \\ [+3] \\ [+10] \\ [+10]$	e 29 37 32 33 29 55 27 2	PS SKSP {+ 4} [+13]	e 36 51 41 9 19 50 23 10	SSP SS PKP ₂ PP	e 62·3
New Delhi Calcutta	N. N.	$152.4 \\ 159.6$	88 111	e 20 32	[+31]			e 22 49 1 35 34	??	
Additional rea Huancayo San Juan e Philadelphi St. Louis e	iP = SS = a e =	4m.41s. =19m.45 =16m.5	ls. 8s., e	SSi = 24m eSPE = 21	.52s., e m.24s.,	=28m.34i iN $=21m$	s. 41s., et	SE = 22m	.40s.	

```
Harvard e = 21m.44s.
Tucson i = 12m.48s., iS_cS = 21m.12s.
Logan e = 23m.37s., 25m.8s., and 28m.1s.
Christchurch SS = 28m.22s., SSS = 31m.13s., Q = 34m.37s.
Wellington SKS = 22m.59s., SS = 29m.22s., SSS = 33m.2s., Q = 39 \cdot 3m.
Auckland S = 23m.29s., e = 24m.45s.
Riverview eSSEN = 32m.56s., eSSSN = 37m.18s.
Aberdeen eN = 49m.9s., QE = 52m.59s.
De Bilt eSS = 33m.17s.
Stuttgart eS = 26m.33s., ePS = 28m.25s., eSS = 33m.53s., eSSS = 38m.11s.?.
Scoresby Sund e = 42m.59s.
College e = 25m.4s.
Helwan eN = 26m.56s., PS?EN = 30m.41s.
Upsala eN = 40m.17s.?.
Bombay PPE = 23m.3s., iE = 23m.49s., SKSPE = 33m.15s., PPSE = 35m.39s., SSE =
    41m.56s.
Tashkent PKS = 23m.31s., SKKS = 30m.9s., PS = 33m.37s., PPS = 36m.10s.
Long waves were also recorded at Montezuma, Honolulu, Tananarive, Sydney, and
    other European stations.
```

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

2.4	A 44	
-12	0/1'	
	2548-	
1.77		

2

1.0

145

April 15d. 12h. 28m. 7s. I 15h. 23m. 1s. II 15h. 31m. 0s. III 15h. 33m. 31s. IV 17h. 59m. 17s. V 22h. 7m. 39s. VI	Epicentre 37°.6N. 121°.9W. (as on 1943 March 29d.).
Epicentre 37°.5N. 121°.4W.	IV at Byron, Lafayette, Livermore, Moss Beach, Newark, rnalis, and Walnut Creek. facroseismic area 2000 sq. m.

R. Bodle. United States Earthquakes, 1943, Washington 1945, p. 10. Map of epicentres p. 4.

A =
$$-.4197$$
, B = $-.6743$, C = $+.6076$; $\delta = +1$; $h = -1$;
D = $-.849$, E = $+.528$; G = $-.321$, H = $-.516$, K = $-.794$.

		Δ	Az.	Р.	0-C.	s. o-c.	L.
I Branner II		0.3 0.3	231 231	m. s. i 0 12 i 0 11	8. + 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	m.
111		0.3	231	i ŏ 11	ŏ		
IV	12230	0.3	231	10 12	+ 1	1020+2	
	E.	0.3	231	10 11	. 0		
VI		0.3	231	i 0 12	+ 1	i 0 19 + 1	
	E.	0.3	138	10 11	0	i016 - 2	
II		0.3	138	i 0 10	- 1		
III IV		0.3	$138 \\ 138$	10 9	- 2	1015 0	
v		0.3	138	$ \begin{array}{ccc} i & 0 & 10 \\ i & 0 & 9 \end{array} $	- 1	1015 - 3	
VI		0.3	138	10 11	- ő	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	
1998 N. 28530				10.00	-		
11 Santa Clara		$0.3 \\ 0.3$	189	i 0 20	Ĩ	10 25 7	
v	7	0.3	$189 \\ 189$	(10 9) (10 11)	- 2	10 14 - 4	
	z. z.	0.3	189	'i 0 11'	ŏ	(10 16) - 2	_
I Berkeley		0.4	313	i0 13	0	i019 - 2	950573
п		0.4	313	i 0 12	- 1		
111		0.4	313	i ŏ 11	- 2	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	1.000
IV		0.4	313	i 0 13	ō		
v		0.4	313	10 12	- 1		
VI		0.4	313	i012	- 1	i019 - 2	
11 Ukiah		1.8	326	e 0 34	+ 2	e 1 8 Sg	e 1.5
111		1.8	326	e 0 36	+ 4	$e 1 8 S_g$ $e 1 7 S_g$	e 1·4
V T		1.8	326	e 0 44	$\mathbf{P}_{\mathbf{g}}$	e 1 10 Sg	e 1·4
	N.	1.9	117	i 0 197	-15	11 1 + 2	e 3·4
1 100 0 223 0 57	N.	$1.9 \\ 1.9$	$117 \\ 117$	i 0 34	0	1055 - 4	
	N. N.	1.9	117	i 0 38	+ 7	e 0 55 - 4	
			111	10 00	Τ #	i0590	
III Tinemaha		2.9	100	i0 51	+_3	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	
II Ferndale		3.5	328	e 1 31	s	1	
NII V		3.5 3.5	328 328	a 1 1	. 7	e 1 26 -14	e 1.6
III Haiwee		3.5	116	e 1 1 10 58	$^{+}_{+1}$	$(e_1 29) -11$	-
111 Mount Wilson 2	Ζ.	4.6	137	i 1 13	Ŧi	1145 + 5	
III Pasadena		4.6	138	i1 12	0	e 2 5 - 2	
III Palomar 2	L .	5.9	135	i 1 30	- 1		
III Salt Lake City		8.4	65 59			e 3 59 +16	e 4·6
III Logan		8.8	59	e 2 36	+25	e 3 10 -43	14.7
II Tucson		10.5	117	e 2 23	-12		e 6.0
III	5	10.5	117	e 2 35	0		
IV		10.5	117	e3 1	+26	(e4 46) +11	e 4·8

17

12

Additional readings and note :— Branner I iEN = 21s.

1.0

Santa Clara V readings have been increased by 1m. Berkeley III iSZ = 30s. Ukiah III i = 1m.16s. Ferndale V eSN = 2m.49s. reading entered as S is given as ePE. Long waves were recorded at Salt Lake City II and V, Bozeman V, and Logan V.

•

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

146

April 15d. 14h. 33m. 17s. Epicentre 0°.6S. 81°.7W. (as on 1942 Dec. 15d.).

A = + $\cdot 1443$, B = - $\cdot 9895$, C = - $\cdot 0104$; $\delta = +4$; h = +7; D = - $\cdot 990$, E = - $\cdot 144$; G = - $\cdot 002$, H = + $\cdot 010$, K = -1 $\cdot 000$.

		Δ	Az.	Р.	0-C.	s.	0-C.	L.
		0	•	m. s.	8.	m. s.	в.	m.
Bogota		9.2	56	(e 2 431)	$\mathbf{P}_{\mathbf{g}}$			
Huancayo		13.0	151	e 3 10	+ 1	e 5 52	SS	i 6.9
La Paz	Z.	20.7	141	4 41	- 3	18 37	+ 6	11.1
San Juan	erza. I	24.3	38	e 5 17	- 3	e 9 55	+18	e 13.6
Fort de France		25.4	54	e 3 39	\$	—		—
St. Louis		39.8	350	e 6 41	- 55	e 13 39	- 3	
Tucson		42.7	323	i8 0	0	e 13 51	3	e 21·8
Mount Wilson	Z.	48.6	320	i 8 47	0			
Pasadena		48.6	320	i 8 49	+ 2		•	e 24·1
Tinemaha	z.	50.5	322	e 9 2	0			

Additional readings :--

Bogota reading has been diminished by 10 minutes.

Huancayo 1 = 3m.45s.

La Paz iPZ = 4m.44s.

San Juan e = 6m.35s.

St. Louis eZ =7m.33s., eN =13m.23s., eE =16m.27s.

April 15d. Readings also at 2h. (La Plata), 4h. (near Apia), 9h. (near Andijan, Tashkent, and near Fort de France), 10h. (near Andijan and Tashkent), 12h. (College), 13h. (Seattle), 15h. (near Berkeley, Branner, Lick, Fresno, and Santa Clara (2)), 16h. (Santa Clara (3)), 17h. (Santa Clara (4), near Berkeley, Haiwee, Mount Wilson, Pasadena, Riverside, Tinemaha, Tucson, College, Sitka, Bozeman, Logan, Salt Lake City, St. Louis, Florissant, Harvard, Fordham, Philadelphia, and Columbia), 18h. (Bermuda), 21h. (Haiwee (2), Mount Wilson (2), Pasadena, Riverside (2), Tinemaha (2), Tucson, Sitka, College, Florissant, Philadelphia, and near Mizusawa).

April 16d. 1h. 13m. 28s. Epicentre 0°.6S. 81°.7W. (as on 15d.).

 $A = + \cdot 1443, B = - \cdot 9895, C = + \cdot 0104; \delta = +4; h = +7;$

		Δ	Az.	Р.	0-C.	s.	0 – C.	Su	pp.	L.
		•	•	m. s.	8.	m. s.	8.	m. s.		m.
Bogota		9.2	56	e 2 29	\mathbf{PP}	e 3 53	-10	e 2 38	PPP	
San Juan		24.3	38	e 5 17	- 3	e 9 48	+11	e 6 37	PPP	e 13·2
Tucson		42.7	323	i8 3	+ 3					e 43·2
Riverside	Z.	48.0	320	i 8 44	+ 1					
Mount Wilson	z.	48.6	320	18 50	+ 3			-		
Tinemaha	Z.	50.5	322	e 8 59	- 3					

San Juan also gives e =9m.32s., iS =9m.51s. Long waves were recorded at Huancayo and La Paz.

April 16d. 11h. 43m. 11s. Epicentre 36°.1N. 4°.6E.

Massif des Bibans ; damage at Mansourah, Dar-Beida, Medjana, etc. Epicentre 36° 05'N., 4° 33'E. (Strasbourg).

J. P. Rothe.

Les Séismes de Kerrata et la séismicité de l'Algérie.

Annales de l'Institut de Physique du Globe de Strasbourg, 3e part., Géophysique, t. VI, 1950, p. 32-33.

> $A = +.8073, B = +.0650, C = +.5866; \delta = +6; h = 0;$ D = +.080, E = -.997; G = +.585, H = +.047, K = -.810.

		Δ	Az.	P .	0-C.	s. o	-C.	Supp.	L.
		•	•	m. s.	8.	m. s.	8.	m. s.	m.
Barcelona		5.6	342	e 1 26	- 1	2 26 -	- 7		3.1
Almeria		5.7	279	1 26	- 2	- XV	- 5	1 40 P*	3.1
Tortosa	E.	5.7	327	1 27	- 1	2 58	S*.	1 43 P*	
Granada		6.7	283	1 1 39	- 3	34 -	- 4	2 1 P*	
Toledo	Z.	7.8	302	i1 55	- 3				

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943						147					
San Fernando Florence Clermont-Ferraz Milan Neuchatel	N. nd	∆ 8·7 9·2 9·7 10·0 11·0	Az. 275 32 354 19 8	H m. e 1 e 3 e 2 e 2	54 47 27 40	0 - C. 8. -16 5 + 5 + 13 + 3	S. m. s. e 3 33 (e 3 47) i 4 18 5 12	0 - C. 8. 17 16 + 3 S*	m. 8. 	рр. s•	$ \begin{array}{c} $
Chur Lisbon Basle Zürich Triest	N.	$11.3 \\ 11.3 \\ 11.7 \\ 11.7 \\ 11.8 \\ $	$17 \\ 288 \\ 10 \\ 14 \\ 33$	e 2 e 2 e 2 e 3	35 49 53	+5-11-2+2+9	e 4 57	$+\frac{12}{7}$	<u>5</u> 23 	ss 	e 6.0 5.8 e 7.4 e 6.6 e 6.0
Strasbourg Paris Stuttgart Belgrade Cheb		$12.7 \\ 12.8 \\ 13.1 \\ 14.9 \\ 15.1 \\$	$10 \\ 353 \\ 13 \\ 49 \\ 20$	e 3 i 3 e 3 e 3 e 3		PPP + 3 - 1 + 2 PPP	e <u>6</u> 2		e 3 13 e 4 9	PP PPP	e 5.8 7.8 e 7.0 e 7.8
Jena Prague Kew De Bilt Uccle		$15.7 \\ 15.7 \\ 15.8 \\ 16.0 \\ 16.0 \\ 16.0 \\ 16.0 \\ 16.0 \\ 16.0 \\ 16.0 \\ 16.0 \\ 16.0 \\ 10.0 \\ $	$ \begin{array}{r} 16 \\ 24 \\ 348 \\ 1 \\ 0 \\ \end{array} $	e 3 i 3 e 3 e 3	45 51	$-\frac{0}{0}$ + $\frac{3}{15}$	e 6 50 e 7 9 (e 6 497)	+ 8 + 8 + 3	$e_{1}^{\overline{7}} 13?$ $18^{\overline{19}}$	sss PeP	e 7.3 e 7.8 e 6.8
Copenhagen Aberdeen Helwan Yalta Ksara		$20.3 \\ 21.5 \\ 23.2 \\ 23.9 \\ 25.7$	$ \begin{array}{r} 13 \\ 351 \\ 98 \\ 61 \\ 87 \\ 87 \\ \end{array} $	4 i4 i5 e5 e5	42 54 10 a 14 42 i	+ 2 + 2 + 1 + 2 + 2 9	$i \frac{1}{9} \frac{1}{25}$ e 10 18	$-\frac{6}{7}$ + $\frac{7}{7}$ + $\frac{17}{7}$	<u>-</u> 5 40		
Tucson Tinemaha Riverside Mount Wilson Pasadena	Z. Z. Z.	$89.0 \\ 89.9 \\ 91.7 \\ 91.9 \\ 92.1$	$318 \\ 316 \\ 316$	e 12 e 13 e 13 e 13 e 13	$ \begin{array}{c} 3 \\ 10 \\ 10 \end{array} $	$ \begin{array}{c} - & 2 \\ + & 1 \\ - & 0 \\ - & 7 \\ - & 7 \end{array} $			e 13 15	$\frac{\mathbf{P_{c}P}}{=}$	e 47·4
Additional rea Almeria Pg Granada 2n Clermont-F Lisbon PZ = Strasbourg Stuttgart e Belgrade e	=1m n.258, erran =2m, i = 3n Q = 6	.478., $2m.3$ d $1=2$ 398.7a, n.408. m.198.	9s., i m.39 E ={	Sg = 3 s., eP	m.9s *=3	., 3m.20	8.		a.59s.		

Helwan PPPZ = 5m.58s.

Long waves were also recorded at Potsdam.

```
April 16d. 16h. Undetermined shock.
    Brisbane eE =44m.13s., iN =47m.27s.
    Auckland S =44m.17s., SS =48m.20s., Q =49m.
    Wellington S = 44m.55s., SS = 48m.30s., Q = 51m., R = 53m.
    Riverview eP=45m.1s., iZ=45m.10s., iN=45m.49s., iSEN=48m.49s., iPcPZ=
        48m.59s., eLN = 50.6m.
    Christchurch e=45m.40s., i=49m.19s., L=50m.16s.
    Arapuni SS? = 48m.0s.?.
    Mount Wilson ePZ = 53m.15s.
    Pasadena ePZ = 53m.15s., eLZ = 86m.
                                                          е.
    Riverside ePZ = 53m.16s.
   Tinemaha iPZ = 53m.21s., iZ = 53m.32s.
    Tucson eP = 53m.35s., e = 53m.50s.
```

April 16d. Readings also at 0h. (La Plata, Sitka, Ukiah, Riverside, Mount Wilson, Haiwee, Tucson, and Tinemaha), 1h. (Philadelphia and Harvard), 3h. (Harvard, near Bogota), 10h. (near Berkeley, Lick, and Santa Clara), 16h. (Sydney), 17h. (Tucson), 20h. (La Plata), 21h. (near Cape Girardeau), 22h. (Fort de France), 23h. (Fordham).

x.

- 10+

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

148

April 17d. 2h. Undetermined shock.

Vladivostok eP = 47m.2s., iS = 53m.25s.Brisbane eE = 48m.51s., iE = 51m.4s., 52m.52s., 53m.57s., and 56m.21s.Riverview iN =49m.56s., iE =52m.41s., 54m.28s., and 55m.24s., iN =55m.31s., iE = 56m.4s., iN = 56m.11s.Andijan eP = 49m.56s. Tashkent P = 50m.3s. Perth P = 51m.0s., S = 55m.50s., SS = 57m.25s., L = 59m.25s.Tinemaha ePZ = 51m.58s. Mount Wilson iPZ = 51m.59s., iZ = 52m.9s., eZ = 52m.33s.Pasadena iP = 51m.59s.k, eLEZ = $85 \cdot 1m$.

Riverside iPZ = 52m.0s.k. Tucson e = 52m.28s., 56m.49s., and 57m.8s., eL = 88m.31s.Sydney e = 52m.48s.1 and 56m.0s. Auckland S = 53m.40s., Q = 65m.Wellington S? = 54m.0s.?, SS? = 59m., Q = 65m., R = $67 \cdot 5m.$ Christchurch S = 54m.21s., Q = 61m.59s., R = 65m.43s.Arapuni SS? = 60m., L = 65m.Long waves were also recorded at Fordham, Kew, Uccle, De Bilt, and Stuttgart.

- April 17d. Readings also at 0h. (Bozeman, Salt Lake City, Saskatoon, Seattle, Victoria, Sitka, Haiwee, Mount Wilson, Pasadena, Riverside, Tinemaha (2), and Tucson (2)), 1h. (Pittsburgh), 2h. (Pasadena, Riverside, Tinemaha, Tucson, Yalta, Ksara, Triest, De Bilt, Kew, Stuttgart, Belgrade, Bucharest, Sofia, and near Istanbul (2)), 4h. (Kew), 8h. (Philadelphia), 9h. (Riverview), 11h. (Riverview, Auckland, Wellington, Pasadena, Mount Wilson, and Philadelphia), 12h. (Cheb and near Fort de France), 13h. (Cheb), 15h. (near Mizusawa), 19h. (La Plata, near Berkeley, Branner, Lick, and Fresno), 22h. (near Almeria), 23h. (Tashkent and Tchimkent).
- April 18d. Readings at 0h. (Tinemaha and Tucson), 1h. (Harvard and near Bogota), 2h. (near Mizusawa), 3h. (near Bogota and La Plata), 5h. (Mount Wilson, Riverside, Tinemaha, Tucson, Auckland, Christchurch, Wellington, and near Fort de France), 6h. (La Plata and near Bogota), 9h. (Riverside, Tucson, and Tinemaha), 11h. (Guadalajara, Manzanillo, Tacubaya, Tucson, and Tinemaha), 14h. (Granada, Stuttgart, near Tashkent, and Tchimkent), 15h. (Huancayo), 16h. (Kew), 19h. (near Branner, near Ferndale, and near Mizusawa).

April 19d. 1h. 19m. 11s. Epicentre 17°.2N. 81°.3W.

A =	= + •	1446, 1	B = -	·9448	, C =	= + .293	$\theta; \delta =$	-7;	h = +5;		
\mathbf{D}		988, E	= •	151;		$\mathbf{G} = + \cdot 0$	44, $H = -$	·290, 1	$\mathbf{X} = - \cdot 956.$		
			Az.	F	».	0 – C.	s.	0 – C.	Su	op.	L.
		0		m.	8.	S.	m. s.	8.	m. s.		m.
Balboa Heights		8.4	167	e 2	23	\mathbf{P}^{\bullet}	e 4 45	S.			
Bogota		14.4	149	e 3		0			e 3 37	\mathbf{PP}	
San Juan		14.5	82	e 3		+1					e 7·3
Columbia		16.7	1			·	e79	+ 6		07570	e 8.6
Fort de France		19.5	96	e 4	31	0					
Bermuda		21.3	42	(e4	50)	0	(e 8 46)	+ 3		_	(e9·9)
Cape Girardeau		21.3	341	e 4		- 2	e 8 42	- 1		-	—
St. Louis		22.8	341	i 5		- 1	i 9 11	0	i5 18	\mathbf{PP}	
Florissant		22.9	341	i 5	35	\mathbf{PP}	i 9 15	+ 2			i 13·4
Pittsburgh		$23 \cdot 2$	3	e 6	4	PPP	i924	+ 6		-	e 12·3
Fordham		24.4	14	е 5	22	+ 1	e 9 46	+ 7			e 13·3
Chicago		25.1	347	e 9 6	5 3	$P_{c}P$	e 4 36	1	e 10 21	SS	e 12·2
Ottawa		28.5	9	6	3	+ 4	10 491	+ 3			13.8
Huancayo		29.7	168	-	-22		e 11 13	+ 7	(e 13 6)	SSS	e 13·1
Tucson		30.6	305	e 6	15	- 3			e75	\mathbf{PP}	e 22·7
Seven Falls		31.1	14		2000		e 11 25	- 3		1	14.8
Riverside	z.	36.4	304	i7	9	+ 1					
Mount Wilson	z.	37.0	304	е 7	14	$^{+1}_{+1}$	_			_	
Pasadena	z.	37.0	304	e 7	14	+ 1		100			21-72
Tinemaha	z.	38.1	309	е 7	21	- 1	·		e 8 52	\mathbf{PP}	

Bermuda readings have been diminished by 1m.

Tucson also gives e = 12m.5s.

Long waves were also recorded at Bozeman, Sitka, and De Bilt.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

э.

а.

149

April 19d. Readings also at 0h. (Basle, Triest, and near Florence), 2h. (Belgrade, Focsani, Bucharest, and Sofia (2)), 3h. (Triest), 5h. (Fort de France, Tucson, and Tine-maha), 8h. (near Fort de France), 11h. (Harvard, Bozeman, Salt Lake City, Tine-maha, Haiwee, Pasadena, Mount Wilson, Riverside, and Tucson), 12h. (Cheb), 17h. (Huancayo), 19h. (Upsala), 21h. (near St. Louis, Cape Girardeau, Stablesched, Focsani, 20h. (Destination), 20h. (Cheb), 20h. near Stalinabad, Tashkent, and Andijan), 22h. (near Cape Girardeau), 23h. (Tinemaha).

April 20d. 15h. 19m. 33s. Epicentre 36°·3N. 71°·0E. Depth of focus 0.020.

(as on 1943, Feb. 28d.). $A = + \cdot 2630, B = + \cdot 7638, C = + \cdot 5894,$ $\delta = -5;$ h = 0; G = +.192, H = +.557, K = -.808. D = + .946, E = - .326;Supp. 0 – C. s. L, 0-C. Р. AZ, Δ m. s. s. m. s. m. s. m. s. ö. -121 50 9 14 i 1 0 $4 \cdot 6$ Andijan 0 $5 \cdot 2$ i 1 17 347 Tashkent (e 3 55) -3 8.3 32 Almata --S +22e 3 55 8.4 133 _ -Dehra Dun N. ---i 3 53 i 3 47 -----5 2 1 + -9.3 e 2 17 144 New Delhi E. 2 27 \mathbf{PP} - $\overline{7}$ i 2 10a 9.3 144 N. \mathbf{PP} 10.0 5 49 $\mathbf{2}$ 7 + 1 7 -+ $\mathbf{22}$ 159 Hyderabad 19.9 4 Е. 18 32 59 1 \mathbf{PP} i 7 e 4 54 127 20.4Calcutta N. 3 $^{+1}_{+1}$ i 8 27 i4 40 345 21.7 Sverdlovsk 88 e 11 40 e 5 46 28.8 275Ksara e 11 31 +54+326 26 321 29.8 Moscow e 9 271 e 13 27? - 4 \mathbf{PP} 10000 322 -41.2 Upsala SS 17 41 48 6 5 - 2 7 _ 315 43.6 Copenhagen 3 e 8 e 8 Ξ 46.0 306 Stuttgart z. -----9 304 46.6 Zürich i 9 32 -3 298 57.5 Toledo z. Additional readings :---Andijan Pg = 1m.20s., iSg = 2m.1s.New Delhi PgN = 2m.44s., S*N = 4m.9s., SgN = 4m.29s. Copenhagen 8m.25s.

Toledo i = 10m.15s. and 10m.44s.

- April 20d. Readings also at 0h. (Bogota, Tacubaya, Tucson (2), Mount Wilson, Pasadena. Riverside (2), and Tinemaha (2)), 2h. (Tacubaya, near Berkeley, Branner, and Lick), 4h. (Mount Wilson, Haiwee, Riverside, Tucson, and Tinemaha), 6h. (La Plata, Tucson, and Tinemaha), 10h. (near Andijan), 12h. (Upsala), 15h. (Auckland, Christchurch, and Wellington), 17h. (Tashkent and near Stalinabad), 18h. (2) and 19h. (3) (near Almeria), 23h. (near Andijan and Tashkent).
- April 21d. Readings at 0h. (near Andijan and Tashkent), 2h. (Fresno, near Branner, and Lick), 4h. (Stuttgart and near Tananarive), 5h. (near Fresno), 7h. (near Ottawa), Sh. (near Ebingen and Stuttgart), 9h. (Berkeley, Santa Clara, near Branner, Fresno, and Lick), 11h. (near Ebingen, Stuttgart, and Zürich), 14h. (near Tashkent), 16h. (Haiwee, Mount Wilson, Pasadena, Riverside, Tinemaha, Tucson, College, and Stuttgart), 17h. (San Francisco, near Berkeley, Branner, Fresno, Lick, and Santa Clara), 18h. (Mount Wilson, Tucson, and Tinemaha), 19h. (Triest), 22h. (near Florissant (2)), 23h. (Tucson, San Francisco (3), near Berkeley (3), Branner (4), Fresno (3), Lick (5), and Santa Clara (3)).
- April 22d. Readings at 1h. (near Bogota), 2h. (New Delhi, Bombay, and near Tchimkent), 3h. (Auckland, De Bilt, and Kew), 5h. (La Paz, Bogota, Tucson (2), Haiwee, Mount Wilson (2), Riverside, and Tinemaha (2)), 7h. (College, Haiwee, Mount Wilson, Pasadena, Riverside, Tucson, and Tinemaha), 9h. (Hyderabad), 10h. (Mount Wilson, Pasadena, Tucson, and Tinemaha), 14h. (Haiwee, Mount Wilson, Pasadena, Riverside, Tucson, Santa Barbara, Tinemaha, and near Stalinabad), 15h. (near Tchimkent), 17h. (near Mizusawa), 18h. (Tashkent), 20h. (Mount Wilson, Pasadena, Riverside, and Tinemaha).

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

150

April 23d. 18h. 7m. 53s. Epicentre 20°.5S. 70°.5W. (as on 1940 Oct. 27d.).

A = + $\cdot 3129$, B = - $\cdot 8836$, C = - $\cdot 3481$; $\delta = -17$; h = +5; D = - $\cdot 943$, E = - $\cdot 334$; G = - $\cdot 116$, H = + $\cdot 328$, K = - $\cdot 937$.

		Δ	Az.	P. m. s.	0 - C. 8.	S. m. s.	0 – C. s.	m. s.	pp.	L. m.	
Montezuma Huancayo La Plata Bogota Rio de Janeiro	N.	2.6 9.6 18.1 25.2 25.5	$144 \\ 330 \\ 144 \\ 353 \\ 102$	e 2 32 4 16 e 5 29 e 9 39	+11 + 2 0 S	e 1 18 e 4 27 7 54 (e 9 39)	+ 1 +15 SS	$e^{\frac{1}{8}}_{\frac{1}{6}}$		i 1 · 8 i 4 · 8 9 · 3 · e 13 · 2	
San Juan Bermuda Cape Girardeau Fordham St. Louis	N.	$38.9 \\ 52.8 \\ 60.2 \\ 61.1 \\ 61.7$	8 7 344 358 344	$\begin{array}{c} e \ 7 \ 24 \\ e \ 16 \ 21 \\ e \ 10 \ 9 \\ i \ 10 \ 17 \\ e \ 10 \ 18 \end{array}$	- 5 - 3 - 1 - 4	e 13 17 e 16 48 e 18 17 e 18 37	-11 + 1 - 8 - 7	e 10 45	*	e 25.6	
Harvard Tucson Ottawa La Jolla Riverside	N.	$62.7 \\ 65.1 \\ 65.7 \\ 69.4 \\ 70.2$	$\begin{array}{r} 0 \\ 324 \\ 356 \\ 320 \\ 321 \end{array}$	i 10 26 i 10 44 e 10 46 e 11 12 e 11 16	$ \begin{bmatrix} - & 3 \\ - & 1 \\ - & 2 \\ 0 \\ - & 1 \end{bmatrix} $			e 13 35 e 11 24	PP 1	34·0 31·1	
Mount Wilson Pasadena Haiwee Tinemaha Granada		70.8 70.8 72.0 72.9 85.2	$321 \\ 321 \\ 322 \\ 322 \\ 48$	i 11 20k i 11 21k i 11 27 i 11 34k i 12 44	$+ 1 \\ - 1$	e 20 38 e 21 3 23 24	$+\overline{3} + \overline{4} + \overline{4} + \overline{15}$	$ \begin{array}{c} i & 11 & 31 \\ i & 11 & 32 \\ $? 	41·6	
Almeria Toledo Tortosa Stuttgart Sverdlovsk Tashkent Andijan	N.	$85.8 \\ 86.2 \\ 89.7 \\ 98.6 \\ 129.0 \\ 140.2 \\ 142.6$	$\begin{array}{r} 49 \\ 46 \\ 47 \\ 41 \\ 32 \\ 49 \\ 49 \end{array}$	e 12 50 i 12 43 e 13 41 e 19 10 19 34 19 29	$+ 8 \\ - 1 \\ - 1 \\ [- 0] \\ [+ 3] \\ [- 6]$	$\begin{array}{r} 23 & 57 \\ 24 & 37 \\ 1 & 24 & 0 \\ 31 & 27 \\ e & 26 & 28 \end{array}$	PS + 8 	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	PP PS PS PKS PKS	44 · 1 41 · 1 e 51 · 1 	

Additional readings :---

La Plata N = 5m.7s., E = 5m.13s., N = 5m.43s., E = 6m.25s., N = 8m.13s. Tucson e = 12m.39s., ePPP? = 14m.46s. Almeria i = 12m.59s., PS = 24m.11s., PPS = 24m.37s., SS = 28m.58s. Long waves were also recorded at Arapuni, Wellington, Bombay and at other European stations.

- April 23d. Readings also at 2h. (near Andijan, Tashkent, and Frunse), 4h. (near Mizusawa (2)), 6h. (Mount Wilson, Tucson, Copenhagen, De Bilt, Stuttgart, Andijan, Tashkent, Hyderabad, Bombay, New Delhi, Calcutta, and Kodaikanal), 8h. (near Bogota), 9h. (near Mizusawa), 12h. (near Lick and Berkeley), 18h. (near Mizusawa), 20h. (near Bucharest, Bacau, Campulung, and Focsani), 21h. (near St. Louis (2)).
- April 24d. Readings at 1h. (near Fresno), 2h. (Mount Wilson, Tinemaha, Haiwee, Tucson, near Tashkent, and Andijan), 15h. (Fordham), 16h. (near Mizusawa), 17h. (near St. Louis and Florissant), 19h. (Sofia and Triest), 21h. (Mount Wilson, Tinemaha, Tucson, Toledo, and Kew), 22h. (Granada), 23h. (Fort de France).

April 25d. 11h. 35m. 9s. Epicentre 48°.2N. 9°.0E. Foreshock of May 2d. 1h.

A = + $\cdot 6609$, B = + $\cdot 1046$, C = + $\cdot 7432$; $\delta = +8$; h = -5; D = + $\cdot 156$, E = - $\cdot 988$; G = + $\cdot 734$, H = + $\cdot 116$, K = - $\cdot 670$.

	Δ	Az.	Р.	0 – C.	s.	0 – C.	Supr).	L.
	0	0	m. s.	8.	m. s.	8.	m. s.		m.
Ebingen	0.0		i0 1	Pr	i0 2	Se			27-11
Ravensburg	0.6	135	e 0 12	Pr	i0 20	Sz	i023	S*	
Stuttgart	0.6	13	i0 9	Pr	i0 16	S.	i0 14	P*	
Strasbourg	0.9	295	i 0 18	Pr	i 0 30	Se			
Zürich	0.9	198	e 0 16a	$\mathbf{P}_{\mathbf{s}}$	i029	S. S.	-		

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

151

	^	Az.	P. m. s.	0 -C. s.	S. 0-0 m. s. s.	C. Supp. m. s.	L. m.
Basle	1.2	235	e 0 20 s	- 4	i 0 39 —	2	-
Chur	1.4	165	e 0 25k	- 2	i 0 46	0 — -	
Neuchatel	1.8	229	e 0 29	- 3	e 0 59 + 3	3 i034 P*	
Milan Z.	2.7	177	e 0 50	+ 4	e 1 15 -	4	• ••••
Jena	3.2	32	e 0 57	+ 5	i 1 35 +	3 il 0 P*	i 1.6
Prague Z.	4.0	62		<u></u>	e 2 11 S. i 2 38 S.		- e 2·3
Clermont-Ferrand	4.7	236	i 1 28	\mathbf{P}^*	i 2 38 Sr		- e 2·7
Potsdam	4.9	33	5 77 65 - 69 47 61 5 7 7 7 1		e 2 397 Sg		

Additonal readings :---Ravensburg e =0m.17s. Jena iEN =1m.18s., 1m.27s.

1

April 25d. Readings also at 0h. (near Tashkent and Stalinabad), 1h. (near Mizusawa), 5h. (Pasadena, Mount Wilson, Tinemaha, Tucson, and Apia), 8h. (near Bogota), 9h. (near Andijan), 10h. (La Plata), 11h. (Triest, near Stuttgart, Ebingen, and Zürich), 18h. (near Stalinabad and Tashkent), 21h. (Riverview and Brisbane), 23h. (near Cape Girardeau).

April 26d. 11h. 53m. 56s. Epicentre 37°.5N. 122°.0W.

Intensity V at Dublin; IV at Alvarado, Decota Diablo, Holt Rio Vista, Sunol, Sunnyvale, and Walnut Creek. Epicentre 37°.5N. 1/2°.0W. Macroseismic area 1500 sq. miles. Ralph R. Bodle, United States Earthquakes 1943, Washington 1945, p. 11. Map of epicentres, p. 4.

> A = -.4214, B = -.6744, C = +.6062; $\delta = -.13$; h = +2; D = -.848, E = +.530; G = -.321, H = -.514, K = -.795.

		Δ	Az.	Р.	O - C.	s.	0 - C,	Suj	pp.	L.	
		٥.	0	m. s.	8.	m. s.	8.	m. s.		m,	
Branner		0.2	241	i0 12	+ 2	i 0 18	+ 2				
Santa Clara		0.2	162	i0 9	- 1	i 0 14	- 2				10
Lick		0.3	120	i011	0	i 0 16	- 2				
Berkeley		0.4	329	i0 13	0	i020	- 1	i023	1		
Fresno	N.	1.9	114	e 0 38	+ 4	i1 0	+ 1	i 1 11	Sr		
Ukiah	101120	1.9	329	e 0 45	+11	e 1 17	+18			e 1.5	

Fresno also gives eN = 3m.27s.

April 26d, 12h, 19m, 36s. Epicentre 12°.8N, 145°.5E. (as on 1937 Jan, 30d.).

A = -.8039, B = +.5525, C = +.2201; $\delta = -4$; h = +6; D = +.566, E = +.824; G = -.181, H = +.125, K = -.975.

		Δ	Az.	Р.	0-C.	s.	0-C.	Su	pp.	L.
		0	0	m. s.	8.	m. s.	8.	m. s.		m.
Titizima		14.6	347	e 3 29	- 1	6 6	- 7		(<u></u>)	
Hatidyozima		20.9	347	4 50	+ 4					
Misima		23.0	347	54	- 3					
Tokyo		23.4	350	e 5 18	+ 7					
Kôbe		23.7	340	5 22	+ 8	9 38	+11	-		
Nagano		24.7	346	5 21	- 3			++		
Hukuoka		24.8	330	5 19	- 6	9 17	-19			
Riverview		46.7	174			e 15 23	+ 1	e 19 51	SSS	
Irkutsk		51.3	329			e 18 42	8			
Christchurch		61.3	158	4 57	8	13 57	8	22 3	Q	$25 \cdot 1$
Bombay	E.	69.8	286	e 11 0	-14	1 20 33	+10	e 13 33	\mathbf{PP}	
Tashkent		71.3	309	11 16	- 7	20 28	-13			
Santa Barbara	Z.	86.8	56	e 12 47	0					
Tinemaha	z.	87.3	53	i 12 51	+ 1					
Haiwee		87.8	54	i 12 54	$+ \frac{1}{2}$					
Pasadena	z.	88.1	55	i 12 52	- 2	() <u></u>	(<u>1997)</u>	i13 0	PcP	2 <u>000</u>
Mount Wilson	Z,	88.1	55	i 12 54	0				<u> </u>	2.
Riverside		88.7	55	12 56	-1			-		
La Jolla	Z.	89.1	56	i 12 59	+ 1					
Tucson		94.5	56	i 13 24	+ 1			e 13 33	$P_{c}P$	

Bombay also gives eE = 24m.57s. Long waves were also recorded at Wellington.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

152

Tucson iP = 33m.19s. Tinemaha eZ = 33m.24s., 33m.52s.

- April 26d. Readings also at 0h. (Tashkent), 1h. (Wellington, Christchurch, Arapuni, Brisbane, Riverview, and Mizusawa), 2h. (Helwan, Ksara, Chur, and Stuttgart), 3h. (near Tashkent), 4h. (near Tucson), 5h. (Tinemaha and Tucson), 6h. (Fort de France) 7h. (near Istanbul). 9h. (Mount Wilson, Riverside, Tucson, and Tinemaha), 12h. (near Berkeley, Santa Clara, Lick, and Branner (2)), 13h. (Calcutta, Mount Wilson, Riverside, Tinemaha, Tucson, and near Branner), 17h. (Tacubaya, Triest, and Stuttgart), 18h. (Ksara, near Berkeley, Santa Clara, Lick, and Branner), 17h. (Tacubaya, Triest, and Stuttgart), 18h. (Ksara, near Berkeley, Santa Clara, Lick, and Branner), 19h. (Tinemaha, Tucson, Stuttgart, Clermont-Ferrand, Toledo, and near Lisbon (2)), 20h. (Tortosa and Granada), 21h. (New Delhi, Calcutta, Bombay, Tashkent, Mizusawa, and near Sofia), 22h. (Stuttgart, Uccle, De Bilt, and Kew).
- April 27d. Readings at 0h. (Riverview, near Santa Clara, Berkeley, Lick, and Branner), 3h. (Tucson), 5h. (Pasadena, Mount Wilson, Riverside, Tinemaha, Santa Barbara, Tucson, and College), 6h. (Pasadena, Mount Wilson, Riverside, Tucson, and Tinemaha), 7h. (near Andijan and Tashkent), 9h. (Sofia and near Mizusawa), 10h. (Tacubaya), 12h. (near Branner), 13h. (near Andijan and Tashkent), 16h. (Ksara), 18h. (near Irkutsk), 20h. (Pasadena, Mount Wilson, Tucson, Riverside, and Tinemaha), 21h. (Wellington and Stuttgart), 22h. (near St. Louis), 23h. (Fort de France).

April 28d. 17h. 23m. 42s. Epicentre 0°.6S. 81°.7W. (as on 16d.).

 $A = + \cdot 1443, B = - \cdot 9895, C = - \cdot 0104; \delta = +4; h = +7;$ $D = - \cdot 990, E = - \cdot 144; G = - \cdot 002, H = + \cdot 010, K = -1 \cdot 000.$

		Δ	Az.	Р.	0 – C.	s.	0 - C.	Su	op.	L.
		0	0	m. s.	s.	m. s.	s.	m. s.		m.
Bogota		9.2	56	e 2 17	+ 1	. .		e 2 38	PP	
Huancayo		13.0	151	e 3 5	- 4	i 6 22	+47	e6 5	SS	
San Juan		$24 \cdot 3$	38	e 5 17	- 3	e 9 37	0	· · · · · · · · · · · · · · · · · · ·		e 11·5
St. Louis		39.8	350	e 7 33	- 3	e 13 42	0	e 9 12	\mathbf{PP}	1.000
Tucson		42.7	323	e 8 0	0			e 18 31	SSS	e 22.5
La Jolla	z.	47.2	319	i 8 37	+ 1					
Riverside	Z.	48.0	320	i 8 44	+ 1		1 <u>11111</u> 1	-		_
Mount Wilson	Z.	48.6	320	i 8 48	+ 1			(10000)		
Pasadena	z.	48.6	320	i 8 47	0			e 9 18	2	10 <u>- 11 -</u>
Tinemaha	Z.	50.5	322	e93	+ 1					

April 28d. 19h. 46m. 43s. Epicentre 45°.8N. 27°.2E.

Intensity V over a large area, especially at Vaslui, Budesti, Buhusi, and Galati. Epicentre given by G. Petrescu, Earthquake of 28 April 1943, microseismic study. Bull. Acad. Roumaine, Section des Sciences (1944-1945), vol. 27, pp. 223-229, 2 figures.

> A = + $\cdot 6222$, B = + $\cdot 3198$, C = + $\cdot 7146$; $\delta = +6$; h = -4; D = + $\cdot 457$, E = - $\cdot 889$; G = + $\cdot 635$, H = + $\cdot 327$, K = - $\cdot 700$.

	Δ	Az.	Р.	0-C.	s.	0-C.	Su	pp.	L.
	0	0	m. s.	8.	m. s.	S.	m. s.		m.
Focsani	0.1		e 0 8	$\mathbf{P}_{\mathbf{g}}$	i014	S.			
Bacau	0.8	164	e 0 16	Pr	i 0 26	Sr		÷	
Campulung	1.6	250	e 0 30	Pr	i 0 53		-		
Bucharest	1.6	208	e 0 30	$\mathbf{P}_{\mathbf{g}}$	e 0 51	Sr			
Cernauti	2.6	340	e 0 44	0	i 1 25	Sg	e 0 49	$\mathbf{P}_{\mathbf{z}}$	i 1.5
Sofia	3.9	225	e1 5	+ 3			i1 26	PPP	
Belgrade	4.8	263	e 1 21	+ 6			e 1 29	Pr	e 2·7
Triest	9.4	274	i 2 18	0					
Moscow	11.9	29	2 55	+ 1	4 49	-20			
Zürich	12.9	283	e 3 1	- 6			1		

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

11

153

	Δ	Az.	Р.	0 – C.	s.	0 – C.	Sup	p .	L.
	0	•	m. s.	8.	m. s.	S .	m. s.	ar	m.
Upsala	15.2	341			e 6 173	-11	e 8 1	8	
Clermont-Ferrand	16.8	278	e 3 57	- 1					
Sverdlovsk	23.4	50	5 27	+16	9 17	- 4	-		
	the second se	A CONTRACTOR OF A CONTRACTOR OF A			9 17	- 4			=

Belgrade also gives e =1m.44s. Long waves were also recorded at Stuttgart.

April 28d. 23h. 43m. 12s. Epicentre 24°.5S. 180°. Depth of focus 0.060.

Pasadena gives this epicentre with depth 530 km.

		- ·9110, 000, E		0000, C =		; $\delta = -1$; 12, H = .000, K	h = +3; =911.	
Auckland Apia Arapuni New Plymouth Wellington		\triangle $13 \cdot 1$ $13 \cdot 2$ $14 \cdot 0$ $15 \cdot 4$ $17 \cdot 3$	Az. ° 199 41 193 196 193	$\begin{array}{c}{}\mathbf{P.}\\\mathbf{m.~s.}\\2~53\\\mathbf{i}~2~55\\\mathbf{i}~2~55\\3~0?\\3~23\\3~38\end{array}$	0-C. 8. -10 -4 +5 +1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Supp. m. s. i 5 28 ? i 5 18 ? i 6 7 ?	L. m.
Kaimata Christehurch Brisbane Sydney Riverview	E.	$19.3 \\ 19.9 \\ 24.4 \\ 26.7 \\ 26.8$	$198 \\ 195 \\ 256 \\ 242 \\ 242 \\ 242$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$ \begin{array}{r} 0 \\ - 5 \\ - 5 \\ + 4 \end{array} $	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	i 7 11 ? 	
Honolulu Misima Tokyo Kameyama Kôbe		$50.4 \\ 70.9 \\ 70.9 \\ 72.0 \\ 72.6$	$27 \\ 325 \\ 326 \\ 324 \\ 323$	e 9 40 10 36 10 42 e 10 44 10 47	pP + 1 + 7 + 2 + 2	$e \begin{array}{cccc} 14 & 59 & - & 1 \\ 20 & 2 & + & 46 \\ \hline 19 & 33 & - & 2 \end{array}$	e 16 40 PPS	e 23·0
Nagano Mizusawa Sapporo Santa Barbara La Jolla	E.	72.673.076.181.982.6	325 330 332 47 49	i 10 46 e 10 49 e 11 7 i 11 35 i 11 38 a	$+ 1 \\ + 1 \\ + 2 \\ - 1 \\ - 1$			
Pasadena Mount Wilson Riverside Haiwee Tinemaha	z.	$82.7 \\ 82.9 \\ 83.2 \\ 83.4 \\ 84.4$	48 48 48 46 45	i 11 39 a i 11 40 a i 11 41 a i 11 46 i 11 48	$-1 \\ -1 \\ -1 \\ +3 \\ 0$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
Tucson Sitka Salt Lake City Huancayo La Paz	z.	$86.8 \\ 89.9 \\ 90.6 \\ 98.1 \\ 102.1$	$52\\23\\45\\107\\114$	i 12 0 16 49	0 ?	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\stackrel{i 13}{\scriptstyle 128} \stackrel{54}{\scriptstyle 33} \stackrel{pP}{\scriptstyle SS} \\ = \\ -$	e 42.9 e 37.7 17.6
Chicago Bombay Ottawa Andijan San Juan	E.	$107.6 \\ 112.8 \\ 116.8 \\ 118.5 \\ 118.7 \\$	$50\\281\\49\\304\\81$	e 15 59 e 18 52 e 17 53 19 10 e 19 22	PP [-4] PP PP	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccc} e \begin{array}{c} 27 & 40 & sS \\ 27 & 51 & SP \\ \hline - & - \\ e \begin{array}{c} 30 & 2 \end{array} \end{array} \\ \end{array} \begin{array}{c} sP \\ SPP \end{array}$	34·8 e 47·5
Tashkent Bermuda Sverdlovsk Yalta Ksara		$120.9 \\ 123.3 \\ 126.2 \\ 145.8 \\ 147.4$	$304 \\ 65 \\ 323 \\ 314 \\ 294$	e 18 51 18 10 e 18 53 e 18 58	$\begin{array}{c} \mathbf{PP} \\ [+42] \\ [-4] \\ [+2] \\ [+5] \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	e 28 49 ? 20 8 pPKP 20 56 pPKP 21 5 pPKP	e 34 <u>·5</u>
Copenhagen Bucharest Helwan Jena De Bilt		$\begin{array}{r} 147.5 \\ 150.9 \\ 151.7 \\ 152.1 \\ 152.2 \end{array}$	346 319 287 342 353	i 19 12 e 19 3 e 19 0 e 19 6 i 19 18k	[+18] [+5] [+1] [+7] [+19]	e 28 45 SKKS 28 53 SKKS 1 28 58 SKKS	i 20 54 pPKP e 19 14 ? 21 3 pPKP e 21 0 pPKP e 41 48? SS	44.8
Cheb Kew Uccle Stuttgart Paris		$152.7 \\ 153.1 \\ 153.5 \\ 154.7 \\ 155.6 \\$	$342 \\ 0 \\ 354 \\ 345 \\ 355$	1 20 22 1 19 25 e 19 2 e 18 48?	$[+81] \\ [+23] \\ [-1] \\ [-16]$	e 28 48 SKKS 1 29 1 SKKS e 29 7 SKKS	i 21 2 pPKP i 21 23 pPKP e 21 6 pPKP	e 32·3 e 41·8

181

Continued on next page.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

	E C								
1943				154					
	Δ	Az,	Р.	0 – C.	s.	0 – C.	St	ıpp.	L.
	•		m. s.	8.	m. s.	8.	m. s.		m.
Triest	156-1	335	e 19 42	[+37]	e 29 12	SKKS			
Basle	156.2	346	e 19 36	[+31]	and the second				e 29·3
Zürich	156.2	345	e 19 37	[+32]	<u></u> 0				
Chur	156.4	344	e 19 37	[+32]			e 21 34	pPKP	
Clermont-Ferrand	158.6	353	e 19 47	[+38]					
Tortosa E.	163.7	358			e 50 48	SSS 1			
Toledo	164.3	11	e 20 12	[+58]		11. 1.1.1.1	i 22 6	pPKP	
Granada	167.0	12	1 20 29	[+73]	i 27 2	?	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	- PP	66.9

Additional readings :---Auckland $i = 6m.3s., S_cS = 14m.3s.$ Wellington $sP_{i}^{2} = 5m.43s.$, i = 6m.26s., iZ = 7m.0s., $pP_{c}PZ = 10m.3s.$, $P_{c}S_{i}^{2}Z = 11m.45s.$, $S_cS = 14m.21s.$ Kaimata S_cS ? = 14m.23s. Christchurch e = 6m.12s. Brisbane iE = 7m.7s., iSN = 8m.30s., iN = 14m.51s.Riverview isPZ = 7m.29s., iE = 7m.33s., iE = 9m.40s., iN = 9m.58s., isS = 12m.0s., $iS_{c}SN = 15m.1s$. Honolulu e = 14m.58. Pasadena isPZ = 14m.56s. Mount Wilson isPZ = 14m.58s. Tucson iPPP = 15m.30s., eSKS = 21m.42s., eSP = 22m.58s., esS = 25m.14s., e = 25m.14s.25m.54s., eSS! = 27m.48s., e = 29m.51s.Chicago e = 26m.50s., e = 32m.33s.Bombay PPPE = 20m.58s., SKKSE = 24m.55s., SPPE = 28m.39s., SSE = 33m.45s. iE = 37m.10s., SSSE = 38m.12s.San Juan e = 25m.228., e = 27m.458.Copenhagen 21m.0s. Helwan PKP?Z =19m.19s., eZ =22m.51s., PPS?Z =32m.24s., eZ =33m.9s. Jena eN = 19m.13s., eE = 21m.6s., eN = 21m.15s., eE = 21m.26s.Uccle eZ = 22m.50s., iN = 29m.46s.Stuttgart ePKP,Z = 19m.30s., epPKP,Z = 21m.28s., ePPZ = 23m.6s., e = 33m.28s., eSS = 42m.8s.Zürich e = 19m.408. Granada SKSP = 34m.14s., SS = 43m.33s.

April 28d. Readings also at 0h. (Mizusawa, Florissant, Pasadena, Riverside, Mount Wilson, Tucson, and Tinemaha), 5h. and 9h. (La Plata), 12h. (Tinemaha and Tucson), 14h. (Cheb, near Andijan, and Tashkent), 16h. (Riverside, Tucson, and Tinemaha), 22h. (Ksara).

April 29d. 15h. 25m. 5s. Epicentre $43^{\circ} \cdot 0$ N. 147° · 2E. Depth of focus $0 \cdot 025$.

(as on 1942 July 27d.).

Intensity V at Nemuro ; IV at Obihiro, Urakawa, Hatinohe, Miyako ; II-III at Abashiri, Morioka, Aomori, and Hukusima. Epicentre 43°.4N. 147°.2E. Radius of macroseismic area 300 km., depth of focus 180 km.

Seismological Bulletin of the Central Meteorological Observatory, Japan, for the year 1943, Tokyo 1950, pp. 22-23. Macroseismic chart p.22.

> A = -.6166, B = +.3974, C = +.6795; $\delta = -.16$; h = -.3; D = +.542, E = +.841; G = -.571, H = +.368, K = -.734.

	Δ	AZ.	Р.	0 – C.	S. 0-0	. Supp.	L.
	0	0	m. s.	8.	m. s. s.	m. s.	m.
Nemuro	1.2	286	0 36	+ 5	0 55 ()	
Sapporo	4.3	273	0 59a	- 7	1 50 - 7		
Hatinohe	4.9	241	1 9	- 5	26 - 4	;	
Miyako	5.2	231	1 11	- 7	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
Morioka	5.6	236	1 18a	- 5	2 23 - 4	L → →	
Mizusawa	6-0	232	1 25	- 3	2 34 - 1	3	
Sendal	6.7	227	1 33a	- 4	252 - 1		8. 5.5.5
Hukusima	7.3	227	1 42	- 3	3 6 - 1		-
Onahama	7.8	221	1 47	- 4	3 16 - 3	s — · · · · ·	
Aikawa	8.4	237	1 57	- 2	3 32 - 1		
Mito	8.4	220	1 55	- 4	() _		
Utunomiya	8.5	224	1 17	8	2 52		
Tukubasan	8.7	221	2 0	- 3	3 39 - 1		
Kumagaya	9.1	224	$ \begin{array}{ccc} 2 & 0 \\ 2 & 8 \end{array} $	0	3 49 ()	
Maebasi	9.1	226	2 10	+ 2	3 51 + 2		

Continued on next page.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

	1943					155					
1	Tokyo Nagano Yokohama Wazima Mera		∆ 9·3 9·4 9·6 9·7 9·9	Az. 221 230 220 238 212	P. m. s. 2 9 2 12 (2 15) 2 16k 2 6	0 - C. s. - 2 0 0 - 13	S. m. 8. 3 51 3 57 (4 1) 4 3	0 - C. 8. - 3 + 1 0 -	m. s.	рр. 	L. m.
	Kohu Misima Osima Shizuoka Omaesaki		$10.0 \\ 10.2 \\ 10.2 \\ 10.6 \\ 11.0 $	$225 \\ 222 \\ 219 \\ 223 \\ 223 \\ 223$	2 21 2 21k 2 22 2 27 2 33	$+ 12 \\ - 21 \\ - 1 \\ - 0$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$-10 \\ -10 \\ +6$			
	Nagoya Hatidyozima Kameyama Kyoto Toyooka		$11.1 \\ 11.5 \\ 11.7 \\ 12.0 \\ 12.2$	$\begin{array}{r} 229 \\ 213 \\ 229 \\ 232 \\ 236 \end{array}$	$ \begin{array}{cccc} 2 & 34 \\ 2 & 43 \\ 2 & 42 \\ 2 & 45 \\ 2 & 49 \\ \end{array} $	$+ \begin{array}{c} 0\\ 3\\ 0\\ - 1\\ + 1 \end{array}$	$ \begin{array}{r} 4 & 39 \\ 4 & 44 \\ 5 & 11 \\ \overline{5} & 5 \end{array} $	+ 3 - 1 + 21 + 4			
	Kôbe Wakayama Sumoto Siomisaki Muroto		$12.5 \\ 12.8 \\ 13.0 \\ 13.1 \\ 14.1$	232 231 232 227 231	$ \begin{array}{cccc} 2 & 52 \\ 2 & 57 \\ 2 & 54 \\ 3 & 12 \\ 2 & 39 \\ \end{array} $	$^{+1}_{-5}^{0}_{+12}_{-33}$	5 12 5 30	$+ \frac{4}{10}$			
	Hamada Kôti Hukuoka Keizyo Zinsen		$14.3 \\ 14.3 \\ 16.2 \\ 16.4 \\ 16.6 \\ 16.6 \\ 16.6 \\ 16.6 \\ 16.6 \\ 16.6 \\ 16.6 \\ 16.6 \\ 16.6 \\ 16.6 \\ 16.6 \\ 10.6 \\ $	$\begin{array}{r} 240 \\ 233 \\ 240 \\ 257 \\ 257 \\ 257 \end{array}$	$ \begin{array}{ccccccccccccccccccccccccccccccccccc$	$+ \begin{array}{c} 0\\ 0\\ 1\\ - \\ 2\\ 0 \end{array}$	$ \begin{array}{r} 5 & 55 \\ $	+ 6 + 12 + 12 + 12 + 12 + 12 + 12 + 12 +			
	Kagosima College Sitka Calcutta Tchimkent	N.	$17 \cdot 4$ $41 \cdot 7$ $48 \cdot 9$ $52 \cdot 4$ $55 \cdot 1$	$235 \\ 35 \\ 44 \\ 267 \\ 298$	3 41 a e 7 26 e 8 25 e 9 15 1 9 39	$-11 \\ -5 \\ -3 \\ +20 \\ +25$	e 13 34 1 15 23 1 16 23	$+\frac{1}{7}$ +19	e 9 7 e 10 18 e 9 30	PP	21·2 27·0 24·7
	Tashkent New Delhi Stalinabad Moscow Bombay	N. E.	$55 \cdot 8$ $57 \cdot 0$ $57 \cdot 5$ $65 \cdot 1$ $66 \cdot 1$	$297 \\ 280 \\ 294 \\ 324 \\ 274$	i 9 22 e 9 48 e 9 34 10 22 e 10 28	$+ 3 \\ pP \\ + 3 \\ - 1$	i 17 0 i 17 16 e 17 21 i 18 54 19 16	+11 + 11 + 9 + 6 + 16	1736 -1939	PS PS	
	Scoresby Sund Bozeman Baku Tinemaha Upsala		66.6 67.7 68.4 68.8 69.5	$357 \\ 48 \\ 305 \\ 59 \\ 336$	e 10 25 i 10 50 i 10 44 i 10 48	-7 + 7 + 7 + 1 - 2	e 19 12 e 19 27 i 19 46 e 19 44 e 19 41	$^{+6}_{+8}_{+19}_{+12}_{+11}$	e 23 45 = 20 38	ss e	27.5 26.9 34.9
	Haiwee Mount Wilson Pasadena Riverside Bergen	z. z.	69.6 70.7 70.7 71.3 72.4	$ \begin{array}{r} 60 \\ 61 \\ 61 \\ 61 \\ 341 \end{array} $	e 10 48 1 10 55 e 10 54 10 58 1 11 9	- 2 - 2 - 3 - 2 + 2	$ \begin{array}{c} $	+ 8 + 8	i 12 0 i 12 14	pP	31·9 28·9
	Yalta Copenhagen Bacau Riverview Tucson	E.	74 · 4 74 · 5 76 · 3 76 · 5 76 · 6	$317 \\ 336 \\ 322 \\ 176 \\ 59$	e 11 20 i 11 18 e 11 317 i 11 30	$+ 1 \\ + 2 \\ + 2 \\ - 1$	$\begin{array}{r} & 20 & 42 \\ & 21 & 7 \\ i & 21 & 25 \\ e & 21 & 2 \end{array}$	+5+11+26+2	$\begin{array}{r} e \ 11 \ 50 \\ 21 \ 13 \\ i \ 32 \ 10 \\ e \ 14 \ 19 \end{array}$		36·2 35·1
	Focsani Aberdeen Potsdam Bucharest Prague		76.8 76.9 77.1 78.3 78.5	322 344 334 321 331	$\begin{array}{r} e \ 11 \ 37 \ 8 \\ e \ 11 \ 36 \\ e \ 11 \ 41 \\ 11 \ 41 \end{array}$	+ 5 + 2 + 1 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+16 + 7 + 9 +10 PP	$e_{1} \frac{21}{21} \frac{59}{49}$	PS	38 · 2 34 · 9 34 · 9 39 · 9
	Jena Cheb De Bilt Stonyhurst Sofia		78.8 79.2 79.7 80.1 80.9	333 333 337 343 321	e 11 39 e 11 557 i 11 49a e 11 57	- 4 + 10 + 1 + 3	e 21 30 e 20 55? i 21 43 i 21 42 e 21 57	$^{+7}_{-32}_{+10}_{+5}_{+12}$	e 21 51 i $2\overline{2}$ 41	PS PPS e	35.9
	Ksara Uccle Stuttgart Kew Strasbourg		$81 \cdot 1 \\ 81 \cdot 1 \\ 81 \cdot 4 \\ 81 \cdot 8 \\ 82 \cdot 1$	309 338 334 340 334	e 11 513 1 11 55 a 1 11 57 a 1 12 0 1 11 50	$- 4 \\ 0 \\ + 1 \\ -10$	e 22 2 21 51 e 21 57 1 22 1	+15 + 4 + 7 + 7	e 22 38 e 14 55 e 15 0 e 12 15	PS e PP e	36·9 33·4 37·9

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

156

	Δ	Az.	Р.	0 – C.	S.	0 – C.	Sul	op.	L. m.
Chiesen	82.2	3 9	m. s.	s.	m. s. e 22 0	s. + 2	m. s. e 26 48	SS	
Chicago Triest	82.5	329	e 12 6	+ 4	i 22 9	+ 8			
Zürich	82.9	333	e 12 4	. Õ	e 22 12	+ 7			
Basle	83.0	334	e 12 6a	+1	e 22 16	+10	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -		++
Florissant	83.3	42	i 12 6	- 1	i 22 15	+ .6	1 22 50	\mathbf{PS}	-
Paris	83.4	338	112 8	+ 1	e 22 18	+ 8			47.9
St. Louis	83.5	42 (The second se	- 3	(i 22 17)	+ 6	(i 22 51)	\mathbf{PS}	· · · · ·
Neuchatel	83.7	334	e 12 9	0				-	
Shawinigan Falls	84.0	26	12 9	- 1	22 22	+ 6	01 100	000	
Ottawa	84.1	28	12 8	- 3	22 20	+ 3	31 13?	SSS e	e 37·9
Seven Falls	84.2	25		_	e 22 23	$^{+}_{+}$ 5 + 3		TO	37.9
Cape Girardeau E.	84.9	 A start constraint start 	e 12 13	- 2	e 22 28		e 23 3	PS DD	. 28.2
Florence	85.0	329	e 12 32	+.17	i 22 32	+ 6	e 15 26	PP e	e 38·3
Clermont-Ferrand	86.0		e 12 22	$^{+2}_{+2}$	22 46	+ 5	15 46	PP	
Helwan	86.6	308	i 12 25	τ 2	22 40	τJ	223223	6333458	
Pittsburgh	86.7	34			1 22 44	+ 2	e 23 18	\mathbf{PS}	
Wellington	87.5	160			e 23 55	PS			41.9
Fordham	88.7		e 12 33	0	e 22 51	[+ 9]	1 23 10	aan	
Tortosa E.	91.3	and the second	e 13 49)	+64	(24 9)	Contraction of the second s	(30 32)	SSP (e	e 41·9)
Columbia	91·6	38			e 22 39	[-20]			
Toledo	93.5	338	1 12 57	+ 2		[+13]		PP	
Almeria	95.9		e 13 12)	+ 6	(e 24 16)		(16 57)	PP PP	47.1
Granada	95.9	337	i 13 10	+ 4	i 23 38 e 39 2	[+15] SSP	16 57	Contraction of the second	47.1
Huancayo	132.0	63		_	e 39 2	166			9 61 .9
Additional reading College e = 16m. Sitka i = 15m.58 Calcutta isSN = New Delhi iN = Bombay PcPE = Upsala eE = 20n Riverside iZ = 1 Tucson i = 16m. Bucharest iPSN Jena ePEN = 11 Uccle iZ = 12m.1 Stuttgart iPcPZ Kew iPcPNZ = eSS = 26m.4 Florissant iN = 2	40s. at s., $e =$ 16m.5 19m.9 10m.5 1000000000000000000000000000000000000	18m.1 3s. 3s. s., SSN $1s., ile = 27..53s..6s., elsesSSEs.$	1s. N = 20m.59 E = 13m.11 m.55s.?. .47s. PS = 22m PPNZ = N = 27m.5	8s., S _c S .53s., e 17m.5s. 25s.1, e	Q = 32.0m 1. ePSEN Q = 29 9m	i =22m			.459.?,
St. Louis $eZ = (1)$	ogr -	99m 9	Ka reauni	s more	asou by I				

Cape Girardeau eSE = 23m.25s. Florence ePPP?E = 17m.39s., ePSE = 23m.20s., eSSSE = 30m.59s. Helwan eNZ = 12m.46s., SE = 23m.3s., PSN = 23m.49s. Tortosa ePSE = (25m.56s.). All readings increased by 1 hour. Almeria e = (13m.40s.). All readings increased by 1 hour. Granada PPP = 18m.33s., SKKS = 24m.6s., PS = 25m.47s., SS = 30m.31s. Long waves were also recorded at Auckland.

April 29d. 19h. 48m. 56s. Epicentre 29°·3S. 178°·2W. Depth of focus 0·030. (as on 1941 Aug. 2d.).

> A = -.8730, B = -.0274, C = -.4869; $\delta = -5$; h = +2; D = -.031, E = +1.000, G = +.487, H = +.015, K = -.873.

		Δ	Az.	Р.	0 – C.	s.	0 – C.	Suj	pp.	L.
		0	0	m. s.	8.	m. s.	8.	m. s.		m.
Auckland		9.6	216	2 16	+ 1	3 59	- 1			
Tuai		10.2	200	2 25	+ 3	4 11	- 3			
New Plymouth		11.7	211	2 44	+3	4 49	+ 1	+		-
Wellington		13.3	203	2 55	- 6	5 14	-11			
Kaimata		15.6	210		_	i 6 10	- 6			
Christehurch		16.0	207			6 10	-15		<u>11</u> 23	_
Pasadena	Z.	84.8	47	112 9	- 1		201 8	 2	 22	() }
Mount Wilson	z.	85.0	47	i 12 10	- 1		1	0 1 2		_
Haiwee	z.	86.3	45	e 12 26	+ 8)); (3	++++++++++++++++++++++++++++++++++++++	
Tinemaha	Z.	86.7	44	1 12 19	- 1	-				

Continued on next page.

34.5

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

157

0 – C. Р. S. Supp. -C. Az. L. 8. m. m. 8. m. m. o 112 28k 88.5 51 Tucson SSS e 41 11 90 Fort de France e 64·8 [+34]e 68 40 346e 20 159.76 Stuttgart Q Additional readings :--Kaimata S =6m.16s., 1=6m.34s.

April 29d. Readings also at 3h. (near Bucharest), 4h. (Riverview, Tucson, and near Bogota), 5h. (near Mizusawa), 6h. (near Berkeley, Lick, and Branner), 8h. (Triest, Stuttgart, Zürich, Bucharest, Belgrade, near Sofia, near Berkeley, Lick, and Branner), 12h. (near Stalinabad, Tashkent, and Tchimkent), 13h. (Stuttgart), 15h. (Stalinabad, Tashkent, and near Florissant), 16h. (Mount Wilson, Tinemaha, near Tucson, and near Stalinabad), 17h. (near Tortosa), 18h. (Clermont-Ferrand, near Tashkent and Stalinabad), 19h. (Granada), 20h. (Copenhagen, Ksara, Moscow, Bucharest, Tashkent, Helwan, Hyderabad, Calcutta, New Delhi, Kodaikanal, Bombay, and near La Paz), 21h. (Fort de France, Tinemaha, Tucson, St. Louis, Yalta, and Frunse), 22h. (near Branner).

April 30d. 1h. Undetermined shock. East Indies? Kodaikanal ePE =15m.0s., iSE =21m.45s., SSE =25m.4s. Colombo P = 15m.47s., S = 21m.42s., L = 32m.34s. Bombay PE =17m.11s., SE =24m.13s., eE =25m.28s., SSE =28m.22s., iE =31m.57s. New Delhi ePN =17m.20s., PPN =19m.2s., iSN =24m.29s., PSN =25m.0s., ScSN = 27m.3s., SSN = 28m.14s., iN = 28m.52s. Tashkent P = 18m.45s., S = 27m.25s.Moscow P = 21m.4s., SKS = 31m.34s., S = 31m.53s. Calcutta iN = 21m.55s. Christehurch P = 24m.9s., S = 33m.12s., Q = 40m.33s., R = 45m.28s. Riverview iN = 24m.14s., eLN = $29 \cdot 8m$. Stuttgart eZ = 26m.36s.?. Pasadena iPZ = 27m.5sRiverside ePZ = 27m.6s., eZ = 28m.41s. Tinemaha eZ = 27m.9s. and 28m.32s. Mount Wilson iZ = 27m.11s., eZ = 27m.28s., iZ = 28m.37s. Tucson eP = 27m.18s., e = 29m.18s.Wellington $S_{i}^{2} = 42m.45s., i = 45m.23s., L = 48m.$? Granada eP = 42m.59s., S = 52m.41s., L = 77.3m. Auckland i = 45m.35s., L = 47m.Long waves were recorded at De Bilt.

April 30d. 8h. Undetermined. Probably Eastern Mediterranean or Asia Minor.

```
Sofia ePEN = 37m.11s., eSEN = 38m.39s.
Bucharest e = 37m.42s., LEN = 40m.20s.
Belgrade eP = 37m.58s., e = 38m.50s., i = 39m.19s., eS = 39m.45s., e = 39m.47s. and
    40m.28s.
Triest eP = 38m.10s., eS = 39m.38s.
Basle eP = 38m.478., eS1 = 43m.59s.
Chur eP = 38m.548., e = 40m.498.
Istanbul eP = 39m.
Stuttgart ePZ = 39m.2s., e = 41m.23s., eSZ = 41m.50s., eS = 42m.0s., eQ = 43m.39s.
Milan iPZ = 39m.7s., SE = 42m.18s., LE = 43m.11s.
Zürich eP = 39m.7s., eS? = 41m.6s.
Helwan eZ = 39m.15s. and 41m.42s.
Jena eEN = 39m.30s.?, eN = 42m.8s., eE = 42m.12s.?, eEN = 43m.0s.? and 44m.0s.?.
Focsani eEN = 40m.
Granada P = 40m.15s., PP = 40m.54s., P_cP = 43m.42s., S = 44m.29s., SS = 45m.9s.
    L = 47.5m.
Neuchatel eP = 40m.19s.
De Bilt iP=40m.20s., eS=43m.25s., eL=45m.
Florence ePE =40m.25s., ePrE =40m.38s., iSE =41m.8s., iSrE =41m.27s.
Kew eZ = 40m.33s., e = 44m.11s., eL = 47m.
Moscow P = 40m.45s., S = 44m.38s.
Upsala ePN = 40m.49s., eSN = 44m.43s., eSE = 44m.47s.
Bacau eEN = 41m.24s.?.
Strasbourg eS = 42m.0s.
Cheb e = 42m.
Tortosa ePE = 42m.9s., eLE = 46m.35s.
Potsdam eE =42m.38s., eN =42m.41s., eLN =45m.
Uccle eS!EN = 43m.10s., eL = 45.4m.
Prague e = 43m.23s.
Copenhagen S = 43m.40s., L = 46m.0s.
Bergen e = 45m.
Aberdeen eEN = 45m.298.
```

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

158

April 30d. Readings also at 1h. (near Stuttgart, Ebingen, and Zürich), 5h. (Haiwee, Mount Wilson, Pasadena, Riverside, Tucson, Tinemaha, La Paz, La Plata, and Stalinabad), 7h. (Apia), 8h. (Tinemaha and Tucson), 10h. (Tacubaya), 12h. (La Plata, Pasadena, Tucson, Riverside, and Tinemaha), 13h. (Tinemaha), 18h. (Puebla and Vera Cruz), 19h. (Huancayo, Tucson, Mount Wilson, Pasadena, Riverside, Bombay, and near Apia), 20h. (Tucson (2), Riverside (2), and La Paz), 21h. (Riverview, Wellington, near Apia, and near Mizusawa).

May 1d. 16h. 32m. 42s. Epicentre 60°.3S. 27°.9W. (as on 1943 March 25d.).

		·4401, 1		•2330, C =		2; $\delta = -66$, $H = -1$	+1; +•406,]	$h = -9$ $\mathbf{x} = -\cdot 49$		
		^	Az.	P. m. s.	0 – C.	m. s.	0 - C.	m. 8.	ıpp.	L. m.
La Plata	E. N.	32.0	310 310	6 24 6 17	$-6 \\ -13$	$\begin{array}{ccc}11&54\\12&2\end{array}$	$^{+12}_{+20}$	9 18 7 48	PP	15.6 15.8
Rio de Janeiro La Paz Huancayo	N. Z.		338 309 303	1730 1922a e 1011	+ 1	1 13 40 1 17 8 0 18 36	+12 + 12 + 25 + 21	e 12 1	PP	e 18.6 27.3 e 26.0
Bogota Christchurch San Juan Riverview Bermuda		$74.1 \\ 75.2 \\ 84.3 \\ 86.2 \\ 97.2$	311 194 324 179 329	e 11 39 17 0 e 15 51		e 23 7 1 22 53 e 24 10	$\begin{bmatrix} + & 7 \\ + & 7 \\ - & 16 \\ - & 3 \end{bmatrix}$	i 28 46 e 31 55		40.0 e 31.9 e 34.4 e 46.2
Almeria Granada Helwan Tortosa St. Louis	N. N.	99.0 99.2 102.0 103.4 111.0	20 19 50 22 311	e 9 33 e 17 18 17 42 e 18 3	PKP PKP PKP	i 25 13 22 2 e 24 10 i 27 37 e 28 48	+ 1 [-27] PS PS	e 19 19 32 8 e 18 51 e 38 56	$\frac{PPP}{SS}$	43·3 51·5
Bombay Stuttgart Uccle Tucson Riverside	E, Z,	111.5 112.8 113.8 114.1 118.6	89 25 21 292 288	e 19 5 e 18 32 i 18 40	PKP [-10]	e 25 47 e 28 481 e 28 52	[+29] PS PS	e 27 50 e 21 23 e 19 42 i 37 40	PPP PP P'P'	e 57.3 e 55.3
Mount Wilson Pasadena Tinemaha Tashkent Sverdlovsk Irkutsk Vladivostok	z. z.	$119.1 \\ 119.1 \\ 121.6 \\ 128.1 \\ 135.8 \\ 152.8 \\ 152.8 \\ 158.9 \\$	288 288 290 72 52 85 136	e 18 41 1 18 43 18 48 (19 1) e 19 18 (20 13)	$\begin{bmatrix} -10 \\ -8 \end{bmatrix}$ $\begin{bmatrix} -20 \\ -22 \end{bmatrix}$ $\begin{bmatrix} -33 \\ +13 \end{bmatrix}$	= 30 49 e 26 2	PS [-62]	i 37 39 i 37 38 i 37 30 20 37 e 23 14 i 31 48	P'P' P'P' PP PP SKKS	

```
Additional readings :--
  La Plata PZ = 6m.32s.
  Huancayo e = 10m.18s., eSS = 22m.32s.
  Christehurch PP = 20m.0s., S = 26m.8s., SS = 31m.38s.
  Bogota e = 11m.57s.
  San Juan e = 22m.19s.
  Granada SP = 27m.18s., SSS = 37m.47s.
  Helwan eZ = 19m.20s.
  Tortosa eN = 23m.19s. and 33m.38s.
  Tucson iPKPPKP = 38m,11s., i = 32m.23s.
  Riverside eZ = 37m.52s.
  Mount Wilson eZ = 20m.16s., iZ = 37m.51s.
  Pasadena iZ = 19m.7s., 37m.51s., and 37m.57s.
  Tinemaha i = 37m.428.
  Tashkent PKS = 22m.4s.
  Sverdlovsk and Vladivostok give PKP as PP.
  Long waves were also recorded at Wellington, New Delhi, Tananarive, Scoresby Sund,
      and other European stations.
```

May 1d. Readings also at 2h. (near Berkeley, Branner, Lick, and Santa Clara), 4h. (Christchurch, Wellington, Riverview, Puebla, Vera Cruz, Tucson, Mount Wilson, Riverside, Tinemaha, and Stuttgart), 5h. (Istanbul and near Mizusawa), 8h. (Tashkent and near Andijan), 9h. (near Tashkent), 10h. (Bogota and Huancayo), 11h. (near Andijan), 12h. (La Jolla, Tucson, Mount Wilson, Riverside, Pasadena, Tinemaha, La Paz, and near La Plata), 14h. (Bombay, New Delhi, near Tashkent), 17h. (near Mizusawa), 20h. (Andijan, Tashkent, New Delhi, Stuttgart, Zurich, Helwan, Ksara, near Apia, and near St. Louis), 21h. (Stuttgart (2), Haiwee, Mount Wilson, Pasadena, Tinemaha, Riverside, and Tucson), 22h. (near Mizusawa),

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

4

159

May 2d. 1h. 8m. 1s. Epicentre 48°.2N. 9°.0E. (as on 1943 April 25d.).

Maximum intensity VII at Onstmettingen. Epicentre in the triangle Hechingen-Ebingen-Balingen. Macroseismic data collected by W. Hiller. Microseismic epicentre 48° 12'N. 9° 2'E. Macroseismic epicentre 48° 17'N. 9° 0'E.
Intensity VI at Schaffhouse. Considerable damage in the epicentral zone, slight damage in Switzerland. Foreshock on April 25d. 11h. 35m., intensity V-VI at epicentre. Repeated on May 28d., June 1d., July 7d., October 14d., and December 27d.

E. Wanner,

Jahresbericht des Erdbebendienstes der Schweiz im Jahre 1943, p. 2. Macroseismic chart, fig. 2.

A = + $\cdot 6609$, B = + $\cdot 1046$, C = + $\cdot 7432$; $\delta = +8$; h = -5; D = + $\cdot 156$, E = - $\cdot 988$; G = + $\cdot 734$, H = + $\cdot 116$, K = - $\cdot 670$.

	∆ Az.	Р. m. s.	0 – C. s.	S. 0-C. m. s. s.	Supp. m. s.	L. m
Ebingen Ravensburg Stuttgart Strasbourg Zurich	$\begin{array}{c} 0.0 \\ 0.6 \\ 135 \\ 0.6 \\ 13 \\ 0.9 \\ 295 \\ 0.9 \\ 198 \end{array}$	10 3 10 13	P: P: P: P: P:	0 22 S. 1 0 18 S. 1 0 28 S. 1 0 31 S.		i 0.5
Chur Neuchatel Besançon Milan Cheb	$\begin{array}{ccccccc} 1 \cdot 4 & 165 \\ 1 \cdot 8 & 229 \\ 2 \cdot 2 & 243 \\ 2 \cdot 7 & 243 \\ 2 \cdot 7 & 177 \\ 2 \cdot 9 & 50 \end{array}$	$ \begin{array}{r} i \ 0 & 31 \\ i \ 0 & 44 \\ i \ 0 & 43 \end{array} $	- 1 P - 2 P	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	i 0 35 Pr i 0 50 PP	
Jena Prague Uccle Triest Paris	$\begin{array}{cccccccc} 3\cdot 2 & 32 \\ 4\cdot 0 & 62 \\ 4\cdot 0 & 311 \\ 4\cdot 1 & 128 \\ 4\cdot 4 & 278 \end{array}$	e 1 7 e 1 1 e 1 6	- 5 + 3 - 3 + 1 P*	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	e 1 6 Pr 1 15 Pr 1 1 15 Pr 1 1 19 Pr e 1 47 F	i 1.6 i 2.1 3.0
De Bilt Florence Z. Clermont-Ferrand Potsdam Marseilles	$\begin{array}{rrrrr} 4\cdot 6 & 303 \\ 4\cdot 7 & 161 \\ 4\cdot 7 & 236 \\ 4\cdot 9 & 33 \\ 5\cdot 5 & 209 \end{array}$	$ \begin{array}{r} 1 & 1 & 27 \\ 1 & 1 & 9 \\ 1 & 1 & 37 \end{array} $	P* +13 - 5 Pr Pr	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	i 1 33 P* i 1 29 P* i 2 23 S*	
Ogyalla Kew Kalossa Copenhagen Belgrade	$\begin{array}{cccc} 6\cdot 2 & 88 \\ 6\cdot 9 & 303 \\ 7\cdot 0 & 97 \\ 7\cdot 8 & 16 \\ 8\cdot 6 & 113 \end{array}$	i 2 16 e 2 19 1 58	P*	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	1344 S 6329 S 236 S 6440 S	3.7 3.8 4.0 4.9
Tortosa E. Toledo Granada Moscow	$\begin{array}{ccccccc} 9\cdot 5 & 223 \\ 12\cdot 5 & 233 \\ 14\cdot 4 & 225 \\ 19\cdot 0 & 56 \end{array}$	1321 346a	PPP +19 - 1	1 4 42 S* 7 59 1 10 16 1	5 12 S.	1 7 <u>·1</u>

Additional readings :---Milan SiZ =1m.12s. Cheb readings increased by 1 minute. Jena iN =0m.51s., i =0m.54s., iZ =0m.58s., eE =1m.1s. Triest e =1m.42s. Florence iP_sZ =1m.38s., iQE =2m.35s. Potsdam iS_sEN =2m.36s. Ogyalla ePN =2m.39s., iE = 2m.54s. Kew iEZ =3m.4s., iSi =4m.5s. Belgrade e =3m.55s. Granada P_sS_s =6m.41s., 6m.57s. Long waves also recorded at other European stations.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

160

May 2d. 12h. 17m. 37s. Epicentre 36°·3N. 141°·5E. (as on 1943 March 14d.).

Intensity IV at Kakioka, Tyosi, Mito, Tukubasan; II-III at Onahama, Utunomiya, Shirakawa, Tokyo, Sendai. Epicentre 36°·2N. 141°·7E. Macroseismic radius 200-300 km. Shallow. Seismological Bulletin of the Central Meteorological Observatory, Japan, for the year 1943, Tokyo 1950, pp. 23-24. Macroseismic chart p. 23.

$$A = -\cdot 6322, B = +\cdot 5029, C = +\cdot 5894; \delta = -2; h = 0;$$

$$D = +\cdot 623, E = +\cdot 783; G = -\cdot 461, H = +\cdot 367, K = -\cdot 808.$$

$$\triangle Az. P. O-C. S. O-C. Supp. L. m. 6. m. m. 6. m. 6.$$

	0	• m.	в. в.	m. s.	8.	ш. в.		m.
Onahama		23 0	20 + 2	0 35	+ 4			
Tyosi		and the second	14 - 4					
Mito			20 0	0 35	+ 1			
Kakioka	1.1 2		11k -11	0 19	-20			
Tukubasan	1 ·1 2	86 Ö	22 0	0 38	- 1			13
Utunomiya	1.4 2	81 0	25 - 2	0 35	-11			
Tokyo Cen. Met. Ob.	1.5 2	17 0	29 + 1	0 53	+ 4	-		
Hukusima		30 0	33 + 2	0 58	+ 4			
Yokohama	1.7 2	40 0	34 + 3	0 59	+ 5		-	
Maebasi	2.0 2	73 0	35 0	1 3	+ 1			
Sendai			37a + 2	1 9	+ 7		_	1
Osima			37 - 3	14	- 5			
Hunatu			23 - 18	0 56	-16			
Misima			40 - 1	1 8	- 4			
Nagano	2.7 2	78 0	48 + 3	1 16	- 3			
Mizusawa N.			53) + 6	(1 32)	+10			
Shizuoka			47 0	1 11	-11			
Aikawa			54 + 3	1 36	+ 7		-	
Omaesaki			47 - 5	1 42	+10			
Miyako	3.4	6 0	58 + 3	1 42	+ 5			S ait
Hamamatu	3.5 2	13 1	8 P.	2 6	Sr			
Hatidyozima			53 - 4	1 31	- 9	\equiv		
Toyama		19 1	1 + 4	1 54	S. S.		_	
Akita	3.6 3	13 1	7 P: 10 P:	2 2	S.			
Nagoya	3.8 2	54 1	10 P*	26	Sr			
Gihu	the second se	58 1	5 + 3	2 11	S.		-	
Hikone		58 1	9 - 1	2 19	3.			
Kameyama			14 + 4	2 20	S*	-		
Aomori			16 + 4	2 18	S.			
Osaka	5.2 2	51 1	31 P•	2 31	8*			

Kobe	5.4	254	1	42	P*	2 52	S*			
Toyooka	5.5	265	1	31	+ 6					
Sumoto	5.7	252	1	32	+ 4	3 11	S.			
	6.8	359	1	50	+ 6	3 10	+ 7	2000 - 100 -		
Sapporo Uwazima	8.0	250	(2	3)a	+ 3	(1997)	-	(2 59)	P.	

The readings at Mizusawa have been reduced by 1m. and those at Uwazima increased by 1m.

May 2d. 17h. 18m. 5s. Epicentre 6°.9N. 80°.4W.

Intensity V at Balboa (Panama). Epicentre 7°.0N. 80°.1W. Depth of focus 100km. (J.S.A.). Mapa sismico y tectonico de Colombia (Banco de la Republica, Bol. grafico 7, febrero de 1947).

 $A = + \cdot 1656, B = - \cdot 9789, C = + \cdot 1194; \delta = -8; h = +7;$ $D = - \cdot 986, E = - \cdot 167; G = + \cdot 020, H = - \cdot 118, K = - \cdot 993.$

		Δ	Az.	Р.	0 – C.	s.	0 – C.	Supp.	L.
		•	•	m. s.	8.	m. s.	8.	m. s.	m.
Balboa Heights	N.	2.2	22	10 42	+ 4				
Port au Prince		14.0	33	(13 36)	PP	(i 5 51)	- 8	(1346) PPI	the second se
San Juan	22.	18.0	50	14 7	- 6	17 42	+10	4 15 PP	i 9·1
Oaxaca	E.	18.9	308	1 4 27	+ 3	1 - 0			107
Huancayo		19.5	166	14 31	0	18 2	4		- 19.7

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

		20	A .
- 7	¥8.		6 G
. R	Q.	1.15	. .

- 5	100		2.2	
- 6	ч.	e	B-3	Π.
	ж.	e	b - 1	
	ж.	ж.	F	в.
		125		

		Δ	Az.	Р.	0 – C.	10705	0 – C.	and the second se	pp. L.
Mobile	N. N.	20.4 22.1 24.8 26.1 26.1 26.1	$ \begin{array}{r} $	m. s. i 4 37k i 5 0 i 5 26 e 8 11 i 5 39a		m. s. 1 8 32 1 9 46 1 10 5	s. + 7 - 2	m. s. 5 1 — i 6 1	$\frac{PP}{PP} e \frac{10.5}{-5}$ $\frac{PP}{13.5}$
Columbia Bermuda Cape Girardeau Montezuma Georgetown	E.	27.0 29.2 31.4 31.4 32.0	0 29 348 159 7	e 5 46 16 10 e 6 12 e 6 29 16 30	$^{+1}_{+5}_{-13}_{+40}$	$\begin{array}{ccccccccc} i & 10 & 24 \\ i & 11 & 1 \\ i & 11 & 27 \\ e & 11 & 31 \\ i & 11 & 45 \end{array}$	+ 23 + 35 + 51 + 3	e 6 47 i 7 18 e 7 29 i 14 3	PPP e 11.6 PPP i 12.2 PP e 17.1 sS
St. Louis Florissant Pittsburgh New Kensington Philadelphia		32.8 33.0 33.4 33.5 33.6	347 347 3 10	i 6 35 i 6 36 i 6 44 e 6 43? i 6 42	- 2 - 3 + 2 - 2	i 11 48 i 11 53 i 12 5 e 11 557 i 12 0	-6 -4 +2 -10 -6	i 6 57 i 7 2 e 7 55 ? e 7 30	PP e 15.6 PP i 14.5
Pennsylvania Fordham Chicago Ann Arbor Buffalo		33.8 34.3 35.3 35.4 35.9	5 12 351 357 4	i 6 52 i 6 55 e 6 55 7 3	$+ \frac{2}{- \frac{4}{5}}$	e 11 557 i 12 22 i 12 25 e 11 31 12 47	-15 + 5 - 8 - 63 + 5	$ \frac{18}{18} \frac{19}{7} \frac{18}{8} \frac{17}{7} \frac{15}{8} $	PPP e 16.9 PP e 14.1 16.5 PP
Des Moines Weston Harvard Lincoln Tucson		36.5 36.6 36.7 36.8 37.9	$345 \\ 13 \\ 13 \\ 341 \\ 317$	i7 8 i7 8 i7 8 i7 8 e7 7 i7 21	-1222 - 24 + 1	e 12 45 e 12 46 i 12 49 e 12 32 i 13 19	-67 - 75 - 24 + 6	e 8 29 8 24 1 8 29 e 8 37 1 8 48	PP e 17.0 PP e 15.1 PP e 15.4 PP e 16.0
Vermont Ottawa Denver Shawinigan Falls Halifax		38.6 38.9 39.7 40.4 40.4	$10 \\ 7 \\ 331 \\ 10 \\ 19$	1724 1727a e735 739 746	-22 -21 -21 -25	i 13 14 i 13 23 e 13 38 13 48 13 52		i 8 50 8 57 e 9 4 16 557 9 257	PP e 15.2 PP e 18.2 PP e 21.1 SS 21.9 PP 18.9
Seven Falls La Jolla Riverside Salt Lake City Mount Wilson		$40.9 \\ 42.9 \\ 43.5 \\ 43.7 \\ 44.1$	$12 \\ 313 \\ 315 \\ 327 \\ 315 \\ 315 \\ $	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$+ 1 \\ + 2 \\ + 0 \\ + 1 \\ 0$	1 13 58 e 14 42 1 14 43 e 14 36	0 + 6 + 9	9 31 e 9 41	PP 19.9 PP e 19.1
Pasadena Logan Haiwee Santa Barbara Tinemaha		44 · 2 44 · 4 45 · 0 45 · 4 45 · 7	315 329 318 314 318	$ \begin{array}{r} 18 \ 13a \\ 18 \ 14 \\ e \ 8 \ 20 \\ 18 \ 14 \\ 18 \ 14 \\ 18 \ 25a \\ \end{array} $	$+ 1 \\ + 1 \\ + 1 \\ + 1 \\ + 1$	i 14 51 e 14 43 e 15 2 e 15 8	+ 5+ 6+ 40	e 10 7 i 10 29	PPP e 19.5 PPP e 17.7
Fresno Bozeman La Plata	N. E. N. Z.	46.6 46.7 46.8 46.8 46.8	$317 \\ 333 \\ 155 $	e 8 31 1 8 33 8 29 8 29 8 29 8 29	-11 + 14 + -4 + -4	i 15 20 i 15 17 i 15 20 i 15 20 16 19	$-\frac{2}{7}$ - 7 + 55	$ \begin{array}{r} $	PP 1 19.3 PP 20.5 PP 20.6 PPP 20.6 1 25.4
Rio de Janeiro Butte Lick Santa Clara	E. N.	46.8 46.8 47.8 48.1 48.4	130 130 332 317 317	i 8 34 i 8 39 i 7 27 e 8 45 i 8 48	+ 1+ 6+ 64+ 2+ 2	i 15 21 i 15 18 e 15 34 e 15 48 i 15 53	- 3 - 6 - 4 + 7	i 19 0 i 10 24 e 10 17 e 15 54	SS 1 22.5 PP 1 22.5 PP e 19.5 PPS e 22.7 - e 21.9
Branner Berkeley Saskatoon Ukiah Ferndale		48.6 48.8 50.0 50.1 51.5	317 317 340 318 319	e 8 51 1 8 50 9 4 e 8 58 (1 9 14)	+ 4 ++ 1 + 6 1 5	e 16 54 i 16 2 i 16 6 e 16 13	+65 + 10 - 3 + 3 + 3	e 10 12 (i 10 29)	
Seattle Victoria Ivigtut Sitka Lisbon		$54.0 \\ 55.1 \\ 59.2 \\ 66.0 \\ 71.0$	$328 \\ 328 \\ 18 \\ 332 \\ 52$	e 11 50 9 36 e 10 6 1 10 57 11 20 a	PP 0 + 1 + 7 - 2	e 17 10 1 17 26 1 18 8 e 19 32 1 20 399	+ 7 + 8 + 4 - 6 + 2	e 18 56 11 57 e 13 46 i 13 21 i 11 31	ScS e 25.7 PP 26.9 PPP e 24.7 PP e 33.1 PcP 30.2

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

1.0

162

	Δ	Az.	. P.	0 - C.	_S. 0-C.	Supp.	L.
San Fernando Scoresby Sund College Toledo Granada	73·2 73·3 74·3 75·1 75·3	55 18 337 51 54	m. 8. i 11 35 i 11 39 e 11 39 i 11 49 i 11 51	8. + 4 + 2 + 3 + 4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	m. s. 21 30 PS e 14 21 PP e 14 41 PP 12 43 pP 12 3 pP	m. 34·4 e 32·3 e 30·1 35·3 30·4
Honolulu Almeria Edinburgh Stonyhurst Aberdeen	75.8 76.2 77.0 77.3 77.9	291 54 35 36 33	e 11 46 i 11 52 e 11 56 i 12 10 i 12 9	- 4 0 PeP + 8	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccc} e & 26 & 17 & SS \\ 12 & 3 & P_cP \\ \hline 22 & 8 & PS \\ \end{array}$	e 34 · 2 35 · 2 34 · 6 32 · 5
Kew Tortosa Barcelona Paris Clermont-Ferrand	78.3 78.5 79.9 80.0 80.4	39 50 49 42 45	i 12 6 12 13 e 12 6 e 12 6 e 12 14 i 12 16	+ 39 + 96 + 1 + 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	e 22 20 ScS 12 17 PcP i 12 23 PcP e 15 17 PP	e 32·4 33·7 33·4 e 38·4
Uccle De Bilt Bergen Marseilles Besançon	$81.3 \\ 81.7 \\ 81.9 \\ 82.2 \\ 82.5$	40 38 30 47 44	i 12 20k i 12 23k i 12 24 12 33 e 12 36	+ 1 + 1 + 9 PcP	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	i 12 31 PeP i 15 41 PP e 15 31 PP	i 34.1 e 33.9 34.9
Neuchatel Basle Strasbourg Zurich Stuttgart	83 · 1 83 · 6 83 · 6 84 · 1 84 · 6	44 43 42 43 42	i 12 29 e 12 31 12 33 e 12 42 e 12 35	0 0 + 2 PeP - 1	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	i 12 41 P _c P i 12 48 P _c P	36·9 e 40·5
Milan Chur Jena Copenhagen Cheb	84.8 85.0 85.9 86.0 86.5	45 44 40 35 40	i 12 37 e 12 49 i 12 43 e 12 44k e 12 44k e 12 45	$+11 \\ + 1 \\ + 1 \\ - 1$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	e 16 71 PP 1 12 54 PcP e 16 31 PP	e 34 ·9 34 ·9 e 42 ·9
Florence Potsdam Prague Triest Upsala	86.5 86.7 87.8 88.0 88.1	47 38 40 45 30	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-14 + 80 = 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 12 57 pP 1 13 1 pP e 16 13 PP 16 31 PP	e 34.9 e 32.9 e 35.9
Ogyalla E. Kalossa N. Belgrade Sofia Cernauti	90.7 91.5 92.8 95.3 95.6	41 42 44 46 40	e 12 45 e 13 15 e 13 5 e 13 29 e 13 491	$-21 + 5 -11 + 2 P_c P$	$\begin{array}{ccccccccc} e & 24 & 35 & 3 \\ (e & 24 & 25) & +17 \\ e & 24 & 21 & +2 \\ e & 24 & 46 & +5 \\ e & 24 & 55 & +12 \end{array}$	1 13 20 PcP e 17 199 PP e 24 259 SKKS	e 24.4 e 24.4 e 51.2 42.9
Campulung Bacau Bucharest Focsani Moscow	95·9 96·7 96·8 97·2 99·5	43 41 43 41 30	e 13 42 e 13 497 e 13 43 e 14 197 13 44	$^{+12}_{+16}_{+9}_{+43}_{-2}$	$\begin{array}{r} 23 & 559 [-15] \\ 1 & 24 & 54 & 0 \\ 24 & 19 [-12] \\ 25 & 15 & -1 \end{array}$	i 17 29 PP 25 491 PS 17 59 PP	42.9 43.9 43.9
Yalta Helwan Arapuni Wellington Christchurch	$102.2 \\ 105.1 \\ 105.2 \\ 105.7 \\ 107.0 \\$	42 57 232 329 326	e 14 8 e 14 13 23 48	+10 + 2 	$\begin{array}{r} 26 & 10 & + & 7 \\ 30 & 551 & & 1 \\ 26 & 37 & + 29 \\ 33 & 58 & SS \end{array}$	e 18 10 PP 18 31 PP 33 40 SS 28 12 PS	50·9 47·4 49·6
Ksara Sverdlovsk Irkutsk Sendai Vladivostok	$107.5 \\ 108.9 \\ 120.9 \\ 120.9 \\ 122.2$	52 21 356 322 332	$\begin{array}{cccc} e & 17 & 42 \\ 19 & 0 \\ 18 & 55 \\ 20 & 29 \\ 14 & 10 \end{array}$	PP [PP [PP]	e 28 52 PPS 28 20 PS 	e 19 4 PP e 20 32 PP	
Yokohama Wazima Tashkent Riverview Sydney	123.5123.8124.5125.4125.4	$321 \\ 324 \\ 27 \\ 233 \\$	e 20 39 e 20 49 15 54 1 21 7	PP PP PP	$ \begin{array}{c} - & - & - \\ & 27 & 37 & \{- & 7\} \\ & 26 & 5 & \{- & 7\} \\ & 26 & 5 & \{- & 2\} \\ & 37 & 439 & SS \end{array} $	20 40 PP i 31 7 PS	e 58.6 e 55.4

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

			1 1 1 1 1 1 1	
			-	
	-	_	-	
- 10 March 10				
	1990 - Carlos de		1997 - Maria Maria	
- 19	AND DO NOT			
				6.6

163

		Δ	Az.	P.	0-C.	8.	0-C.	Su	pp.	L.
			0	m. s.	8.	m. s.	8.	m. s.	100000	m.
Brisbane	N.	125.5	241			e 27 51	{ 0}	e 31 13	PS	
Andijan	232473	126.4	25	19 22	[+17]		· _ ·	20 55	\mathbf{PP}	-
Kobe		126.7	323	20 40	PP			and the second		
Tananarive		128.0	108	e 22 0	9	38 31	SS	31 19	\mathbf{PS}	57.6
Hamada		128.4	325	e 21 23	\mathbf{PP}					-
Kôti		128.5	323	e 19 10	[+ 1]				_	_
Zinsen		129.1	332	e 21 9	PP		-			
Kumamoto		130.7	325	e 19 13	[0]	· · · · · ·				—
Dehra Dun	N.	137.6	27	e 22 30	· PP					51.1
New Delhi	N	138.6	29	19 43	[+15]	26 27	[-10]	i 22 27	PP	63.8

```
New Deim
                N. 139.0
                            40
                                          [+10]
                                                   20 21 [-10] 122 21
                                                                            \mathbf{rr}
                                                                                   00.0
                                  10 40
                                                   32 47 SKSP
                E. 143.2
                                  19 36
                                                                   22 57
                                                                            PP
                                                                                 1 59.4
                            44
                                              01
Bombay
                                                   33 28 SKSP
                E. 148.0
                                 19 52
                                          [+
                                              8]
                                                                   23 23
                                                                            PP
                            40
                                                                                   69.8
Hyderabad
                                                 133 1 SKSP
                                             5]
                                                                                 1 67.3
                            19 i 19 50
                                                                 i 42 32
                                                                            \mathbf{SS}
                N. 148.7
Calcutta
                                          [+]
                                                (1 30 25) \{-5\}
                                                                   (23 43)
                            51(e 20 0)
                                             9]
                                                                            \mathbf{PP}
                                                                                  (73.0)
                E. 152·1
Kodaikanal
                                      3
                                              7]
                                                                            PP
                                          [+]
                                                                    24 14
                    156.0
                            55
                                  \mathbf{20}
                                                                                   75.2
Colombo
  Additional readings :---
    Port an Prince i = (3m.56s.), SS = (6m.21s.). Readings increased by one minute.
    Fort de France PPP = 5m.6s., SS = 8m.54s., SSS = 9m.2s.
    Mobile i = 9m.52s.
    Georgetown iPP = 7m.45s.
    St. Louis iPPZ =7m.39s., isSN =12m.28s., iSSN =13m.57s., iSSSN =14m.25s.
    Florissant iPPN = 7m.38s., iPPPN = 7m.59s., iP<sub>c</sub>PN = 9m.34s., isSE = 12m.33s., iE =
        12m.54s., iSSE =13m.28s.
    Philadelphia i = 12m.26s., e = 13m.59s.
    Chicago eS = 12m.18s.
    Ann Arbor e = 7m.7s., SS = 13m.49s.
    Buffalo 7m.47s.
    Tucson i = 8m.34s., 8m.59s., and 12m.16s., e = 14m.12s., eSS = 15m.40s.
    Ottawa e = 14m.2s., SSS = 16m.7s.
    Denver iN =7m.44s., epPPN =9m.20s., iN =9m.28s. and 10m.13s., eN =12m.36s.
        and 13m.30s.
    Halifax SSS = 16m.43s.?.
    Seven Falls SS =17m.7s.?.
    Salt Lake City e=17m.26s.
    Mount Wilson iZ = 8m.24s.
    Pasadena i=8m.25s., eSSE =18m.13s.?.
    Logan i = 8m.27s.
    Bozeman i = 19m.9s.
    Fresno iPN = 8m.398.
    La Plata E = 9m.13s., N = 16m.31s. and 17m.31s., SSE = 18m.7s., SSN = 18m.19s.,
        SSSE = 18m.49s., SSSN = 19m.43s.
    Rio de Janeiro iSSN =18m.55s.
    Lick iPE = 8m.50s.
    Ukiah e = 20m.3s.
```

Ferndale iPE = (9m.17s.). Readings increased by 1 minute. Seattle e = 21m.27s.Sitka iPPP = 14m.49s., $iS_cS = 20m.46s.$, eSS = 23m.52s., eSSS = 26m.51s.Victoria SSS = 23m.19s.?, e = 24m.55s.?. Lisbon PE =11m.23s., PPE =14m.7s. Scoresby Sund i = 16m.3s., iSS = 25m.56s., e = 30m.1s.College $eS_cS = 22m.48.$, e = 22m.438., eSS = 26m.58.Toledo iSN = 21m.27s., SS = 26m.21s.Granada $P_eP = 12m.12s$, $pP_eP = 12m.21s$, PPP = 16m.6s, sS = 21m.48s, PS = 22m.15s. SS = 25m.52s.Honolulu e = 30m.50s.Almeria $sP_cP = 12m.43s.$, i = 13m.29s., PP = 15m.3s., pPP = 15m.22s., PPP = 16m.53s., pPPP = 17m.8s., $S_cS = 21m.53s.$, pS = 22m.7s., SP = 22m.27s., PS = 22m.39s., sPS = 23m.8s., SS = 26m.55s., sSS = 27m.37s., SSS = 30m.23s. Stonyhurst 28m.31s., Q = 30m.52s. Aberdeen iN = 23m.27s. Kew ePP = 14m.26s., ePPPNZ = 17m.28s., ePS = 22m.44s., ePPS = 22m.55s., eSS = 27m.4s., eSSS = 29m.55s.?.Tortosa PPN =14m.30s., PPPN =16m.48s., SSN =26m.23s., SSSE =28m.35s., QE = 29m.47s. Uccle eE =13m.22s., ePPE =15m.28s., iPSE =23m.21s. De Bilt iPS = 23m.25s. Bergen eE = 18m.558.?. Strasbourg e = 14m.41s., iSS = 28m.49s.Stuttgart ePPZ = 15m.48s. and 15m.53s., iPS = 23m.58s., iPPS = 24m.22s. eSS = 28m.27s., eQ = 34m.55s.?. Jena iPN = 12m.46s., iP = 12m.54s., e = 13m.42s., eN = 17m.8s., iSN = 23m.20s., eN = 24m.50s., eE = 28m.42s.Florence iPPE = 16m.24s. and 18m.33s., iSE = 23m.49s., isSE = 24m.27s., iPSN = 24m.51s. Continued on next page.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

164

```
Upsala eN = 15m.37s., eSSN = 28m.55s.?, eSSE = 31m.55s.?.
Belgrade e = 16m.30s., ePPS = 26m.13s.
Sofia SKSEN = 23m.58s.
Bucharest iPPPE = 19m.14s., iPPPN = 19m.19s., iEN = 22m.31s., iSKSEN =
24m.10s., iSE = 24m.58s., iPSN = 26m.10s., iPS?E = 26m.20s.
Moscow SKS = 24m.20s.
Helwan eZ = 14m.22s. and 16m.15s., SKSEN = 24m.49s., PSEN = 27m.41s.
Arapuni i = 36m.55s.?.
Wellington Q? = 43.9m.
Christchurch PP = 26m.31s., e = 37m.48s., SS = 39m.7s., SSS = 42m.48s., Q = 43m.35s.
Irkutsk PS = 28m.11s.
```

Vladivostok PKP =17m.45s., PP =18m.2s. Tashkent iPKP =19m.8s., S = 28m.53s., iPS = 31m.1s. Riverview iN =29m.33s. and 31m.18s., iSSN = 38m.6s., iE = 38m.26s. Brisbane eN =38m.7s. and 39m.53s. Tananarive Q =52m.40s. New Delhi PPN =23m.15s., PSKSN = 32m.39s., SSN =40m.38s., SSSN =46m.2s. New Delhi PPN =23m.15s., PSKSN = 32m.39s., pPPE = 23m.31s., PPPE = 26m.6s., iE = 32m.10s., SPE = 33m.16s., SSE =41m.23s., iE = 43m.7s. Hyderabad SSE =42m.10s. Calcutta iN =22m.42s. and 25m.8s., iSSSN =47m.57s. Calcutta iN =22m.42s. and 25m.8s., iSSSN =47m.57s. Kodaikanal SKSPE =(34m.27s.), SSE =(43m.45s.). Readings increased by 30 seconds.

- Long waves were also recorded at Auckland and Apia.
- May 2d. Readings also at 1h. (Kew and Stuttgart (2)), 3h. and 4h. (Stuttgart), 5h. (Ebingen (2)), 6h. (Tucson, Mount Wilson, Pasadena, Tinemaha, La Jolla, Riverside, Salt Lake City, Logan, Bozeman, Florissant and Chicago), 8h. (La Paz and La Plata), 9h. (Tucson, Riverside, Mount Wilson, Pasadena, and Tinemaha), 12h. (Riverview), 15h. (near Branner and Lick), 17h. (near Balboa Heights), 18h. (Nagano, Sapporo, Sendai, Mizusawa, Misima, Osaka, Tinemaha, Pasadena, Mount Wilson, Riverside, Tucson, and near Balboa Heights (4)), 21h. (near Mizusawa and near Stalinabad), 22h. (near Balboa Heights (2) and Cheb), 23h. (near Stalinabad).

May 3d. 1h. 59m. 8s. Epicentre 12°.9N. 124°.3E.

$$A = -.5495, B = +.8055, C = +.2218; \quad \delta = -2; \quad h = +6; \\D = +.826, E = +.564; \quad G = -.125, H = +.183, K = -.975. \\A = -.975. \\A = -.125, H = +.183, K = -.975. \\B = -.125, H = -.183, K = -.975. \\B = -.125, H = -.183, K = -.975. \\B = -.125, H = -.183, K = -.975. \\B = -.183, K = -.183, K$$

			Δ	.00	m. s.	в.	m. s. s.	m. s.		m.
INI	laha lake liyazaki Lumamoto Lukuoka		° 13.6 16.2 20.0 20.7 21.3	13 17 20 16 15	(e 3 21) 3 33 e 4 31 e 4 27 (i 4 46)	+ 4 -17 - 6 -17 - 4	$\begin{array}{cccc} (6 & 4) & SS \\ 6 & 51 & 0 \\ 8 & 22 & + & 5 \\ 8 & 32 & + & 1 \\ (8 & 51) & + & 8 \end{array}$	e 4 37	-	
	Kôti Hirosima Hamada Jiwase Kobe		22.2 22.6 23.0 23.7 23.8	21 18 17 26 24	e 4 57 (1 5 8) 5 6 5 18 5 11	- 3 + 5 + 1 + 4 + 4	$\begin{array}{r} 8 & 58 \\ (9 & 8) \\ \hline 9 & 8) \\ \hline 9 & 39 \\ 9 & 25 \\ \hline 9 & 25 $			
	Kyoto Zinsen Nagoya Yokohama Fokyo, Cen. Met.	z. Ob.	24.3 24.6 25.0 26.4 26.6	24 4 26 29 29	5 22 5 20 (5 20) 1 5 40 6 5 42	+ 2 - 3 - 7 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$= \frac{13}{19}$	PP PcP	 13·3
	Wazima Sendai Mizusawa Vladivostok Mori	N.	26.9 29.3 30.1 30.8 32.4	23 28 27 11 23	5 38 6 1 6 7 6 7 8 7 6 38	- 7 - 5 - 6 PP + 4	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		 	19·7
	Sapporo Nemuro Calcutta Irkutsk Colombo	N.	33·5 35·4 35·5 42·4 44·1	23 27 291 342 267	$ \begin{array}{r} $	+ 13 + 13 + 0	8 7 PPI i 12 48 +1 14 58 PPi	$e \frac{1}{9} \frac{1}{58}$	PP PPP SS	$12 \cdot 1$ $1 18 \cdot 4$ $23 \cdot 9$

Continued on next page.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943			165		
	∆ A :	1997년 - 1997년 1997년 1997년 - 1997년 1997년 1997년 1997년 19 1997년 - 1997년 19		-C. Supp.	L.
	45.3 19	3 8 12 0 8 42 3 (i 8 19) 0 e 8 58		s. m. s. PPS 9 54 PF PPS 10 32 PF 0 (9 41) Pc + 2 e 18 19 SS + 4 10 32 PF	$\begin{array}{c} 24 \cdot 8 \\ P \\ - 20 \cdot 2 \end{array}$
Brisbane Bombay Riverview Sydney	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4 e 8 55 3 i 9 19a	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{ccccccc} + & 4 & 1 & 19 & 1 & SS \\ + & 11 & 1 & 16 & 20 & PS \\ + & 9 & 1 & 10 & 1 & PP \\ PPS & - & - & - & - \end{array}$	
Andijan Tashkent Tchimkent Auckland Apia	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	32.9
Arapuni Wellington Christchurch Honolulu College		2 11 19	$\begin{array}{ccccc} + 1 & 20 & 13 \\ + 3 & e & 21 & 21 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	P 33.9 35.6 e 30.6
Moscow Yalta Ksara Tananarive Sitka	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4 e 12 8 3 e 12 27	-11 22 40	$\begin{array}{cccccccc} -10 & -10 $	- 39·9 41·2
Istańbul Bacau Focsani Cernauti Helwan	85.8 85.8 85.8 85.8 31 85.8 85.8 31 85.8 85.8 85.8 85.8 85.8 85.8 85.8 85.	7 e 12 54 8 e 12 53 9 e 12 42	$\begin{array}{cccc} P_{e}P & 23 & 13 \\ - & 1 & e & 23 & 17 \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5 45.9
	86.8 31 87.1 33 87.1 33 87.1 33 87.1 33 87.4 31	32 e 12 47 32 e 12 517 32 e 17 58	- 2 e 23 33 + 2 e 23 13 [PPP	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	e 38·9 e 39·9
Sofia Belgrade Kalossa Copenhagen	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	- 4 e 23 59 - 4 e 23 38 [+ 7 e 23 55 {	$\begin{array}{c} -1 \\ +12 \\ +12 \\ +2 \\ +2 \\ +6 \\ +6 \\ +6 \\ +6 \\ +11 \\ 16 \\ 57 \\ PP \\ \end{array}$	6 e 36·4
	E. 92.4 32 N. 92.4 32 92.5 32	25 e 13 281	+14 i 24 0 (- + 4 e 23 52?[-	+ 6] e 16 56 PP + 9] e 17 10 PP + 1) e 17 10? PP + 5] e 25 22 PS + 7] e 17 14 PP	e 43.9 e 42.9
Cheb Jena Victoria Triest Seattle	93.8 39 94.6 3 94.7 31	23 e 13 28 24 e 13 15 39 e 13 55 39 e 13 52 39 e 18 36	$+31$ e 24 20 { +28 e 23 52 [-	i e 25 59 PS + 12 e 17 3 PP + 5} e 17 12 PP - 6] i 17 45 PP - 9 - 6 - 6 - 6 - 6	e 54.9 42.9 39.9 e 45.9 e 44.5
Stuttgart Chur De Bilt Florence Strasbourg	96.8 32 96.8 32 97.1 31	27 e 13 32	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	e 46·4 e 45·9 1 50·7 e 43·9
Zürich Aberdeen Basle Milan Uccle	97.4 33 97.7 35 97.7 35	22 e 13 37 34 i 14 1 23 e 13 28 20 e 14 1 26 e 13 37		$ \begin{array}{c} 9 \\ -9 \\ -7 \\ -7 \\ -7 \\ -5 \\ -5 \\ -9 \\ -9 \\ -9 \\ -9 \\ -9 \\ -9$	42·9 45·8 6 46·9
Neuchatel Edinburgh Uklah Besançon Stonyhurst	98.7 31 98.7 4 98.8 35	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+23 e 24 36 [-	$ \begin{bmatrix} 5 \\ - 3 \\ - 3 \\ - 15 \\ - 15 \\ - 1 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 26 \\ 47 \\ - 98 \\ - 98 \\ - 98 \\ - 10 \\ - $	e 44·9

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

166

	Δ	Az. P. m. s.	0 – C. s.	S. 0-C. m. s. s.	Supp. m. s.	L. m.
Berkeley Kew Paris Santa Clara Marseilles	99.9 100.0 100.0 100.3 101.1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$+ \frac{0}{5}$ $+ \frac{18}{PP}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	i 17 48 PP e 17 52 PP i 17 59 PP e 27 20 PS	e 40.9 48.9 e 45.4
Clermont-Ferrand Saskatoon Butte Tinemaha Bozeman	$101.3 \\ 101.8 \\ 102.3 \\ 103.1 \\ 103.3$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	PP PP ? PP PP	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	e 27 39 PPS 32 30 SS 1 18 18 PP 1 27 27 PS	e 49.9 42.9 e 47.8 e 42.3
Haiwee Z. Barcelona Mount Wilson Z. Pasadena Logan	103.7 104.1 104.5 104.5 105.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+ 9 - 2 - 2 + 22	$33 12 ext{ ss}$ e 24 39 [- 9] e 24 56 [+ 5]	e 30 6 PKKP e 30 10 PKKP e 18 287 PP e 27 26 PS	43.1
Riverside Z. Tortosa N. Salt Lake City Ivigtut Toledo	$105.1 \\ 105.5 \\ 105.6 \\ 105.9 \\ 108.9 \\$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+ 7 PP PP ?	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	e 29 52 PKKP 37 7 SSS e 29 0 PPS e 24 56 SKS 19 9 PP	56.6 e 43.5 e 43.8 56.3
Almeria Granada Tucson San Fernando E. Lisbon	109.6 110.2 110.8 112.3 112.7	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(- 4)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1914PPi1830PKPe1934PP3933SSSi1934PP	$53 \cdot 4$ $51 \cdot 7$ $45 \cdot 5$ $55 \cdot 9$ $53 \cdot 0$
Lincoln Chicago Seven Falls Shawinigan Falls Florissant	114.5 118.1 118.7 118.9 119.2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		e 26 51 $\{+14\}$ e 25 48 $\{+5\}$ 27 283 $\{+23\}$ i 26 9 $[+22]$	e 29 22 PS e 29 58 PS 20 20 PP i 20 18 PP	e 49 · 1 e 47 · 0 47 · 9 56 · 9
Ottawa St. Louis Buffalo Vermont Halifax	$119.2 \\ 119.4 \\ 120.5 \\ 120.7 \\ 122.3$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{bmatrix} - & 1 \\ + & 5 \end{bmatrix}$ PP	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2017PPi2019PP232PPPe3023PSe3716PPS	e 47.9 i 49.8 53.9
New Kensington Pittsburgh Harvard Fordham Philadelphia	$122.3 \\ 122.4 \\ 123.0 \\ 123.9 \\ 124.4$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	[+ 2]	$i \begin{array}{cccc} 26 & 3 & [+ 5] \\ e \begin{array}{cccc} 27 & 11 & [-23] \\ i \begin{array}{cccc} 26 & 30 & [+28] \\ e \begin{array}{ccccc} 30 & 32 & PS \end{array}$	e 30 347 PS 1 20 42 PP 1 20 39 PP 20 48 PP	e 53·2 e 51·1
Georgetown Tacubaya N. Columbia Bermuda San Juan	124.7 126.5 127.5 134.2 147.3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	PP [+3] PP PP [+12]	$e_{32} = 10 [-3]$ $e_{32} = 19 PS$	e 31 32 PS e 40 41 SS e 23 29 PP	e 52.2 e 54.2 e 58.2
Fort de France Bogota La Plata N. Huancayo Rio de Janeiro N. La Paz	160.8	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$[+ 0] \\ [+4] \\ [+11] \\ [+9] \\ [+29] \\ [+4] \\ [+4] \\ [+4] \\ [+4] \\ [+6$	$\begin{array}{c} 31 & 22 & \{+20\} \\ e & 34 & 52 & 1 \\ e & 32 & 2 & \{+26\} \\ i & 26 & 42 & [-28] \end{array}$	e 33 6 1 e 24 8 PP 24 16 PP e 44 46 SS i 21 37 pPKP	64 ·9 e 59 ·1 80 ·9

Additional readings and notes :--Naha readings increased by one minute. Hukuoka readings reduced by two minutes. Hirosima readings increased by one minute. Nagoya readings increased by one minute. Tokyo iEZ =7m.58s., 1=8m.18s. Mizusawa ePE =6m.10s. Vladivostok iP =7m.25s. Calcutta iPPPN =8m.49s., iPePN =9m.49s., N =11m.6s., iSSN =14m.44s., iSSSN = 16m.4s. Hyderabad iE =8m.24s., PePE =9m.36s., SSE =17m.40s. Perth PPP =11m.12s., PS =16m.17s., SS =19m.22s., SSS =20m.42s. Kodaikanal SSE =(18m.25s.). Readings increased by 30 seconds.

Continued on next page.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

167

New Delhi iN =8m.58s., PPPN =11m.27s., $P_cSN = 14m.19s.$, SSN = 18m.19s., $S_cSN = 18m.46s.$, iN = 20m.10s.Brisbane iPE =9m.5s., iPN =9m.8s., iSSE =19m.5s. Bombay iPE =9m.7s., iE =9m.24s., $P_cPE = 10m.38s.$, PPE = 11m.2s., iE = 11m.19s.and 17m.14s., $S_cSE = 18m.58s.$, SSE = 19m.52s., SSSE = 21m.20s.Riverview i =9m.28s., iEZ =12m.7s., iN =12m.10s. and 17m.5s., iE =17m.15s. and 17m.25s., iPSiN =17m.36s., iE =17m.59s., isSiN =18m.6s., iN =19m.6s., iSSNZ = 20m.57s., i = 21m.29s. Auckland i = 12m.13s. and 16m.52s.?, PS = 20m.54s., $S_cS = 21m.19s.$, i = 22m.42s., SS = 24m.54s., SSS = 28m.7s., Q = 30m.22s.?. Wellington $S_cS = 21m.17s.$, i = 21m.38s., SS = 24m.57s., Q = 30.9m.Christchurch PPP =15m.50s., i = 20m.54s. and 22m.37s., SS = 25m.21s., Q = 30m.56s.

Honolulu e =16m.26s., 17m.5s., 22m.19s., and 24m.40s. College e = 26m.20s. Tananarive $S_cS = 23m.8s.$, iPS = 23m.19s., SS = 28m.13s., Q = 34m.31s. Sitka ePP =16m.7s., ePS =23m.59s., e =31m.19s. and 35m.29s. Focsani SKSE = 23m.9s., S?E = 24m.29s.Cernauti eSN = 23m.32s. Helwan eE =12m.57s., PPZ =16m.50s., eZ =17m.1s., PPPZ =19m.7s., PSE =25m.50s. Bucharest ePE = 12m.51s., iPP?E = 16m.49s., iPP?N = 16m.54s., iPPP?EN = 16m.54s.18m.51s., iSKSE = 23m.13s., iSKSN = 23m.18s., iPSEN = 24m.46s., iSSEN = 29m.47s. Upsala ePPP?E = 17m.58s., eE = 19m.51s.?, eSN = 23m.30s., eN = 26m.52s.?, eSSN = 28m.52s.?, eSSE = 29m.52s.?, eSSS = 32m.52s.?. Belgrade i = 13m.8s. and 13m.27s., e = 26m.26s., eSSS = 34m.24s., e = 36m.27s. Kalossa ePE = 13m.17s. Copenhagen 23m.39s., 25m.25s., 28m.29s., SS = 31m.22s.? Bergen eE = 24m.52s.?, SS = 30m.41s., e = 33m.57s.Prague ePS = 24m.40s., eSS = 30m.34s.?. Scoresby Sund e = 16m.36s. and 20m.50s., eSKS = 23m.47s., ePS = 25m.55s., e = 27m.45s., eSS = 30m.37s.Jena iNZ =13m.27s., eN =19m.21s., eZ =20m.22s.?, eN =23m.33s. and 24m.2s., eE = 25m.52s.?, e = 26m.7s., eE = 26m.52s. and 29m.22s.?, eN = 29m.29s., eE = 32m.11s., eN = 33m.19s., eE = 37m.40s.?, eN = 37m.52s.?, e = 38m.52s.?. Seattle e = 20m.8s. and 36m.7s. Stuttgart ePZ = 13m.32s., eZ = 13m.42s., eSKS = 24m.10s., ePS = 26m.4s., ePKKP?Z =30m.52s., eSS = 31m.40s. De Bilt eSS = 31m.32s. Florence iSKKSE = 24m.27s., iSE = 26m.3s., iPS = 27m.33s.Strasbourg ePPP = 20m.8s., eSKS = 24m.22s., eSS = 31m.39s.Aberdeen iN = 21m.52s, and 31m.41s., iE = 31m.56s. Uccle e = 21m.50s., eEN = 23m.49s., iN = 28m.52s., eN = 31m.49s.Edinburgh PS = 26m.42s. Ukiah e = 26m.57s., eSS = 32m.4s., e = 37m.11s.Stonyhurst PPP = 20m.22s., S = 24m.49s., SS = 31m.55s., 33m.10s.Kew ePPPE = 20m.54s., ePS = 26m.49s., ePPSEN = 27m.18s., eSSEN = 32m.40s., eSSSEN = 36m.52s.?. Santa Clara iE = 23m.52s., ePSE = 26m.0s.Marseilles eSS = 32m.36s. Clermont-Ferrand e = 19m.40s., eSSS = 37m.17s.Tinemaha iZ = 17m.47s., ePKKPZ = 29m.55s.Bozeman i = 25m.4s., e = 32m.28s., eSS = 33m.32s.Mount Wilson eZ = 16m.8s., iZ = 17m.0s. and 17m.38s.Pasadena iPSE = 27m.35s., iPKKPZ = 30m.19s.Logan e = 29m.58s., eSS = 33m.50s., e = 38m.38s.Tortosa PPPN =22m.51s., PSN =30m.1s., SSN =36m.37s., QN =49m.25s. Ivigtut ePPi = 20m.58., eSS = 33m.388., eSSS = 37m.418.Toledo SSE = 35m.47s.Almeria pPP =19m.32s., sPP =19m.45s., PPP =21m.46s., pPPP =22m.10s., SKS = 24m.44s., SKKS=25m.32s., S=26m.43s., PS=27m.15s., sS=27m.29s., SP= 28m.36s., pSP = 29m.8s., sPS = 29m.26s., SPP = 29m.50s., PPS = 30m.2s., SS = 35m.8s. Granada PP = 19m.9s., PPP = 21m.39s., PS = 29m.27s., SS = 38m.23s.Tucson e=17m.57s., i=19m.14s., e=26m.41s., ePS=28m.40s., iPPS=29m.55s., e = 33m.38., eSS = 34m.498.San Fernando S?E = 30m.42s.Lisbon iPPN =19m.40s., N =21m.42s., PSE =29m.31s., SSE =35m.32s.?, SSN = 36m.10s. Lincoln e = 35m.19s.Chicago e = 27m.4s, eSS! = 36m.16s, e = 39m.12s, and 41m.50s. Seven Falls SS = 36m.228.?. Florissant iZ =19m.40s., 20m.9s., and 22m.32s., iN =25m.13s., iSKKSIN =27m.39s., iN = 29m.57s., and 30m.5s., iSPN = 30m.13s. Ottawa PS = 30m.1s., SS = 36m.12s.St. Louis iEN = 26m.9s. Buffalo 21m.24s., SKP = 21m.56s.Vermont e = 26m.9s., eSS = 36m.34s., ePKP, PKP = 39m.49s. Pittsburgh iSKKSNW = 27m.34s.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

168

Harvard e = 21m.52s. and 24m.37s., ePS? = 30m.45s., ePKKS = 32m.37s., eScSPKP = 34m.10s., eSS = 37m.25s., ePKP,PKS = 41m.2s., eSSS = 42m.2s., e = 45m.12s. and 51m.7s. Fordham iPPP = 22m.40s., i = 36m.22s. Philadelphia e = 25m.38s., eSS? = 37m.5s., e = 40m.53s. Columbia e = 26m.0s., eSS = 38m.27s. Bermuda i = 23m.9s., ePS = 31m.31s. San Juan e = 34m.32s., ePKP, PKP = 40m.55s., e = 43m.40s. Bogota e = 20m.22s., ePP? = 20m.28s., e = 21m.18s. and 21m.32s. La Plata PKPEZ = 20m.16s., N = 21m.4s., PPE = 22m.34s., e = 26m.16s. SKKSE = 29m.34s., SKSPN = 34m.34s., N = 35m.52s., E = 36m.28s., PPSN = 37m 34s., PPSE = 39m.4s., E = 47m.22s. and 47m.58s., SSS? E = 58m.16s. Huancayo e = 22m.5s., ePPP = 28m.48s., e = 32m.12s., i = 45m.23s. La Paz iPKPZ = 20m.16s., iPKP, = 20m.54s., isPKP? = 22m.28s., iZ = 22m.50s., iPPZ = 25m.20s., PPP? = 29m.16s., iSKKS = 31m.52s., PSKS = 36m.28s., SSN = 46m.28s., SSSN = 52m.27s., QN = 68m.52s.

May 3d. 10h. 17m. 8s. Epicentre 18°·1N. 95°·1W. (as on 1937 Sept. 1d.).

Pasadena suggests deep.

		0846, 1 996, E	and the second se	·9474, C ·			+8; ·308, F	$h = +5$ $\zeta =951$	5.0	
		Δ	Az.	Р.	0 – C.	s.	0 – O.		pp.	L.
		•	•	m. s.	8.	m. s.	8.	m. s.		m.
Vera Cruz	Z.	1.5	318	0 43	Pr	· · · · ·			1	
Oaxaca	N.	1.9	236	10 40	P. P. P.	<u>222</u>	-			_
Tacubaya	N.	4.1	288	11 14	P				1.000	
Cape Girardeau	E.	19.8	13	e 4 36	+ 1	e 8 14	+ 1	and the second second		
Tucson	122.5	20.0	319	i 4 39	$^{+}_{+} \frac{1}{2}$	18 24	+ 7	i5 7	PPP	e 10·8
St. Louis		20.9	10	i4 46	0	e 8 32	- 3	e 9 2 19 9	SS	e 9.6
Florissant	E.	21.0	10	i4 48	+ 1	i 8 34	- 3	i9 9	SS	e 9.6
Bogota		24.5	121	e 5 18	- 4		100 C			
La Jolla		24.9	311	15 26	0				-	
Riverside		25.4	314	i 5 31k	Ō			i6 7	\mathbf{PP}	
Mount Wilson		26.0	314	15 37k	+ 1	223		16 22	PP	
Pasadena		26.1	314	1 5 384	÷ 1			18 59	PcP	
Logan		27.6	333	e 5 52	÷ ī	e 10 32	0		· · · · · · · · · · · · · · · · · · ·	e 11·3
Tinemaha		27.8	318	1 5 53	Ō		<u> </u>	e 12 32	SSS	
Harvard		31.5	34	i 6 20	- ĕ					
			33336455		033.42					

La Paz	43.4	140	e 8	7	+ 1	 		
Clermont-Ferrand	82.8	45	e 12	22	- 5	 		 -
Stuttgart Z	. 85.6	40	e 12	36	- 5	 		 -

Additional readings :---Riverside iZ =6m.21s. and 8m.57s. Mount Wilson eZ =8m.58s. Pasadena iZ =6m.6s., 7m.6s., and 9m.35s. Logan e =7m.48s. and 10m.0s. Tinemaha eZ =6m.24s., iZ =9m.3s., eNZ =15m.25s. Long waves were also recorded at Huancayo.

May 3d. 13h. Undetermined shock near the Philippine Islands.

```
Naha e? =42m.53s.
Hukuoka P =44m.32s., S =48m.28s.
Miyakozima P =44m.35s., S =46m.48s.
Kôti e =44m.48s., S =48m.46s.
Kobe eP =44m.52s., S =48m.52s.
Nagoya e =45m.7s.
Misima e =45m.24s.
Nagano e =45m.29s.
Hamada P =46m.11s.
```

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

169

May 3d. 16h. Undetermined shocks.

It is believed that the readings are approrpiate to more than one shock, one of which at least is likely to be an aftershock of 1h.

```
Riverview i?E = 39m.4s., iSN = 49m.14s., iN = 49m.31s., eLNZ = 53.9m.
Hukuoka P = 41m.38.
Miyakozima e=41m.42s.
Kôti P =42m.8s., S =46m.6s.
Zinsen P = 42m.30s.
Osaka eP = 42m.31s., S = 45m.50s.
Nagoya P = 42m.39s.
Misima e = 42m.48s
Nagano P = 42m.54s.
Kodalkanal eE = 45m.0s., iE = 48m.5s. and 57m.30s.
Bombay eE =46m.15s., iE =49m.18s., eE =52m.6s., 53m.52s., and 55m.15s., iE =
    57m.3s. and 59m.7s.
Tashkent eP = 46m.55s., S = 49m.48s.
Calcutta eN = 47m.20s., iN = 49m.59s.
Sverdlovsk P = 47m.58s.
Cheb e = 49m.
Helwan ePZ = 50m.2s., eZ = 50m.39s., iZ = 51m.18s., and 52m.49s., iN = 60m.48s.
Mount Wilson iPZ = 50m.27s., ePPZ = 54m.6s.
Tinemaha iPZ = 50m.27s.
Pasadena iPZ = 50m.28s., eLE = 76m.
Riverside iPZ = 50m.30s.
La Jolla iP = 50m.36s.
Tucson eP = 50m.55s., e = 54m.47s., eL = 82m.9s.
New Delhi eN = 52m.37s.
Granada eP = 54m.27s., PP? = 59m.33s., SKP = 61m.45s., SKKS = 66m.51s., PS =
    69m.39s., SS =75m.51s., L =96.6m.
Stuttgart ePZ = 56m.12s., ePPZ = 60m.20s., eS = 67m.36s.?, eQ = 88.5m.
Fort de France e = 56m.53s.
San Juan eP = 57m.11s., e = 64m.27s., eL = 68m.53s.
Victoria e =60m.48s., L =89m.
Seven Falls e = 69m.08.1, L = 95m.
Long waves were recorded at Arapuni, Auckland, Wellington, Huancayo, La Plata,
    Sydney, and other European stations.
```

May 3d. Readings also at 0h. (near Andijan), 2h. (Tacubaya), 3h. (Fort de France, Tucson, Mount Wilson, and Tinemaha), 4h. (Tananarive and near Balboa Heights (2)), 5h. (Mount Wilson, Pasadena, Riverside, Tinemana, Tucson, and Tacubaya), 6h. (Ksara), 7h. (near Fresno), 9h. (Sverdlovsk, Tashkent, Bombay, and Riverview), 10h. (De Bilt and Stuttgart), 11h. (Hukuoka, Koti, Osaka, Ebingen, and near Almeria, Granada, and Toledo), 12h. (Irkutsk, Sverdlovsk, Tashkent (2), Vladivostok, Riverview (2), Hyderabad, Calcutta (2), Kodaikanal (2), New Delhi,

Bombay (2), Helwan (2), Mount Wilson, Pasadena, Tinemaha, Tucson, Fort de France, Tortosa, De Bilt, Kew, and Stuttgart), 13h. (Granada, De Bilt, Stuttgart, Potsdam, Cheb, and Upsala), 17h. (Huancayo), 19h. (Tucson, Mount Wilson, Riverside, and Tinemaha), 20h. (near La Paz and near St. Louis), 21h. (near Frunse and Tashkent).

May 4d. 6h. Undertermined shock. Oaxaca PN =42m.46s. Vera Cruz PN =42m.46s. Tacubaya PE =43m.19s. Tucson iP =46m.39s., e = 47m.12s., 47m.30s., 50m.26s., and 51m.10s., eL = 53m.23s.Riverside iPZ =47m.29s., eZ = 48m.5s., iZ = 48m.15s., and 50m.56s.Mount Wilson iPZ =47m.38s., eZ = 48m.21s.Pasadena iPZ =47m.39s. Tinemaha iPZ =47m.54s., eZ = 48m.33s., iZ = 51m.3s.

May 4d. 9h. Undetermined shock.

```
Triest i =39m.52s. and 39m.55s.

Florence eP_sZ = 40m.34s., iS_sZ = 40m.58s.

Chur eP_s = 40m.34s., eS_s? = 41m.15s.

Basle eP_s = 40m.43s., eS_s = 42m.8s.

Zurich eP_s = 40m.48s., eS_s = 41m.36s.

Neuchatel eP = 40m.49s.

Stuttgart eP?Z = 41m.2s., eZ = 41m.6s. and 41m.11s., eP_s?Z = 41m.22s., e = 41m.33s.,

eZ = 41m.56s., e = 42m.2s., eS_s?Z = 42m.8s.

Strasbourg eP? = 42m.17s., i = 42m.21s., e = 42m.45s.
```

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

170

May 4d. 18h. Undetermined shock. Alaska. College eP = 26m.27s., e = 27m.6s., eS = 30m.27s., eL = 31m.11s. Vladivostok iP = 28m.35s., iS = 33m.9s. Tinemaha iP = 30m.3s.s., iP_cPZ = 31m.38s., iS_cPZ = 35m.17s. Haiwee iP = 30m.8s.s., iP_cP = 31m.39s., iS_cPZ = 35m.22s. Santa Barbara iP = 30m.11s. Pasadena iP = 30m.11s. Pasadena iP = 30m.17s.s. Mount Wilson iP = 30m.18s.s., iZ = 30m.26s., iP_cPZ = 31m.43s., iS_cPZ = 35m.25s. Riverside iPNZ = 30m.20s.s., iP_cPZ = 31m.44s., iS_cPZ = 35m.27s. La Jolla iP = 30m.29s. Tueson iP = 31m.1s., i = 31m.32s.

- Ottawa eZ = 32m.3s., L = 51m.Tashkent eP = 32m.34s.Fordham iP = 32m.36s.Baku S = 43m.23s.
- May 4d. Readings also at 0h. (near Balboa Heights and near Mizusawa), 1h. (La Plata), 2h. (Tinemaha, Tucson, near Mizusawa), 6h. (near Mizusawa), 7h. (Tinemaha, Riverside, and Mount Wilson), 13h. (near Tashkent and Stalinabad), 17h. (Tinemaha, Pasadena, Mount Wilson, Riverside, and Tucson), 21h. (La Plata, near Apia, near Tashkent and Stalinabad), 22h. (La Plata).
- May 5d. Readings at 6h. (near Berkeley), 7h. (Stuttgart and Riverview), 11h. (near Fresno, Berkeley, and Lick), 14h. (Tinemaha, Mount Wilson, Tucson, Riverside, Stuttgart, and Tacubaya), 15h. (Mount Wilson, Tucson, Riverside, Pasadena, Haiwee, and Tinemaha), 16h. (Philadelphia, Florissant, St. Louis, and Tucson), 17h. (Florissant (2) and Mizusawa), 18h. (near Tashkent and Andijan), 22h. (near Berkeley).

May 6d. 8h. Undetermined shock. Huancayo eP = 50m.45s., e = 53m.10s. and 53m.31s., eL = 54m.35s.La Paz iPZ = 52m.18s., SZ = 56m.12s., LZ = 60m.San Juan eP = 52m.32s., e = 57m.3s., eL = 57m.37s.Tucson iP = 55m.34s.La Jolla ePNZ = 56m.9s.Riverside iPZ = 56m.15s.Mount Wilson iP = 56m.20s.

Pasadena iP = 56m.20s. Tinemaha iPZ = 56m.35s.

May 6d. 15h. 59m. 49s. Epicentre 48°.2N. 9°.0E. (as on 2d.).

 $A = + \cdot 6609, B = + \cdot 1046, C = + \cdot 7432; \delta = +8; h = -5;$

	Δ	Az.	Р.	0-C.	s.	0-C.	Sup	p .	L.
	0	0	m. s.	8.	m. s.	8.	m. s.		m.
Ebingen	0.0		e0 1	Pr	i0 2	Se		-	
Ravensburg	0.6	135	· · · · · · · · · · · · · · · · · · ·		e 0 20	S.			
Stuttgart	0.6	13	e0 9	Pr	i0 16	Sr			
Strasbourg	0.9	295			i029	S.			0.6
Zürich	0.9	198	e 0 17	P¢	e 0 29			_	
Basle	1.2	235	e 0 22	$\mathbf{P}_{\mathbf{g}}$	i0 38	S.			
Chur	1.4	165	e 0 24	- 3	e 0 48	S.	10 27 a	Pr	
Neuchatel	1.8	229	e 0 58	\mathbf{P}^{\bullet}				<u> </u>	

May 6d. Readings also at 1h. (Tortosa, near Toledo, Granada, and Almeria), 3h. (Tacubaya), 5h. (Bogota and near Fort de France), 6h. (Riverview), 7h. (Tacubaya and near Berkeley), 9h. (Wellington, Auckland, Riverview, Brisbane, Tucson, and Riverside), 10h. (Riverside, Pasadena, Mount Wilson, Tinemaha, Tucson, near Mizusawa), 11h. (Riverside, Pasadena, and Tinemaha), 13h. (near Fort de France), 14h. (Calcutta), 15h. (Riverview), 17h. (near Apia), 18h. (near Tashkent and Andijan), 20h. (near Almeria (2) and Granada),

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

171

May 7d. 8h. Undetermined shock. Auckland Pi = 11m.47s., S = 15m.6s., L = 17m.?. Riverview eP = 12m.17s., iS = 16m.12s., iE = 16m.20s., eLN = 17.6m. Wellington PPiZ = 12m.30s., P_cPZ = 13m.52s., i = 15m.45s., and 16m.30s., S = 16m.45s., Q = 18.0m., R = 20m. Brisbane iN = 14m.36s., eN = 16m.6s. Sydney e = 15m.0s.? and 18m.54s.?. Christchurch S = 17m.11s., Q = 18m.28s., R = 20m.27s. Mount Wilson iPZ = 20m.13s. Pasadena iPZ = 20m.14s., eLZ = 49m.0s. Riverside iPZ = 20m.16s. Tinemaha iPZ = 20m.20s.

Tucson iP = 20m.398. Stuttgart eZ = 27m.8s. Chur eP = 27m.11s. Basle eP = 27m.12s. Neuchatel eP = 27m.14s. Zürich eP = 27m.19s. Long waves were also recorded at Huancayo.

May 7d. 20h. 22m. 57s. Epicentre 43°.5N. 139°.1E.

 $A = -.5500, B = +.4765, C = +.6859; \delta = +1; h = -3;$ D = +.655, E = +.756; G = -.518, H = +.449, K = -.728.

		∆ °	۸z.	P. m. s.	O −C. s.	S. m. s.	0 – C. s.	m. s.	pp.	L. m.
Mizusawa Vladivostok	E.	4·6 5·3	$160 \\ 269$	e 1 13 i 1 21	$\frac{+}{-}$ 1	2 15	S*		Ξ	_
Irkutsk Calcutta Tashkent	N.	$24.7 \\ 46.6 \\ 50.2$	$303 \\ 260 \\ 293$	e 8 46 8 57	$^{+1}_{-3}$	e 9 437 e 15 12 i 16 11	$-\frac{1}{9}$	=	Ξ	1 20.8
New Delhi Bombay Moscow	N. E.	$51.1 \\ 60.1 \\ 61.1$	$274 \\ 268 \\ 321$	e 11 16 1 10 8 10 19	$\frac{PP}{-3}$ + 1	i 16 21 e 18 17 18 37	- 37	14 1	PPP	
Kodaikanal Copenhagen	E.	 A second sec second second sec	258 332	e 9 23 e 11 22	-65 -2	20 43	$+\frac{1}{1}$			39.0
Tinemaha Bucharest Haiwee Mount Wilson Pasadena		73.5 74.1 74.3 75.5 75.5	55 316 55 57 57	1 11 36 a 1 11 40 a 1 11 46 a 1 11 47 a	$-\frac{1}{2}$	e 20 31	- 69	i 11 44 e 11 47 i 11 53	PeP PeP	
Jena Ksara Riverside De Bilt Stuttgart	z.	75.576.076.176.878.1	328 303 57 333 329	i 11 45? e 11 59 i 11 49a i 20 12k e 12 2	- 3 + 2 - 2 0	i 21 46 e 21 57 ?	 ‡ 4 1	e 22 18 e 11 55 e 12 9	PS PcP PcP	 e 31.6
Uccle Triest Zürich Basle Neuchatel		$78.2 \\ 78.8 \\ 79.5 \\ 79.8 \\ 80.5 $	333 324 328 329 329	$\begin{array}{cccc} e & 12 & 5 \\ e & 12 & 22 \\ e & 12 & 11 \\ e & 12 & 15 \end{array}$	+ 2 PeP - 1 0	e 21 57 i 22 2 	- 2	e 30 57 f		e 40.0 43.0
Tucson Helwan St. Louis La Paz	Z. Z.	$81.2 \\ 81.5 \\ 86.8 \\ 144.5$	53 303 37 48	i 12 20 i 12 21 a i 12 47 e 19 39	$+ 1 \\ 0 \\ 0 \\ (+ 1)$	22 30	-2			75.0

Bombay also gives $S_cSE = 19m.54s.$, SSE = 22m.27s.Long waves were also recorded at other European stations.

May 7d. 23h. Undetermined shock. Huancayo e = 50m.30s. and 52m.38s., eL = 54m.48s.Bogota eP = 52m.58s., i = 53m.22s.La Paz Z. P = 53m.58s., iS = 57m.54s., L = 60m.12s.San Juan eP = 54m.26s., eS = 58m.46s., eL = 59m.26s.Tucson iP = 57m.19s.Riverside iPZ = 57m.55s.Mount Wilson iPZ = 57m.59s.Pasadena iPZ = 58m.1s.Tinemaha ePZ = 58m.14s.New Delhi eN = 83m.25s.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

172

- May 7d. Readings also at 1h. (Mount Wilson, Riverside, Tucson, and Bogota), 2h. (near Lick, Branner, and Fresno), 3h. (near Strasbourg (2), Stuttgart (2), Zurich, Neuchatel, and Basle), 5h. (Tashkent, Frunse, near Andijan), 13h. (Mizusawa and near Stuttgart (2)), 15h. (near Mizusawa), 18h. (Arapuni), 19h. (near Frunse, Tashkent, and Stalinabad), 20h. (near Tucson and near Mizusawa), 22h. (Mount Wilson, Tucson, and Tinemaha), 23h. (near Ottawa).
- May 8d. Readings at 3h. (Balboa Heights and near Stuttgart), 4h. (Brisbane, Riverview, and Perth), 5h. (Riverside, Mount Wilson, Pasadena, Brisbane, Riverview, Tucson, Mizusawa (2), and near Stalinabad), 8h. (La Paz, Huancayo, and Bogota), 9h. (Pasadena, Mount Wilson, Riverside, and Tucson), 12h. (near Fresno, Berkeley, Branner, and Lick), 20h. (Frunse, near Tchimkent, Tashkent, and Stalinabad).
- May 9d. Readings at 7h. (Balboa Heights), 9h. (near Stalinabad), 11h. (Harvard, near Shawinigan Falls, and Ottawa), 14h. (near Stalinabad), 17h. (Tucson and La Plata), 23h. (Tucson, Riverside, Pasadena, Mount Wilson, Haiwee, Tinemaha, Baku, Tashkent, and near La-Paz).

May 10d. 10h. 2m. 54s. Epicentre 9°.5S. 158°.5E.

 $A = -.9178, B = +.3616, C = -.1640; \delta = +1; h = +7;$ $D = + \cdot 367, E = + \cdot 930; G = + \cdot 153, H = - \cdot 060, K = - \cdot 986.$ Supp. Р. 0 - C.s. 0 - C.L. AZ. m. s. 8. 8. m. m. s. m. s. 0 0 e 7 42 e 7 50 1 9 59 e 9 54 10 36 $\begin{array}{r}
 1 4 18 \\
 1 4 20 \\
 1 5 30 \\
 1 5 30 \\
 \end{array}$ - 4483 i 9.5 18.6 195 Brisbane N. 18.6 195 E. i11 4 SS e 12·4 $25 \cdot 1$ 194 Riverview e 7 241 $25 \cdot 1$ 194Sydney 14.1 31.0 156 Auckland A 40 A Care Andre State Bar And the second second

Arapuni		32.4	155	-	-0		- 1	9 36	8	and the second		15.1
Wellington		34.8	159	144	÷.		- 1	9 26	3	15 69	Q	20.1
Christchurch		36.1	163	e 8	31	1	2	12 50	+ 5	15 23	Q	18.7
Perth		45.3	234	16	46		8	20 51	8		-	23.3
Vladivostok		57.7	337	e 9	54	- 1	L	i 17 52	- 1			
Bombay	E.	89.0	290	e 12	57	- 1	L	1 23 22	[- 5]	16 31	PP	
Pasadena	Z.,	89.8	55	e 13	1	100	L					e 40·7
Mount Wilson	Z.	89.9	55	e 13	0	- 2	2			1 13 10	8	—
Tinemaha	Z.	90.3	53	e 13	3	- 1	L					
La Jolla	z.	90-3	57	e 13	6	+ 2	2				—	
Riverside	z.	90.4	55	e 13	2	- 2	2		11	() ()		
Tashkent	2000	95-6	310	e 13	31	+ 3	3	1 24 30	-13	124 3	SKS	
Tucson		95.6	58	e 13	34	+ 6	3	-		e 14 33	8	e 43·4

Additional readings :---

Riverview ipPZ = 5m.41s., iPPNZ = 6m.3s., and iEN = 10m.8s.

Bombay sSE = 23m.44s., eE = 24m.44s.

Mount Wilson iZ =13m.5s.

Long waves were also recorded at Honolulu, Sitka, and Stuttgart.

May 10d. Readings also at 0h. (Tucson (2), Mount Wilson, Pasadena (2), Riverside (2), and Tinemaha (2)), 5h. (New Delhi, Andijan, Tashkent, Stalinabad, Tucson, Riverside, and Tinemaha), 8h. (Tucson, Mount Wilson, and Tinemaha), 10h. (Balboa Heights), 11h. (near Tananarive), 15h. (Tucson, Riverside, and Tinemaha), 18h. (Tucson, Pasadena, Riverside, Tinemaha, and Mount Wilson).

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

173

May 11d. 20h. Undetermined shock in Eastern Turkey. Ksara eP =28m.17s., eS? =29m.40s. Istanbul P =28m.32s., S =29m.11s., S_f =29m.39s. Helwan PZ =28m.45s., eZ =28m.52s., P_fZ =29m.15s., SNZ =30m.0s., S*NZ =30m.24s. Yalta eP =28m.58s., S =31m.10s. Sofia ePEN =29m.6s.?, eSEN =31m.33s. Bucharest eEN =29m.48s.?, eE =30m.56s., iN =31m.13s., iE =31m.24s. and 31m.43s. Chur eP =31m.22s.a. Focsani eEN =31m.24s.?, LEN =32.3m. Zürich eP =31m.29s. Stuttgart ePZ =31m.32s., eS =35m.25s., eQ =38.3m. Basle eP =31m.37s.

Neuchatel eP =31m.39s. Belgrade e =33m.23s. and 33m.33s., i =33m.46s., e =34m.0s. Cheb e =35m. Triest e =35m.36s. Uccle eN =36m.36s., eLEN =40m. Granada i =37m.40s., L =45.5m. De Bilt e =40m. Long waves were also recorded at Kew.

May 11d. Readings also at 2h. (Balboa Heights and near Andijan), 9h. (Auckland, Sydney, Brisbane, Riverview, Bogota, and near Balboa Heights, Upsala, and near Granada), 10h. (Upsala), 11h. (Tucson, Mount Wilson, Pasadena, and Tinemaha), 13h. (Basle and near Ebingen, Stuttgart, and Zürich), 17h. (St. Louis), 21h. (Ksara and Stuttgart), 23h. (La Plata, La Paz, Tucson, Mount Wilson, Palomar, Riverside, and Tinemaha).

May 12d. 8h. 23m. 14s. Epicentre 19°.7S. 175°.9W. Depth of focus 0.030.

Pasadena suggests 20°S., 175°W., depth 270 km.

 $A = -.9397, B = -.0674, C = -.3351; \delta = -.13; h = +.5;$ D = -.071, E = +.997; G = +.334, H = +.024, K = -.942.

		Δ	Az.	Р. m. s.	0 – C. s.	S. m. s.	0 - C.	m. s.	pp.	L. m.
Apia Auckland Arapuni Tuai New Plymouth		$7 \cdot 1$ 18 $\cdot 8$ 19 $\cdot 6$ 19 $\cdot 9$ 21 $\cdot 0$	35 203 201 196 201	$ \begin{array}{r} \mathbf{e} \ 1 \ 40 \\ 4 \ 6 \\ \overline{4} \ 15 \\ 4 \ 35 \end{array} $	$-\frac{2}{+}$ $-\frac{1}{+}$ $+\frac{1}{8}$	i 2 51 7 26 7 529 7 42 8 17	$^{-11}_{+4}$			
Wellington Christchurch Nagano Osaka Sapporo		22.8 25.5 70.9 71.2 73.9	197 200 322 320 330	4 44 5 9 e 10 53 10 53 e 11 13	,0 - 1 - 3 + 1	$ \begin{array}{r} 8 & 33 \\ 9 & 18 \\ 15 & 2 \end{array} $	0 0 1	15 28	S _c S	
La Jolla Pasadena Mount Wilson Palomar Riverside	Z. Z. Z.	76.7 76.8 76.9 77.2 77.2	48 47 47 48 47	e 11 26 i 11 28k i 11 27k i 11 31k i 11 29	- 2 - 2 - 2 2			e 12 32 i 12 29 e 12 34 e 12 33	pP pP pP pP	
Tinemaha Vladivostok Tucson Sitka College		$78.4 \\ 78.9 \\ 80.9 \\ 84.2 \\ 87.2$	$ \begin{array}{r} 44 \\ 324 \\ 51 \\ 22 \\ 12 \\ \end{array} $	i 11 37k e 41 39 i 11 50	- 1 0 	i 21 31 e 21 50 e 22 1 e 22 34	+13 + 11 - 11 - 6	e 23 51 e 24 24	888 885	
St. Louis Bombay Tashkent Yalta Jena Stuttgart	N. E. Z.	$\begin{array}{r} 98.8 \\ 115.6 \\ 121.2 \\ 145.0 \\ 148.3 \\ 150.7 \end{array}$	$52 \\ 282 \\ 307 \\ 322 \\ 351 \\ 353$	e 16 0 e 20 1 19 13 e 19 20 e 19 20	$ \begin{array}{c} & & & & & & \\ & & & PP \\ [+ & 2] \\ [+ & 3] \\ [+ & 3] \\ [& 0] \end{array} $	e 24 32 i 24 46 i 25 4 	$[\stackrel{+10}{\stackrel{+3]}{=} =$	e 26 21 e 20 31	PS pPKP	

Additional readings :---

11

Wellington $P_cP_i = 8m.53s.$, $sP_cP_i = 9m.52s.$, $sS_cS = 17m.30s.$

Tucson e =13m.24s. and 29m.55s.

Bombay eE =17m.2s., 19m.0s., and 28m.46s.

Stuttgart eZ == 19m.26s. and 19m.34s.

Long waves were also recorded at Granada,

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

174

May 12d. Readings also at 1h. (near Bogota), 4h. (Tacubaya, Tucson, and Tinemaha), 8h. (Mount Wilson, Palomar, Tucson, Pasadena, Riverside, Tinemaha (2)), 12h. (Basle, Triest, and Zurich), 14h. (Tinemaha, Tucson, and near Apia), 17h. (near Apia), 21h. (near Branner and near Mizusawa).

May 13d. 23h. Undetermined shock. Alaska.

College eP = 17m.33s., i = 18m.32s., eL = 18m.42s.Sitka eP = 19m.9s., e = 20m.31s., g = 21m.20s., eL = 21m.42s.

```
Tinemaha iP =23m.6s., iZ =25m.56s.

Haiwee ePEN =23m.14s.

Mount Wilson iP =23m.27s.

Pasadena iPNZ =23m.28s.

Riverside iPZ =23m.32s.

Palomar iPZ =23m.39s.

La Jolla ePZ =23m.42s.

Tucson iP =24m.7s., i =24m.32s., e =25m.32s., e =26m.31s.

St. Louis eE =24m.35s. and 34m.26s., eLE = 38 \cdot 5m.

Ottawa eZ =24m.53s., L = 38m.

Bozeman eS =27m.38s., eL = 32m.25s.

Stuttgart eZ =27m.42s.

Florissant iE =40m.5s., eE =46m.29s.

Pittsburgh eNE =41m.4s., eL?NE =41m.23s.

Long waves were also recorded at Salt Lake City, Chicago, Columbia, Philadelphia.
```

- May 13d. Readings also at 0h. (Tinemaha, Tucson, Basle, near Zurich, Ebingen, and Stuttgart), 1h. (near Mizusawa), 6h. (Chur, Triest, and Zurich), 8h. (New Delhi, near Andijan, Tashkent, and Stalinabad), 9h. (near Balboa Heights), 12h. and 16h. (Riverview), 17h. (Brisbane), 18h. (near Mizusawa), 21h. (Andijan and near Tashkent).
- May 14d. Readings at 0h. (near Berkeley), 2h. (Fort de France), 7h. (near Mizusawa), 9h. (Fort de France), 10h. (Tashkent), 16h. (Tacubaya and near Apia), 20h. (Tinemaha and Tucson), 22h. (Arapuni, Christchurch, Auckland, and Wellington), 23h. (near Andijan and Tashkent).

May 15d. 2h. Undetermined shock. Central South America. Pasadena suggests deep focus.

La Paz iPZ = 19m.22s.k, iZ = 19m.50s., iSZ = 20m.8s., LZ = 20m.34s.Bogota eP = 25m.24s.Fordham iP = 28m.5s., ipP = 28m.43s.Tucson iP = 28m.33s.k, i = 29m.12s., e = 30m.21s., and 34m.51s.Palomar iPZ = 29m.0s.k, iZ = 29m.37s.Riverside iPZ = 29m.4s.k, eZ = 29m.34s., iZ = 29m.42s.Mount Wilson iP = 29m.7s., iZ = 29m.45s.Pasadena iPNZ = 29m.8s., iZ = 29m.43s.Haiwee iPZ = 29m.14s., iZ = 29m.43s.Tinemaha iP = 29m.19s.k, iZ = 29m.58s.

- May 15d. Readings also at 6h. (near Fort de France), 7h. (Tashkent, Tchimkent, and near Stalinabad), 8h. (Stuttgart, Christchurch, and Wellington), 14h. (Auckland, Christchurch, and Wellington), 16h. (Helwan and Ksara), 18h. and 19h. (Buffalo), 21h. (La Paz), 23h. (Izuka, Matuyama, and Nagano).
- May 16d. Readings at 3h. (La Paz, Tucson (4), Mount Wilson (2), Palomar (4), Fasadena (2), Riverside (3), Tinemaha (2), near Huancayo), 4h. (Kew and San Juan), 7h. (near La Paz), 14h. (Toledo, Mount Wilson, Palomar, Pasadena, Riverside, Tinemaha, and Tucson), 15h. (near Mizusawa), 17h. (near Yalta), 19h. (La Plata).

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

100

175

May 17d. 7h. 47m. 12s. Epicentre 0°.3N. 78°.7W.

		Λ	Az.	Р.	0 – C.	s.	0 – C.	Sn	pp.	L.
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	•	m. s.	8.	m. s.	8.	m. s.	***	m.
Bogota Huancayo La Paz San Juan Fort de France	7.	$6 \cdot 3$ 12 \cdot 7 19 \cdot 7 21 \cdot 8 22 \cdot 5	$47 \\ 165 \\ 148 \\ 35 \\ 52 \\ 148 \\ 35 \\ 52 \\ 148 \\ 35 \\ 52 \\ 148 \\ 35 \\ 52 \\ 148 \\ 35 \\ 52 \\ 148 \\ 35 \\ 52 \\ 148 \\ 35 \\ 52 \\ 148 \\ 35 \\ 52 \\ 148 \\ 35 \\ 52 \\ 148 \\ 35 \\ 52 \\ 148 \\ 35 \\ 52 \\ 148 \\ 35 \\ 52 \\ 148 \\ 35 \\ 52 \\ 148 \\ 35 \\ 52 \\ 148 \\ 35 \\ 52 \\ 148 \\ 35 \\ 52 \\ 148 \\ 35 \\ 52 \\ 148 \\ 35 \\ 52 \\ 148 \\ 35 \\ 52 \\ 148 \\ 35 \\ 52 \\ 148 \\ 35 \\ 52 \\ 148 \\ 35 \\ 52 \\ 148 \\ 35 \\ 52 \\ 148 \\ 35 \\ 52 \\ 148 \\ 35 \\ 52 \\ 148 \\ 35 \\ 52 \\ 148 \\ 35 \\ 52 \\ 148 \\ 35 \\ 52 \\ 148 \\ 35 \\ 52 \\ 148 \\ 35 \\ 52 \\ 148 \\ 35 \\ 52 \\ 148 \\ 35 \\ 52 \\ 148 \\ 35 \\ 52 \\ 148 \\ 35 \\ 52 \\ 148 \\ 35 \\ 52 \\ 148 \\ 35 \\ 52 \\ 148 \\ 35 \\ 52 \\ 148 \\ 35 \\ 52 \\ 148 \\ 35 \\ 52 \\ 148 \\ 35 \\ 52 \\ 148 \\ 35 \\ 52 \\ 148 \\ 35 \\ 52 \\ 148 \\ 35 \\ 52 \\ 148 \\ 35 \\ 52 \\ 148 \\ 35 \\ 52 \\ 148 \\ 35 \\ 52 \\ 148 \\ 35 \\ 52 \\ 148 \\ 35 \\ 52 \\ 148 \\ 35 \\ 52 \\ 148 \\ 35 \\ 52 \\ 148 \\ 35 \\ 52 \\ 148 \\ 35 \\ 52 \\ 148 \\ 35 \\ 52 \\ 148 \\ 35 \\ 52 \\ 148 \\ 35 \\ 52 \\ 148 \\ 35 \\ 52 \\ 148 \\ 35 \\ 52 \\ 148 \\ 35 \\ 52 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 1$	e 1 23 e 3 6 i 4 35 e 4 57 e 5 1	-13 + 1 + 1 + 1 + 1 + 1 + 1	i 2 43 e 5 18 i 8 29 e 8 54	-7 -10 88 + 2	1 1 37 1 3 48 		i 5.8 10.5 e 11.5
Florissant	E.	39.8	346			e 13 40	- 2	-		-
La Plata Fordham	E.	40.0 40.6	153	7 38 17 48	$+ \frac{0}{5}$		=	_	$\square$	21.8
Rio de Janeiro Tucson	N.	$41.5 \\ 43.9$	$127 \\ 320$	e 17 48 e 8 8	$\frac{sss}{-2}$	e 13 40	-62	e 9 56	$\mathbf{PP}$	e 21.6 e 23.9
Riverside	Z.	49.3	317	e 8 56	+ 3					
Mount Wilson	Z.	49.9	317	e 8 57	0			1.000		
Pasadena	z.	50.0	317	e 8 57	~ 1			_	-	
Tinemaha	z.	51.7	320	e 9 9	- 2	) <del></del>				
Stuttgart	Z.	88.4	41	e 12 52	- 3					

Additional readings :--

Bogota i =1m.43s., 1m.57s., 3m.4s., and 3m.33s.

San Juan e = 6m.3s. La Plata PZ = 7m.44s.

La riata r 2 = (11, 448, 100)

Long waves were also recorded at De Bilt.

May 17d. 17h. Undetermined shock.

```
Fort de France e = 28m.0s.
San Juan e = 29m.12s., iS = 33m.4s., eL = 34m.17s.
Bermuda e = 29m.48s. and 34m.0s., eL = 34m.34s.
Florissant eZ = 33m.6s. and 34m.50s., iE = 39m.34s., eL?E = 46m.8s.
Stuttgart eZ = 34m.21s., eL = 51.5m.
Tucson iP = 35m.3s., e = 35m.36s., eL = 55m.14s.
Tinemaha ePZ = 35m.33s.
Palomar iPZ = 35m.38s.
Riverside iPZ = 35m.39s.
Mount Wilson ePZ = 35m.41s
Pasadena iPZ = 35m.49s., eLZ = 57m.
Huancayo e = 37m.52s., eL = 41m.49s.
Long waves were also recorded at Philadelphia, Pittsburgh, and Kew.
```

May 17d. Readings also at 0h. (Lisbon, Bucharest, and Sofia), 1h. (Tinemaha, Pasadena, Mount Wilson, Palomar, Tucson, and Riverside), 3h. (La Plata), 6h. (St. Louis), 7h. (Auckland and near Branner and Lick), 8h. (Tucson, Palomar, Tinemaha, Mount Wilson, Pasadena, and Riverside), 10h. (Florissant), 16h. (Kew, De Bilt, and Stuttgart), 17h. (near Tashkent, Andijan, and Stalinabad), 18h. (Mount Wilson and Tucson), 21h. (Riverside, Palomar (2), Tucson (2), San Juan, and Fort de France), 22h. (Zurich).

æ.,

May 18d. 6h. 3m. 43s. Epicentre 4°·5N. 125°·5E. (as on 1941 November 18d.). Stations of the U.S.S.R. suggest 4°·0N. 127°·5E.

> A = -.5790, B = +.8117, C = +.0779;  $\delta = +17$ ; h = +7; D = +.814, E = +.581; G = -.045, H = +.063, K = -.997.

		Δ	Az.	Р. m. s.	0 – C. s.	S. m. s.	0 – C.		pp.	L.
		0	•			ш. в.	8.	m. s.		m.
Miyakozima		20.2	0	(4 31)	- 8		-		-	-
Hukuoka		$29 \cdot 3$	9	5 37	-29	11 38	+39			
Osaka		31.4	17	e 6 17	- 8	11 31	- 1			
Nagoya		$32 \cdot 3$	19	6 33	0					
Nagano		$34 \cdot 1$	18	6 47	- 1	12 14	0			
Wazima		34.3	16	e 6 54	+ 4				19 <u>11-19</u> 11-1	<u></u>
Sendai		36.4	21	7 9	+ 1	12 52	+ 2			_
Mizusawa	E.	37.3	20	7 9	- 7	13 5	÷ ī		1.257	
	N.	37.3	20	7 17	+ 1	13 8	+ 4			
Vladivostok	71571	37 · 3 38 · 9	8	e 7 31	+ 2	1 13 34	÷ 6			
A 118 16 79 20 10 10 10 10 10 10 10 10 10 10 10 10 10				~		- 1997 - 1998 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 199 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999				

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

				207						
1943					176	ΞČ				
Sapporo Brisbane Riverview Sydney Irkutsk		∆ 40.9 41.4 45.2 45.2 50.8	Az. ° 17 142 149 149 343	$\begin{array}{c} \mathbf{P.} \\ \mathbf{m.} & 8. \\ & 7 & 47 \\ \mathbf{i} & 7 & 46 \\ \mathbf{i} & 10 & 7 \\ & 9 & 9 \end{array}$	0 - C. 8. + 1 - 4 PP + 5	S. m. s. 14 3 1 13 16 e 16 5 1 16 34	0 - C. 8. + 5 -49 +64 +14	m. 8. i 9 3 i 17 38	p. PP SS	. L. m. i 20·3 e 23·8
New Delhi Bombay Andijan Stalinabad Auckland	N. E.	$51.7 \\ 53.3 \\ 59.7 \\ 61.5 \\ 61.6$	303 290 315 312 136	$     \begin{array}{c}             1 & 9 & 8 \\             e & 9 & 21 \\             e & 10 & 20 \\                                   $	$\frac{3}{2}$ $\frac{3}{2}$ $-\frac{1}{1}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	+ 2 SeS +11 PPS	$i \frac{21}{11} \frac{3}{20}$ = 20 52		28.3
Tashkent Arapuni Christchurch Wellington Ksara		$62.0\\62.8\\63.9\\64.0\\87.2$	$315 \\ 137 \\ 144 \\ 141 \\ 303$	i 10 25 9 31 e 12 51?	$+\frac{1}{\frac{9}{7}}$ +2	i 18 53 20 17 1 18 31 18 32 e 23 38	$   \begin{bmatrix}     + & 5 \\     - & 3 \\     -41 \\     -41 \\     +10   \end{bmatrix} $	$   \begin{array}{r}     25 & 359 \\     23 & 17 \\     23 & 179 \\     23 & 179 \\   \end{array} $	sss sss	$34 \cdot 3$ $31 \cdot 4$ $28 \cdot 3$
Sitka Victoria Triest Scoresby Sund Stuttgart	×	$\begin{array}{r} 91.2 \\ 100.4 \\ 101.7 \\ 102.1 \\ 103.5 \end{array}$	$33 \\ 39 \\ 318 \\ 349 \\ 322$	$\begin{array}{c} e & 17 & 27 \\ e & 18 & 17 \\ e & 18 & 14 \\ e & 14 & 0 \end{array}$	PP PP - 4	i 24 4 e 24 17 i 24 28 e 24 21 e 26 22	$ \begin{array}{c} - 1 \\ [-12] \\ [-7] \\ [-16] \\ + 32 \end{array} $	e 30 19 e 28 3 e 18 20	SS PPS PP	e 37 · 7 41 · 3 e 54 · 7 e 56 · 3
De Bilt Uccle Paris Kew Tinemaha		$104 \cdot 4$ $105 \cdot 5$ $107 \cdot 5$ $107 \cdot 7$ $107 \cdot 8$	$326 \\ 325 \\ 324 \\ 327 \\ 49$	i 14 7 e 18 419 e 21 179 e 18 439 e 18 20	- 1 PP PPP PP [- 9]	e 28 57	PPS	e 18 27 e 28 13	PP PS	e 53·3 e 46·3
Pasadena Tortosa Tucson Toledo Granada	N.	$108.9 \\ 112.5 \\ 115.3 \\ 116.0 \\ 117.1$	$51 \\ 317 \\ 51 \\ 318 \\ 316$	e 18 21 e 19 9 e 18 37 e 18 43	[-10] PP [-7] [-2]	 e 30 10	 	e 27 597 e 19 24 e 29 14 i 19 56	PS PP PS PP	e 49.5 e 59.3 e 52.7 66.7
Florissant Ottawa Pittsburgh Fordham San Juan Bogota La Paz		$125 \cdot 6$ $126 \cdot 8$ $129 \cdot 5$ $131 \cdot 5$ $154 \cdot 5$ $158 \cdot 5$ $162 \cdot 1$	$34 \\ 17 \\ 24 \\ 18 \\ 25 \\ 64 \\ 133$	e 20 46 e 18 597 e 21 40 e 19 10 e 19 20 e 19 53 i 19 54 a	$\begin{array}{c} PP \\ [-7] \\ PP \\ [-5] \\ [-34] \\ [-6] \\ [-9] \end{array}$	e 31 4		e 37 46 e 38 173 i 22 25 e 43 37 e 20 9 24 56	SS 1 SS 1 PP	57·3 e 75·5 79·3

Additional readings and note :---

The reading at Miyakozima has been increased by 5m.

```
Vladivostok iP = 7m.34s.
Brisbane iSN = 13m.19s., iQN = 16m.14s.
Riverview iEN = 14m.18s., iE = 17m.34s., eE = 20m.17s.?
Bombay iE = 11m.45s., SSE = 20m.27s.
Christchurch S<sub>c</sub>S = 20m.0s., Q = 26m.47s.
Wellington Q = 26.3m.
Sitka e = 23m.32s., eSSS = 34m.31s.
Scoresby Sund eSS = 33m.46s.
Stuttgart eZ = 14m.21s., ePS? = 28m.27s., e = 40m.17s.?
Pasadena eSSZ = 33m.29s.?
Tueson e = 19m.42s.
Ottawa eN = 30m.17s.?
Fordham e = 19m.33s. and 22m.34s.
San Juan e = 24m.29s.
Long waves were also recorded at Bergen, Cheb, Upsala, and La Plata.
```

- May 18d. Readings also at 0h. (Triest and Florence), 6h. (Huancayo and near Fort de France), 8h. (Bombay, New Delhi, and Tashkent), 10h. (Upsala and near Basle, Ebingen, Stuttgart, and Zurich), 14h. (near Mizusawa), 16h. (Upsala), 18h. (Bombay Tashkent, Yalta, and near Bacau, Bucharest, Campulung, Focsani, and Sofia), 20h. (near Andijan and Tashkent), 22h. (near Berkeley).
- May 19d. Readings at 0h. (La Paz), 1h. (near Bucharest, Triest, Florence, and near Balboa Heights), 2h. (Belgrade, near Bucharest, Triest (2), Florence, Stuttgart, Basle, Zurich, Cheb, De Bilt, and Kew), 5h. (Huancayo, La Paz, La Plata, Tucson, Mount Wilson, Palomar, and Tinemaha), 6h. (Kew), 7h. (Bacau, Bucharest, near Campulung, and Focsani), 9h. (near Mizusawa), 10h. and 11h. (Tashkent), 12h. (near Berkeley (3), Branner (2), and Lick), 19h. (near Mizusawa).

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

## 1943

## 177

- May 20d. Readings at 2h. (Bombay, near New Delhi), 3h. and 10h. (2) (near Berkeley), 11h. (Tacubaya, Vera Cruz, Huancayo, Bogota, Tucson, Mount Wilson, Palomar, near Berkeley, and Bozeman), 12h. (La Paz), 14h. (Bucharest, Triest, Stuttgart, and near Sofia), 15h. (Vera Cruz), 16h. (Stuttgart), 17h. (Tucson, Mount Wilson, Palomar, Riverside, and Tinamaha), 19h. (Stuttgart and Ebingen), 22h. (near St. Louis), 23h. (Huancayo).
- May 21d. Readings also at 2h. (near Andijan), 7h. (Huancayo, La Paz, Balboa Heights, San Juan, Bermuda, Tucson, Pasadena, Riverside, Tinemaha, Bozeman, Salt Lake City, St. Louis, Pittsburgh, Philadelphia, near Andijan, and near Mizusawa), 8h. (Sitka Uccle De Bilt Stuttgart and pear Berkeler (2)) (1) (1)

(Sitka, Uccle, De Bilt, Stuttgart, and near Berkeley (2)), 9h. (Tinemaha, Tucson, near Andijan and Tashkent), 15h. (Jena), 19h. (near Mizusawa), 20h. (Balboa Heights), 23h. (Haiwee, Mount Wilson, Pasadena, Riverside, Tinemaha, Tucson, Vladivostok, Tashkent, Stuttgart, and near Mizusawa).

May 22d. 9h. 1m. 56s. Epicentre 30°.9S. 72°.0W. (as on 1943 April 14d.).

A =  $+ \cdot 2656$ , B =  $- \cdot 8175$ , C =  $- \cdot 5110$ ;  $\delta = -3$ ; h = +2; D =  $- \cdot 951$ , E =  $- \cdot 309$ ; G =  $- \cdot 158$ , H =  $+ \cdot 486$ , K =  $- \cdot 860$ .

		Δ	Az		0-C.		0 – C.	Su	ipp.	L.
Montezuma La Plata La Paz	E N Z	. 12.5	19 112 112 112 112	$     \begin{array}{ccccccccccccccccccccccccccccccccc$	8. S - 5 3	$\begin{array}{c} \mathbf{m. 8.}\\ (e 3 55)\\ 5 11\\ 4 41\\ 5 14\\ 4 8 14 \end{array}$		m. s. e 4 16 (5 52) (5 58) (5 58)	SSS	m. e 4·6 5·9 6·0 6·0
Huancayo Rio de Janeiro Bogota Fort de France San Juan		19·0 26·8 35·4 46·6 49·3	351 80 358 16 9	i 4 26 e 5 32 e 6 56 e 8 25	+ 1 -12 - 4 - 7 + 7		-4 + 6 - 7 - 10	  1 10 43		8.0 e 9.2 i 12.9 e 25.7
Bermuda Columbia Cape Girardeau Philadelphia St. Louis	E	$63 \cdot 3$ $65 \cdot 1$ $69 \cdot 8$ $70 \cdot 6$ $71 \cdot 2$	8 354 346 358 346	e 10 51 e 11 15 e 11 21	-26 + 12 + 12 + 12 + 12 + 12 + 12 + 12 +	e 19 22 e 19 19 e 20 16 i 20 29 i 20 34	PS - 8 - 7 - 6	e 12 57 e 23 31 e 21 17 i 11 29	PP SS PPS pP	e 26.7 e 29.4 e 33.6
Florissant Pittsburgh Tucson Harvard Chicago		$71 \cdot 4$ 71 \cdot 4 72 \cdot 8 73 \cdot 0 73 \cdot 8	346 354 327 1 348	i 11 23 e 11 18 i 11 31 i 11 35 e 11 41	$-16 \\ -16 \\ -12 \\ +3$	i 20 36 i 20 36 e 20 56 e 21 1	- 6 - 6 - 2 - 8	i 11 33 i 11 42	pP PcP	e 29.6 e 38.1 e 29.7
Ottawa La Jolla Palomar Riverside Seven Falls	z. z.	76.0 76.5 76.7 77.5 77.7	358 323 323 323 223 2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-22 + 20 + 20 + 20 + 20 + 20 + 20 + 20 +	21 30  21 46	- 4 - 6	26 223 i 12 9	ss pP	e 32·1 e 39·7 38·1
Mount Wilson Pasadena Santa Barbara Salt Lake City Tinemaha	z. z.	$78.0 \\78.1 \\79.1 \\80.3 \\80.3 \\80.3$	323 323 322 331 325	1 12 1 1 12 2 e 12 11 e 12 14	$-1 \\ + 3 \\ -0 \\ -0$	i 21 56 e 22 18	2	$\begin{array}{r}1&12&11\\e&27&45\\1&12&25\end{array}$	pP SS PcP	e 37·1 e 36·2 1 40·0
Logan Ukiah Christchurch Wellington Saskatoon		81 · 1 84 · 4 85 · 3 85 · 4 88 · 1	332 323 222 224 340	e 12 21 12 44	+ 3 + 4 	e 22 24 e 22 57 23 6 23 9 e 23 33	- 4 - 4 - 2 4	$\begin{array}{r} e \ 15 \ 47 \\ 28 \ 36 \\ 23 \ 40 \end{array}$	PP SS PS	e 41.8 e 41.7 39.6 40.1 49.1
Lisbon Victoria Granada Toledo Tortosa	z. E.	90.7 91.4 93.2 94.5 97.7	45 329 48 46 47	15 11k 1 12 35 e 13 23 e 13 18	$-\frac{9}{100}$	e 26 108 24 45 25 51 24 31 {	PPS +22 PS [- 7]		PP PP PP	46.5 44.1 46.3 e 44.1
Kew Stonyhurst Uccle Aberdeen Basle	2.	$103.3 \\ 103.5 \\ 105.4 \\ 105.5 \\ 105.7 \\$	38 35 40 32 44	e 13 58 e 18 22 e 13 44 e 13 41	- 5 PP 1	0 27 22	PS - 2]	e 18 9 e 27 32 e 20 24	PP PS PPP	e 57·1 e 44·1 51·1

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

178

		Δ	Az.	Р.	0-C.	s.	0 – C.	Supp.	L.
		0	0	m. s.	8.	m. s.	8.	m. s.	m.
Scoresby Sund		106.4	16	e 18 46	PP	e 25 2	1+ 51	e 28 15 PS	e 49.6
De Bilt		106.5	39	i 14 19	$\overline{+1}$	e 27 59	'PS'	i 18 38 PP	e 51·1
Stuttgart		$107 \cdot 2$	44	e 14 14	P	e 25 12	[+12]	e 18 38 PP	e 51·1
Cheb		109.7	43		i i i i i i i i i i i i i i i i i i i	e 28 29	PS	e 34 59 SSP	e 54·1
Bergen		110.5	31			e 28 34	$\mathbf{PS}$		e 56·1
Potsdam	E.	111.0	40		-	e 28 44	$\mathbf{PS}$		· e 58·1
Helwan		115.2	70	e 19 42	PP	e 29 34	$\mathbf{\widetilde{PS}}$	e 30 31 PPS	
Upsala		116.0	35			e 29 22		e 49 47 7	e 60·1
Ksara		120.2	68	e 19 29	$\mathbf{PP}$	e 27 9	$\{-6\}$		

103 i 19 46 Bombay E. 146.1  $[ \begin{array}{c} + & 5 \\ + & 1 \end{bmatrix} \begin{array}{c} e & 30 & 17 \\ 26 & 39 \end{array}$ 8 e 23 3  $\mathbf{PP}$ Tashkent 147.3 61 i 19 44 26 39 [-11] 23 9 PKS 89 1 21 20 New Delhi N. 153.2 Additional readings :---Huancayo iS = 8m.6s. Rio de Janeiro iS = 10m.9s. Bogota e = 7m.4s. San Juan e = 18m.58s., i = 19m.32s.Philadelphia e =13m.3s. and 25m.3s. St. Louis eSSE = 25m.20s. Florissant eZ = 14m.47s., isS?E = 20m.54s.Tucson e = 13m.24s., ePP = 14m.31s., e = 22m.21s.Riverside ePKP, PKPZ = 39m.32s. Pasadena ePKP, PKPZ = 39m.43s.Tinemaha iPKP, PKPZ = 39m.498. Logan e = 24m.43s. and 28m.21s. Christchurch Q = 35m.17s. Wellington SS = 29m.48.7Granada SKS = 23m.12s., SKKS = 24m.5s., PS = 25m.6s., PPS = 25m.40s., SS = 30m.46s. Toledo SS = 31m.19s. Tortosa QE = 39m.41s.Kew ePPP1Z = 20m.42s., ePPS1 = 28m.5s., eSS1Z = 32m.40s.7 Stonyhurst e = 35m.46s. Uccle eSSEN = 33m.28s.? De Bilt eSS = 33m.4s. ? Stuttgart ePS = 28m.4s., eSS = 33m.46s.?Helwan eZ = 20m.32s. Bombay PPKPE = 20m.10s., SKSPE = 33m.23s., PPSE = 35m.51s., SSE = 41m.3s., SSPE = 42m.14s.Tashkent PS = 32m.28s. Long waves were also recorded at College, Bozeman, Kodaikanal, Arapuni, Auckland, Riverview, Tananarive, and at other European stations.

May 22d. 19b. 3m. 52s. Epicentre 45°.2N. 7°.3E. (as on 1938, December 23d.).

Intensity V at Bussoleno (Val de Susa); III at Barge di Cuneo and Torino. Epicentre 45°.2N. 7°.2E. (Strasbourg).

R. P. Cesare Coppede.

Annuario Sismico, 1943, de Osservatorio Ximeniano, Firenze, p. 13.

A = +.7013, B = +.0898, C = +.7072; $\delta = +2;$ h = -4: $D = + \cdot 127, E = - \cdot 992;$ G = +.701, H = +.090, K = -.707. Р. 0-C. Az. S. 0 – C. Supp. L. m. s. 8. m. s. s. m. s. m. 0 0 Milan ++++ 79 **i** 0 28 1.4 **i** 0 47 + 1 1 22 Neuchatel 1.8 i 0 352 34 e 1 Sg 0 2.3 336 Besancon 10 42 1.2 -2.3 Chur 43 e 0 40 e 1 13 Sg 0 -2.3 22 Zurich **i** 0 40 e 1 17 Pr S. 0 10 46 -Basle  $2 \cdot 4$ e 0 3 5 38 e 1 16 +1.6 1444 4 е passening. Pg Ravensburg 3.0 31 e1 4  $\mathbf{2}$ 25 Sg e 1 e 1 37 s. 281 3.1 Clermont-Ferrand e 0 50 e 1 36 - 1  $\mathbf{P}_{\mathbf{g}}$ e 1  $3 \cdot 2$ Ebingen 21 43 e 1 3.2 Sg Florence 117 e 1 10  $\mathbf{P}_{\mathbf{f}}$ e 1.9 48 e 1 Strasbourg 3.4 10 e 1 Pr. i1 31 6 i1 53 Sg  $2 \cdot 2$ 6  $19 \\ 82$ Stuttgart 3.8 e 1 0 1 e 1 46 e 1 14  $2 \cdot 0$  $\mathbf{P}_{\mathbf{g}}$ -8 Triest 4.6 e 1 distances in the local 4.9 319 Pr 37 Paris e 1 3.3 34 Cheb 6.0 e 3 20 S. Sec. 1 -6.4 25  $\mathbf{P}^{\bullet}$ e 2 Jena 13 24  $\mathbf{P}_{\mathbf{g}}$ 13.5 5 Potsdam 8.1 26 261 e 4 S.

Jena also gives iEN = 2m.11s.



100

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

## 1943

### 179

May 22d. 22h. 5m. 38s. Epicentre 38°.0N. 21°.0E. (as on 1943 March 25d.).

63

A = +  $\cdot 7375$ , B = +  $\cdot 2831$ , C = +  $\cdot 6131$ ;  $\delta = -6$ ; h = -1; D = +  $\cdot 358$ , E = -  $\cdot 934$ ; G = +  $\cdot 572$ , H = +  $\cdot 220$ , K = -  $\cdot 790$ .

		Δ	Az.	P. m. s.	0 – C. s.	1771 G	-C. Supp.	L. m.
Sofia Belgrade Bucharest Campulung Kalossa	N.	5.1 6.8 7.4 7.9 8.7	$     \begin{array}{r}             21 \\             357 \\             30 \\             22 \\             351 \\             351 \\             \end{array}     $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$+ \frac{6}{-23} + \frac{9}{-9} + \frac{56}{-56}$	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\frac{2}{3}$ i $\frac{1}{3}$ 25 S	— (e 3·2)
Focsani Florence Triest Ogyalla Milan	E.	$9.0 \\ 9.4 \\ 9.4 \\ 10.1 \\ 11.5$	$28 \\ 311 \\ 327 \\ 348 \\ 314$	e 2 467 e 2 22 e 2 13 e 4 46 e 2 54	P* + 4 - 5 SSS + 6	i <u>3</u> 51 —	$e = \frac{3}{14} PP$	$ \begin{array}{c} 5 \cdot 2 \\ \mathbf{PP} & \mathbf{i} \ 6 \cdot 2 \\ \mathbf{e} & 6 \cdot 4 \\ \mathbf{e} & 6 \cdot 9 \\ \mathbf{-} & (6 \cdot 3) \end{array} $
Helwan Chur Ksara Prague Zurich		$11.8 \\ 12.2 \\ 12.8 \\ 13.0 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ 13.1 \\ $	$130 \\ 320 \\ 105 \\ 341 \\ 320$	e 3 0 e 2 55 e 3 39 ? e 3 5 e 3 10	+ 7 - 3 PPP - 4 0		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
Cheb Basle Neuchatel Stuttgart Strasbourg		$13.6 \\ 13.7 \\ 13.7 \\ 13.7 \\ 13.7 \\ 14.3$	$336 \\ 319 \\ 316 \\ 326 \\ 322$	e 3 15 e 3 13 e 3 15 e 3 50	$-\frac{3}{5}$ $-\frac{3}{PP}$	e 5 39 - 6 15 8		e 6.8
Besançon Jena Tortosa Paris Uccle	N.	$14 \cdot 4 \\ 14 \cdot 5 \\ 16 \cdot 1 \\ 17 \cdot 2 \\ 17 \cdot 4$	$315 \\ 336 \\ 287 \\ 315 \\ 323$	$\begin{array}{r} e & 3 & 27 \\ & 3 & 56 \\ e & 5 & 22 \\ e & 4 & 7 \end{array}$	$-\frac{1}{7}$ + $\frac{1}{7}$ + 1	e 5 44 - e 6 11 + 6 51 + 7 22 +	0 e 6 16? S	S e 7.6 7.9 9.4 e 9.4
De Bilt Copenhagen Almeria Granada Toledo		$17.9 \\ 18.6 \\ 18.7 \\ 19.5 \\ 19.6$	$327 \\ 345 \\ 275 \\ 277 \\ 284$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-12 +21 -56	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	6 7 57 S	e 9·4 10·4 S 9·0 P 9·6
Kew Moscow San Fernando Upsala Aberdeen	E.	20.2 21.0 21.7 22.0 24.5	$320 \\ 27 \\ 276 \\ 356 \\ 331$	e 4 59 4 59 e 5 22 e 4 53	PP PP PP - 5		$   \begin{array}{ccccccccccccccccccccccccccccccccccc$	

Aberdeen	24.9	331		 1944	+ 4		- 13.7
Bergen Tashkent	$24.5 \\ 36.9$	$\substack{343\\70}$	e 5 24 e 7 37	$e 9 37 \\ e 13 14$		=	<u>e 13.4</u>
Vladivostok	77.8	45	—	 e 22 0	+ 7		

Additional readings :---Sofia L given as S. Belgrade i =1m.52s., 2m.38s., 3m.10s., and 3m.38s. Helwan eZ =3m.28s. and 4m.24s. Almeria SSS =8m.14s. Long waves were also recorded at Potsdam.

- May 22d. Readings also at 0h. (Berkeley), 4h. (near Berkeley), 5h. (Florence), 9h. (La Plata, La Paz, and Berkeley (2)), 12h. (Tinemaha, Riverside, and Tucson), 13h. (Toledo), 14h. (near Granada), 16h. (near Mizusawa), 19h. (Tinemaha, Pasadena, Mount Wilson, Berkeley, and Tucson), 21h. (Stonyhurst and near Granada).
- May 23d. Readings at 0h. (near Basle), 1h. (Tucson, Mount Wilson, and Pasadena), 7h. (Mount Wilson, Pasadena, Riverside, Tucson, and Tinemaha (2)), 8h. (Mizusawa), 10h. (near La Paz), 11h. (Ksara, Tucson, Mount Wilson, Riverside, Tinemaha, and near Ferndale), 12h. (near Bucharest, Sofia, Belgrade, Kalossa, Stuttgart, Triest, Florence, Toledo, Cheb, De Bilt, and Kew), 16h. (Mount Wilson, Pasadena, Riverside, Tinemaha, Tucson, and near Balboa Heights), 18h. (Tacubaya), 23h. (near Berkeley).

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

## 1943

## 180

May 24d. Readings at 0h. (Tacubaya and near St. Louis), 1h. (Tashkent and Tchimkent), 2h. (Tashkent, Tchimkent, and Vladivostok), 3h. (Bogota, La Paz, Upsala, Granada, Uccle, Stuttgart, De Bilt, Kew, Cheb, and Paris), 4h. (Stalinabad and near Tashkent), 5h. (Tchimkent near Tashkent and Stalinabad), 6h. (Tucson and Riverside), 8h. (Mount Wilson, Pasadena, Tinemaha, Tucson, and near Berkeley), 9h. (near Granada), 11h. (Tashkent near Stalinabad and Tchimkent), 13h. (near Mizusawa), 15h. (Bombay, Kew, Paris, De Bilt, Cheb, and Florence), 16h. (Granada and Stuttgart), 18h. (Apia, Tucson, Mount Wilson, Pasadena, Riverside, Palomar, and Tinemaha), 19h. (near Florissant and St. Louis), 22h. (near Bogota), 23h. (Basle and Cheb).

May 25d. 23h. 7m. 36s. Epicentre 7°.6N. 127°.5E.

Epicentres 7°.5N. 126°.5E. (U.S.C.G.S.), 3°.5N. 125°.0E. (stations of the U.S.S.R.)

 $A = -.6035, B = +.7865, C = +.1314; \delta = +6; h = +7;$ D = +.793, E = +.609; G = -.080, H = +.104, K = -.991. .

		Δ	Az.	. Р.	0 −C.		о – с.	Sup	p.	L.
Naha Titizima Kagosima Miyazaki Hukuoka		$     \begin{array}{r}                                     $	$^{\circ}_{34}_{69}_{6}$	m. s. 4 25 5 52 5 20 5 24 a i 5 37	8. + 6 PP + 3 + 2 + 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8. +16 SS +14 -14 + 1	m. s. 		m. 
Koti Hirosima Hamada Kobe Nagoya		$26.5 \\ 27.1 \\ 27.5 \\ 28.0 \\ 28.9$	11 9 8 14 17	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$+ \begin{array}{c} 0 \\ 1 \\ 0 \\ - \begin{array}{c} 0 \\ 1 \\ 0 \end{array}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$-\frac{2}{+}\frac{4}{4}$			
Kohu Zinsen Yokohama Kumagaya Wazima		29.7 29.7 29.9 30.4 30.9	$19\\358\\20\\19\\15$	e 6 8 6 10 6 26 6 12 6 20	$-20 \\ +14 \\ -40 \\ 0$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	-5 -19 SS -30 -30			
Sendai Mizusawa Vladivostok Sapporo Calcutta	N. N.	32·8 33·7 35·6 37·4 40·5	$20\\19\\6\\16\\296$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	${}^{-1}_{+1}^{0}_{-12}_{PP}$	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$-\frac{1}{1}$ $-\frac{3}{11}$	$\frac{1}{1}$ $\frac{7}{13}$ $\frac{13}{19}$ $\frac{13}{44}$	PPP	16.1 $16.1$ $16.1$ $17.5$
Brisbane Riverview Sydney Colombo	E. N.	42.7 42.7 46.9 47.0 47.2	$145 \\ 145 \\ 153 \\ 153 \\ 272$	i757 i80 i835a i836 839	-30 + 11 + 13	i 14 22 i 14 19 i 15 23 i 15 18 i 15 22	- 2 - 52 - 87	i 10 6 i 9 57 i 10 1 i 10 36	PPP PPP PeP PP	$e 20.8 \\ 21.8 \\ 24.5$
Hyderabad Kodaikanal Dehra Dun New Delhi Bombay	E. E. N. E.	48.7 49.5 51.4 51.7 54.2	287 278 303 301 288	8 46 17 54 18 36 e 9 5 e 9 27	$-20 \\ -60 \\ -33 \\ -36 \\ -2$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$     \begin{array}{r}         -68 \\         -48 \\         -19 \\         -6     \end{array} $	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	PP SS PPS PP	22.7 22.6 1 21.7 23.8
Almata Andijan Tashkent Auckland New Plymouth		56.6 58.9 61.3 62.6 63.4	$318 \\ 313 \\ 313 \\ 137 \\ 140$	e 9 49 e 10 4 i 10 16 10 30 10 33	+ 2 + 1 + 1 + 2 + 1 + 1 + 1 + 1 + 1 + 1	$   \begin{bmatrix}     - & & \\     18 & 40 \\     18 & 52 \\     19 & 47   \end{bmatrix} $	+ 142			26-4
Arapuni Apia Kaimata Wellington Christehurch		$63 \cdot 8 \\ 63 \cdot 9 \\ 63 \cdot 9 \\ 65 \cdot 1 \\ 65 \cdot 2$	$139\\109\\145\\142\\146$	$10 18? \\10 36 \\10 46 \\10 40 \\10 44$	$-18 \\ -18 \\ -19 \\ +95 \\ -11$	$ \begin{array}{r} 18 & 54 \\ 1 & 19 & 16 \\ 19 & 12 \\ 19 & 18 \\ 19 & 18 \end{array} $	-17 + 4 - 17 - 15 - 10	$   \begin{array}{r}     i 19 & 30 \\     e 13 & 9 \\     \hline     10 & 49 \\     23 & 30   \end{array} $	PS PP pP SS	$29.4 \\ 30.1 \\ 28.4 \\ 30.8 \\ 30.8 \\ $
Tuai Honolulu Baku College Tananarive		65.2 73.0 75.7 80.9 83.0	$139 \\ 70 \\ 310 \\ 25 \\ 250$	10 47 i 11 36 i 11 50 e 12 17 e 12 29	+ 23 + 31 + 10 + 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	PS + 4 + 1 - 3	i 21 46 i 15 37 15 28	PPS PP PP	e 30.5 e 33.1 34.7

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

# 1943

181

	Δ	Az.	Р. m. s.	0 – C. s.	S. 0-C. m. s. s.	m. s.	L. m
Moscow Ksara Sitka Istanbul Helwan	83.8 87.2 87.5 91.4 91.6	$\begin{array}{c} & \circ \\ 325 \\ 303 \\ 32 \\ e \\ 313 \\ 300 \\ 1 \end{array}$	$\begin{array}{ccc}12&32\\12&51\\12&51\end{array}$	$+ 2 \\ + 1 \\ - 37 \\ - 1$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	16 18 PP 16 24 PP e 16 44 PP	e 36.0 57.7
Focsani Bacau Cernauti Bucharest Campulung	91.7 91.8 92.0 92.8 93.3	317 e 319 e 315 e	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+11 + 12 - 1 - 2 + 13	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$33 \cdot 4$ $32 \cdot 4$
Upsala Sofia Belgrade Victoria Kalossa	93·3 95·2 96·6 96·7 97·0	314 e 316 ( e 39	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-4 -1 +12 +2 +3	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	16       49       PP         e       17       33       PP         (i       17       55)       PP         17       36?       PP         e       18       24       ?	e 39·4 31·4 (e 49·7) 44·4 46·4
Ogyalla E. Copenhagen Seattle Bergen Potsdam E.	$97.1 \\ 97.4 \\ 97.7 \\ 98.5 \\ 98.5$	328 i 40 ( e 335	13 44 13 36a 17 24) 13 41 13 44	$+ 9 \\ - 1 \\ - 1 \\ + 2$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	e 31 547 SS 24 10 SKS (e 17 56) PP 1 17 53 PP 1 17 57 PP	47.4 (e 40.4) e 48.5 e 35.4
Prague Ferndale Scoresby Sund Cheb Jena	98.6 98.7 99.4 99.8 99.9	46 e 350 e 323 e	13 44 14 6 13 48 13 48 13 48 13 47	$^{+2}_{+24}_{+24}_{+11}_{+11}$	e 24 2 $\begin{bmatrix} -18 \\ i 23 49 \\ i 24 22 \\ -32 \end{bmatrix}$ i 24 22 $\begin{bmatrix} -32 \\ -2 \end{bmatrix}$ e 24 27 $\begin{bmatrix} +1 \\ -3 \end{bmatrix}$ e 24 24? $\begin{bmatrix} -3 \end{bmatrix}$	e 52 07 SS i 25 16 S e 32 16 SS e 18 7 PP	e 39 · 4 e 41 · 9 e 41 · 6 e 53 · 4 e 46 · 4
Ukiah Triest Berkeley Branner Santa Clara	$\begin{array}{r} 99.9 \\ 100.7 \\ 101.0 \\ 101.2 \\ 101.4 \end{array}$	319 49 49	e 13 53 i 13 51 i 13 53 e 13 56 e 13 54	$+ 5 \\ - 1 \\ 0 \\ + 2 \\ - 1$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	e 18 6 PP i 17 54 PP i 18 11 PP e 17 51 PP i 27 6 PS	e 38.5 e 41.4 e 42.8 e 45.9
Lick Johannesburg Stuttgart Chur De Bilt	$101.7 \\ 101.7 \\ 102.3 \\ 102.9 \\ 102.9 \\ 102.9$	$   \begin{array}{c}     244 \\     323 \\     321 \\   \end{array} $	e 14 2 e 23 07 i 13 59a e 14 0a e 14 0a	+ 6? - 1 - 1 - 1	e 24 24? $[-11]$ i 25 41 + 1 e 24 32 $[-9]$ i 24 40 $[-1]$	e 18 13 PP i 26 54 PS i 18 22 PP e 18 20 PP i 18 24 PP	e 42·1 e 42·4 e 48·4 e 47·4
<ul> <li>Florence</li> <li>Strasbourg</li> <li>Fresno</li> <li>Zurich</li> <li>Aberdeen</li> </ul>	$103.1 \\ 103.2 \\ 103.3 \\ 103.3 \\ 103.5 \\ 103.5 \\$	324 ( 49 ( 322 (	i 14 10k e 13 59 e 14 25 e 14 2 i 14 6	$+ 8 \\ + 22 \\ + 22 \\ - 1 \\ + 2$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		e 47.5 42.4 e 43.4 48.4
Basle Milan Uccle Santa Barbara Tinemaha	$103.8 \\ 103.8 \\ 104.0 \\ 104.1 \\ 104.3$	320 327 52	$\begin{array}{cccccccc} e & 14 & & 3 \\ e & 14 & 16 \\ e & 14 & & 4a \\ e & 14 & & 10 \\ 1 & 14 & & 6 \end{array}$	$-2+11 \\ +2+3 \\ +3 \\ -2$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	e 18 19 PP 36 11 ? i 18 12 PP e 30 13 PKKI i 30 36 PKKI	
Neuchatel Edinburgh Reykjavik Saskatoon Besançon	$104 \cdot 4$ $104 \cdot 8$ $104 \cdot 8$ $104 \cdot 8$ $104 \cdot 8$ $104 \cdot 9$	332 347 31	e 14 11 e 18 37 18 50 e 14 42? e 18 46	+ 3 PP PP PP	e 24 44 $\begin{bmatrix} - & 4 \end{bmatrix}$ i 24 44 $\begin{bmatrix} - & 4 \end{bmatrix}$ 33 21 SS e 26 07 0 e 24 46 $\begin{bmatrix} - & 4 \end{bmatrix}$	27 49 PS 27 46 PS e 33 33 SS e 28 33 PPS	51·8 43·4
Mount Wilson Z. Pasadena Z. Bozeman Stonyhurst Kew	<ul> <li>A set of the set of</li></ul>	332	i 14 12 i 14 13 e 14 12 e 14 12 e 14 15 e 14 18	-10 - 20 - 20 - 20 - 20 - 20 - 20 - 20 -	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	e 30 3 PKK e 30 16 PKK e 27 44 PS 27 46 PS e 27 58 PS	P i 43·1 e 42·3 e 48·4 e 49·3
Paris Riverside Z. Palomar Z. Logan Marseilles	the second s	$51 \\ 51 \\ 42$	e 14 17 e 14 10 e 14 18 e 14 23 e 18 48	P P P P P P	i 24 52 $[-3]$ e 25 4 $[+5]$ e 25 0 $[+0]$	i 18 57 PP	49·4 1 43·5 48·4
Clermont-Ferrand Salt Lake City Barcelona Ivigtut Tortosa	$107.4 \\ 107.4 \\ 110.2 \\ 111.3 \\ 111.6$	43 319 ( 357	e 14 19 e 14 20 i 18 22) e 18 17 (14 40)	P P [-12] [-19] P		(28 37) PS i 19 28 PP	e 45.4 e 43.1 (e 37.5) e 45.1 (51.9)



These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

- 19	- <b>1</b>	- 64	1.00	
- <b>1</b> 88	100	- <b>19</b> 1	<b>199</b>	
- <b>T</b>	- 22, 23, 24	67 B.	ാങ	
	- <b>19</b> - <b>1</b>		- TB	
	- <b>1</b>		-	
- 22	- <b>19</b>		-	

182

	Δ	Az.	P.	0 – C.	S. 0-C.	Supp.	<b>L</b> .
Tucson Toledo Almeria Granada Lincoln	$     \begin{array}{c}             0 \\             111 \cdot 8 \\             115 \cdot 0 \\             115 \cdot 6 \\             115 \cdot 6 \\             116 \cdot 2 \\             117 \cdot 0         $	320 316 317	m. 8. i 14 41 i 14 47 e 15 7 15 10 e 19 52	s. P P P PP	m. s. s. $25 \ 16 \ [-3]$ $35 \ 35 \ 88$ $25 \ 27 \ [-7]$ $25 \ 48 \ [+12]$	m. s. 19 33 PP 29 1 PS 29 20 PS 29 24 PS	m. 45·8 53·9 59·9 55·5 e 47·8
Des Moines San Fernando Lisbon Chicago St. Louis	${}^{118 \cdot 2}_{118 \cdot 3}_{118 \cdot 8}_{121 \cdot 2}_{122 \cdot 2}$	318 324 30	e 20 7 e 18 55 19 0k e 19 10 i 18 58	$\begin{array}{c} \mathbf{PP} \\ [+ \ 6] \\ [+10] \\ [+15] \\ [+ \ 1] \end{array}$	e 29 49 PS e 25 35 [-9] i 29 49 PS e 27 11 {-10} i 30 19 PS	e368SS12011PPi2020PPe208PPe2027PP	e 48.6 59.4 58.5 49.8
Florissant Seven Falls Shawinigan Falls Ottawa Cape Girardeau E	122.6 123.1 123.1 123.3 123.3 123.5	14 15 18	e 18 50 19 7 18 59 18 59 e 19 0	$\begin{bmatrix} - & 8 \\ + & 8 \end{bmatrix} \\ \begin{bmatrix} + & 8 \\ 0 \end{bmatrix} \\ \begin{bmatrix} & 0 \\ 0 \end{bmatrix}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	i 20 30 PP i 20 43 PP i 20 41 PP 20 41 PP e 20 39 PP	$\begin{array}{r} \mathbf{e}  51 \cdot 4 \\ 59 \cdot 4 \\ 56 \cdot 4 \end{array}$
Vermont New Kensington Pittsburgh Tacubaya z. Halifax	$124 \cdot 9 \\ 125 \cdot 9 \\ 125 \cdot 9 \\ 126 \cdot 8 \\ 127 \cdot 1$	25 25 58	e 14 59 e 21 127 i 19 2 i 19 8 e 21 26	PP [-2] [+2] PP	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	i 20 51 PP e 38 01 SS i 21 6 PP e 42 487 SSS	1 51·5  59·4
Harvard Fordham Philadelphia Mobile Vera Cruz	$127.2 \\ 127.9 \\ 128.2 \\ 128.8 \\ 129.4$	20 21 39	i 19 6 e 19 9 e 19 11 21 23 i 19 13	$\begin{bmatrix} - & 1 \\ + & 1 \\ + & 2 \end{bmatrix}$ PP $\begin{bmatrix} + & 2 \end{bmatrix}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	i 21 5 PP i 21 9 PP i 21 13 PP	64·4 1 56·3
Columbia Bermuda Port au Prince Balboa Heights San Juan	$130.6 \\ 138.6 \\ 147.5 \\ 148.4 \\ 150.9$	15 35 358	e 19 26 e 19 15 i 20 5 i 19 50 i 19 50	[+13] [-13] [+22] [+22] [+5] [+1]	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccc} e & 21 & 32 & PP \\ e & 22 & 24 & PP \\ \hline \hline \hline \\ \hline \\ \hline \\ \hline \\ \hline \end{array}$	e 54.0 e 63.2 e 74.4 e 54.1
La Plata E N Z. Bogota Fort de France	. 152.4		19 56 19 53 19 51 e 19 56 i 19 58	$[+ 5] \\ [+ 2] \\ [ + 0] \\ [+ 1] \\ [+ 2] \end{cases}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
Huancayo Montezuma La Paz	$157.1 \\ 158.3 \\ 162.3$		e 20 3 e 22 2 i 20 8a	[+ 6] (+ 5]	$i 31 17 \{+19\}$ 26 55 [-12]	e 24 36 PP e 38 54 7 i 21 0 PKP,	e 44·4 e 83·8 76·0

```
LB 1 84
                   102.9 121 120 08 [1 0] 20 00 [
                                                         -is is v rarg
                                                                               10.0
Rio de Janeiro N. 162.4 209 24 27
                                        PP 131 51 {+26} 134 40
                                                                           1
                                                                               45.0
  Additional readings :---
    Mizusawa SE = 12m.10s.
    Sapporo PP = 8m.19s., SS? = 15m.17s.
    Calcutta iSSN =15m.30s.
    Brisbane iSSN =17m.38s.
    Riverview i=8m.40s., ipP=8m.44s., iEN=10m.37s., iPSE=15m.36s., iPPSE=
        15m.43s., iEN =16m.7s., iSSN =18m.37s., iSSSE =19m.49s., iN =20m.34s.
    Sydney iSS = 18m.39s.
    Hyderabad SSE = 18m.31s.
    New Delhi PPE = 9m.36s. and 11m.18s., SS?E = 20m.8s.
    Bombay iPE =9m.37s., pPE =10m.3s., SPE =10m.16s., PPPE =12m.54s., SSE =
        17m.51s., S_cSE = 19m.18s.
    Arapuni SS? = 21m.30s.
    Apia iPS?EN = 19m.47s., eSS = 23m.35s., Q = 27.4m.
    Wellington P_cP_iZ = 11m.14s, PPZ = 13m.16s, sPP_iZ = 13m.38s, P_cS_i = 15m.6s.
        sS = 19m.35s., S_cSi = 20m.9s., SS = 23m.29s., sSS = 24m.4s., SSSi = 25m.4s., Q = 25m.4s.
        26m.298.
    Christchurch Q = 26m.1s.
    Honolulu ePP = 14m.30s., ePPP = 16m.17s., eSS = 25m.55s., e = 29m.10s.
    College iS = 22m.30s., e = 24m.30s., iSS = 27m.52s.
    Tananarive pP =12m.39s., SP =12m.53s., PPP =17m.21s., eS =22m.37s., isS =23m.9s.,
        PS = 23m.35s., SS = 27m.50s., SSS = 29m.23s.
    Ksara PS = 24m.27s.
    Sitka ePPP? =18m.20s., eSKS =23m.22s., eSS =29m.16s., iSSS? =33m.15s.
    Helwan eZ = 14m.13s. and 15m.30s., SE = 24m.33s., PSE = 25m.43s., SSE = 31m.7s.
    Bacau eSE = 23m.39s.
    Cernauti eEN = 13m.24s., eSE = 23m.40s.
    Bucharest iPPEN = 16m.27s., iSE = 23m.45s.
```

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

# 1943

# 183

Upsala eE =16m.8s., ePPN =16m.42s., iPPPN =18m.44s., iPPP?E =19m.12s., PS?N = 24m.16s., eSSE = 29m.24s.?, eSS?N = 30m.24s.?, eSSS?N = 34m.9s., eSSS?E = 34m.21s.?, eN = 36m.24s.? Sofia eN = 13m.36s. Belgrade  $iP_cP = (13m.58s.)$ , iPPS = (26m.38s.), i = (27m.23s.), e = (30m.37s.). eSSS = (35m.29s.); all readings have been increased by 1m. Victoria PS = 26m.21s., e = 30m.27s., SSS = 35m.24s.? Ogyalla PPE = 18m.15s. Copenhagen 17m.37s., 19m.33s., 22m.8s., 26m.14s., and 31m.36s.? Seattle e = (25m, 26s.), eSS = (32m, 40s.), e = (35m, 14s.); all readings have been reduced by 1m. Bergen iZ =13m.53s., PPZ =17m.26s. ?, PS =26m.24s. ?, SS =31m.54s., e =35m.50s. Potsdam  $iP_cPEN = 13m.56s.$ , iPSEN = 26m.31s.Prague ePS = 25m.11s., ePPS = 26m.6s.? Ferndale iPKPE =17m.15s., iPKPN =17m.26s.Scoresby Sund ePP = 18m.1s, e = 20m.56s, ePS? = 27m.0s, iSS = 31m.41s, eSSS = 10m.41s35m.448. Cheb ePP = 17m.25s., ePPS = 26m.42s.?, e = 40m.36s.? Jena iN =13m.50s., iPNZ =13m.58s., eN =17m.44s., 24m.18s. ?, and 25m.13s., e = 26m.43s. and 31m.54s. Ukiah ePS? = 26m.41s., e = 30m.37s. and 33m.22s.Berkeley ePE = 13m.57s., ePPN = 18m.15s., eN = 18m.25s., eE = 31m.24s.? Johannesburg eN = 32m.30s., eE = 32m.42s.Stuttgart ePPZ = 18m.4s., eSKS = 24m.39s., iSKS = 24m.45s., ePS = 27m.7s., ePKKPZ = 30m.1s., eSS = 32m.40s., e = 37m.59s.De Bilt eZ = 16m.49s., iS = 25m.39s., iPS = 27m.14s., eSS = 32m.54s., eSSS = 36m.24s.? Florence iSE = 25m.41s., iPSE = 26m.50s., iPPSE = 27m.23s., iSE = 32m.57s., iSSSE = 36m.54s. Strasbourg e = 14m.27s, i = 17m.49s, ePPP = 20m.31s, eSKS = 24m.24s, eS = 25m.40s. Aberdeen iN = 25m.44s., iE = 26m.0s., iEN = 27m.25s., PPSEN = 28m.20s., iN = 32m.47s., iE = 33m.10s., iEN = 42m.44s.Basle eS = 25m.57s.Uccle iZ = 14m.18s., iE = 18m.30s., iZ = 18m.34s., iN = 18m.37s., iEN = 22m.24s., iN = 18m.37s., iEN = 18m.37s., iEN = 18m.37s., iEN = 22m.24s., iN = 18m.37s., iEN = 18m.25m.49s., iPSE = 27m.11s., iPSN = 27m.27s., iE = 31m.29s., iSSE = 33m.14s., iSSN = 33m.24s. Tinemaha iZ = 17m.34s., eZ = 29m.57s., iZ = 30m.10s.Edinburgh eSKS = 25m.54s., SS = 33m.34s.Reykjavik SKS = 24m.49s., PS = 27m.46s., SSS? = 37m.13s.Saskatoon e = 18m.1s, and 31m.51s. Mount Wilson iZ = 14m.21s. and 32m.16s., eSKKPZ = 34m.11s., iPKP, PKPZ = 38m.0s., eP'P'P'Z = 59m.48s.Pasadena eEZ = 17m.29s., iPPEZ = 18m.22s., iPPPZ = 20m.44s., iPSZ = 27m.43s., iPKP, PKPZ = 38m.0s.Bozeman e = 18m.26s., eSS = 32m.54s., iSSS = 37m.33s., i = 38m.6s.Stonyhurst ? = 17m.40s., PP = 18m.49s., S = 26m.8s., PPS = 28m.26s., SS = 33m.6s.,  $SSP = 33m.43s., SSS = 38m.50s., eQ = 44 \cdot 4m.$ Kew ePKPE = 18m.23s., ePPEN = 18m.52s., eE = 19m.31s., ePPP?E = 20m.49s. ?,

eSKKSEN = 25m.48s., ePPSE = 28m.49s., eSSEN = 33m.24s.?, eSSEN = 37m.54s.?, eQN = 43m.54s.?

Riverside eZ = 29m.48s., iPKP, PKPZ = 37m.57s.

Palomar, eZ = 19m.13s., ePKKPZ = 30m.0s., eSKKPZ = 34m.5s., ePKP,PKPZ = 37m.51s.

Logan ePKP =18m.15s., e = 20m.27s., i = 24m.48s. and 27m.46s., ePS = 28m.12s., iPPS = 29m.37s., eSS = 33m.50s., i = 37m.14s.

Clermont-Ferrand e = 18m.22s., iPS = 27m.49s., iPPS = 28m.48s.

Salt Lake City ePS = 28m.20s., e = 33m.5s., iSS = 34m.11s.

Barcelona readings have been reduced by 1m.

Ivigtut e = 19m.8s., ePS = 28m.33s., eSS = 34m.27s., i = 34m.45s., e = 38m.2s.

Tortosa SKPE =(21m.12s.), PPPE =(21m.52s.), PSE =(28m.34s.), PPSE =(29m.27s.), SSE =(35m.0s.), SSSE =(38m.54s.), QE =(45m.42s.) readings increased by one minute.

Tucson e = 18m.1s., iPKP = 18m.39s., i = 19m.22s., ePPP? = 21m.19s., i = 24m.8s., eS = 27m.7s., iPS = 28m.49s., iPPS = 30m.8s., eSS = 35m.9s., eSSS = 39m.9s.

- Toledo e = 15m.7s., i = 18m.53s., SIEN = 27m.33s.
- Almeria PKP =18m.45s., pPKP =19m.44s., PP =19m.59s., pPP =20m.43s., sPP = 21m.10s., PPP =22m.30s., SKKS =26m.1s., PS =29m.43s., SPP =30m.32s., sPS = 30m.43s., SS =35m.32s., sSS =37m.5s.

Granada iPKP = 19m.0s., iPP = 19m.57s., PPP = 22m.30s., S = 28m.16s., SS = 35m.9s. SSS = 39m.33s.

- Lincoln e = 28m.55s., eS = 34m.47s.
- Des Moines e = 40m.11s.
- San Fernando PSE = 29m.42s., SSE = 36m.13s.

Lisbon Z = 19m.5s., N = 20m.5s., Z = 20m.12s., E = 23m.29s.?, SKSE = 25m.37s.?, SKSN = 25m.40s., SKSZ = 26m.5s., E = 30m.32s., PPSN = 31m.19s.?, PPSE = 31m.22s., SSE = 36m.39s., SSN = 36m.42s.?

Chicago e = 29m.57s., eSS = 37m.13s.

St. Louis eP?Z = 15m.41s., iSKPE = 22m.6s., eS?N = 28m.34s.

Florissant iPKPZ = 18m.53s., eSKPN = 22m.5s., iSE = 28m.32s.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

# 1943

# 184

Seven Falls S = 28m.40s., PPS = 31m.37s., SS = 37m.28s., SSS = 42m.6s.? Shawinigan Falls SS = 37m.24s.?, SSS = 42m.30s.? Ottawa SKP = 22m.6s. ?, PPS = 32m.6s., SS = 37m.28s., SSS = 42m.54s.? Vermont ePKP = 20m.5s., e = 22m.56s., iSS = 37m.2s., e = 46m.55s. Halifax eN = 33m.47s. Harvard ePKS? = 22m.27s., e = 24m.26s. and 24m.59s., eSKKS = 27m.59s. Fordham eP? =15m.54s., iSS = 38m.25s Philadelphia e = 20m.57s., i = 22m.43s., iSKS? = 26m.53s., i = 31m.21s. and 32m.47s., iSSS = 43m.10s., i = 47m.53s. Columbia e = 22m.37s. and 28m.52s., ePPS = 33m.37s., eSS = 38m.37s., e = 47m.53s. Bermuda i = 23m.14s., ePPS = 34m.37s., e = 45m.45s. Balboa Heights e = 33m.34s. and 68m.24s. San Juan i = 24m.44s. and 34m.52s., e = 38m.36s. and 49m.23s.

- La Plata Z = 24m.12s., PPPE = 26m.42s. and 28m.30s., SSSE = 48m.42s., PKSN = 23m.48s., PPPN = 26m.48s., SKSPN = 33m.42s., PSN = 36m.18s., PPS?N = 38m.12s., SSSN = 48m.30s.,
- Bogota i = 20m.7s., e = 20m.46s. and 26m.6s.
- Fort de France PKP₂ = 20m.28s., e = 20m.40s., 24m.51s. and 24m.57s.
- Huancayo ePPS = 38m.4s.

La Paz PPZ=25m.0s., PPPN=28m.24s., SKKSN=31m.38s., PSKSN=34m.55s., SSN =45m.35s., SSSN =50m.29s., SSSZ =50m.43s., QN =68m.24s. Long waves were also recorded at Chihuahua, Guadalajara, and Manzanillo.

- May 25d. Readings also at 4h. (near Andijan and Berkeley (3)), 8h. (Sitka and near Berkeley (2) ), 10h. (Tucson, Mount Wilson, Pasadena, Riverside, and Tinemaha), 11h. (near Ferndale and Huancayo), 14h. (Bucharest), 15h. (Wellington), 17h. (Tashkent and Vladivostok), 21h. (near Cape Girardeau), 22h. (near Basle, Chur, Neuchatel, Strasbourg, Stuttgart, and Zurich), 23h. (Harvard and Toledo).
- May 26d. 10h. 31m. 29s. Epicentre 17°.9N. 105°.8W. (as on 1942, Jan. 20d.).

Pasadena suggests deep focus and quotes U.S.C.G.S. 17°.5N. 106°.5W.

	$\mathbf{A} = -\mathbf{b}$ $\mathbf{D} = -\mathbf{b}$	2593, 962, E	$\mathbf{B} = -$ $\mathbf{I} = + \cdot$	·9162, C 272;			1; -·294, K	h = +5; =952.		
		Δ	Az.	Р.	0 – C.	s.	0 – C.	Su	DD.	L.
		0	•	m. s.	8.	m. s.	8.	m. s.	57507-E	m.
Manzanillo	N.	1.8	50	10 46	+14					
Guadalajara	N.	3.6	40	e 1 13	P				상프로	
Tacubaya	N.	6.4	76	e 1 41	+ 3					100
Vera Cruz		9.3	80	e 2 17	' ŏ					
Chihuahua	z.	10.7	359	e 3 4	+26	-	_	_		

Tucson La Jolla Palomar Riverside Mount Wilson	z.	$15.0 \\ 18.1 \\ 18.3 \\ 19.1 \\ 19.6$	343 328 330 330 330	$     \begin{array}{ccccccccccccccccccccccccccccccccc$	$-\frac{2}{4}$	i 6 34 i 8 17	$+\frac{11}{20}$			e 7·4
Pasadena Mobile Santa Barbara Tinemaha Fresno	N.	$\begin{array}{r} 19 \cdot 6 \\ 20 \cdot 5 \\ 20 \cdot 6 \\ 22 \cdot 0 \\ 22 \cdot 4 \end{array}$	330 46 326 333 330	$ \begin{array}{r} \mathbf{i} \ 4 \ \ \mathbf{29k} \\ 4 \ \ 16 \\ \mathbf{i} \ 4 \ \ 40 \\ \mathbf{i} \ 4 \ \ \mathbf{55k} \\ \mathbf{i} \ 5 \ \ 2 \end{array} $	$-26 \\ -3$	1 8 21 8 41 e 8 42 e 9 11	+13 + 14 + 13 + 15			e 9·4
Salt Lake City Lick Cape Girardeau Santa Clara Branner	Е. Е.	$23.4 \\ 23.9 \\ 24.0 \\ 24.0 \\ 24.2 \\ 24.2 \\$	347 327 32 327 327	e 5 11 e 5 15 e 5 18 i 5 17 i 5 20	$ \begin{array}{c} 0 \\ - \\ 1 \\ + \\ 0 \\ + \\ 1 \end{array} $	e 9 27 e 9 47 e 9 46	$+ \frac{6}{+15}$ +14	e <u>5</u> 50		e 12·5 e 12·7
Lincoln Logan Berkeley St. Louis Florissant		$24 \cdot 2$ $24 \cdot 3$ $24 \cdot 6$ $24 \cdot 7$ $24 \cdot 8$	18 350 327 28 28	$     \begin{array}{r}                                     $	-112 -112 +12 +11	e 9 35 e 9 37 i 8 56 i 9 51 i 9 51	$ \begin{array}{r} 0 \\ 0 \\ -46 \\ + \\ 7 \\ + \\ 5 \end{array} $	e 5 54 1 5 49 		e 12.5 i 12.0 e 12.1 i 13.0
Des Moines Ukiah Columbia Bozeman Chicago		$25.8 \\ 26.0 \\ 27.2 \\ 28.0 \\ 28.4$	$23 \\ 328 \\ 48 \\ 353 \\ 28$	e 6 21 e 5 37 e 5 50 e 5 55 e 5 54	$^{+47}_{+1}_{+30}_{-4}$	e 10 16 e 10 9 e 10 34 e 10 40 e 10 39	+14 + 3 + 9 + 2 + 6	e 6 50 e 6 50 e 6 58 e 7 21	PP PP PPP	e 13.6 e 13.6 e 12.8 e 13.4 e 13.4



These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943					185			5
		^	Az.	P. m. s.	0 – C. s.	S. 0-C. m. s. s.	Supp. m. s.	L. m.
Pittsburgh Victoria Saskatoon Philadelphia Fordham		31.6 33.7 34.2 34.4 35.7	39 339 359 44 43	e 5 31 6 44 6 49 e 6 52 7 2	$-55 \\ -10 \\ +10 \\ 0$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	14 318 SS 18 8 PP	17.5 17.5 e 14.7
Ottawa San Juan Harvard Vermont. Shawinigan Falls		$37.1 \\ 37.7 \\ 38.0 \\ 38.0 \\ 39.5$	35 83 42 39 36	7 13 e 7 21 i 7 22 e 7 24 e 7 36	-12+12+13+2	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	8 41 PP e 8 47 PP	18.5 e 16.2 e 20.5 e 16.3 20.5
Bermuda Seven Falls Huancayo Sitka La Paz	z.	$39.7 \\ 40.8 \\ 42.3 \\ 45.3 \\ 50.4$	$\begin{array}{r} 61 \\ 36 \\ 133 \\ 338 \\ 130 \end{array}$	$\begin{array}{r} e & 7 & 35 \\ 7 & 48 \\ e & 8 & 1 \\ \hline 9 & 11 \end{array}$	-1 + 3 + 4 + 10	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\stackrel{e}{\overset{9}{\overset{17}{\overset{7}{\overset{7}{\overset{7}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{1}}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}{\overset{17}}{\overset{17}{\overset{17}{\overset{1}}{\overset{1}}{\overset{1}}{\overset{1}}{\overset{1}}{\overset{1}}{\overset{1}}{\overset{1}}{1$	e 20.0 21.5 e 18.2 e 18.8 25.7
College Ivigtut Scoresby Sund Kew Toledo	z.	54.7 59.1 71.2 85.4 87.4	$340 \\ 29 \\ 21 \\ 37 \\ 50$	e 11 38 e 12 52	$+\frac{15}{15}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	e 25 11 SS	e 26.9 e 31.4 e 33.6 e 33.5
De Bilt Uccle Granada Almeria Copenhagen Stuttgart		$   \begin{array}{r}     88 \cdot 3 \\     88 \cdot 4 \\     88 \cdot 7 \\     89 \cdot 7 \\     90 \cdot 2 \\     92 \cdot 1 \\   \end{array} $	35 37 50 52 30 37	$\begin{array}{r}\\ i 13 28\\ e 13 29\\ 16 42\\ e 13 13 \end{array}$	+31 + 28 + 28 + 28 + 1	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	e 29 31 88 e 29 34 88 1 13 43 PP 16 44 PP e 16 51 PF	e 39.5 e 39.5 43.7 41.5 e 41.5
Additional read Tucson i = 4n Pasadena iZ Tinemaha iZ Berkeley iP = Des Moines e Pittsburgh el Philadelphia Ottawa SSS = Vermont e = Huancayo e Uccle eSKSN	n.18 = 51 = 51 = 51 = 51 = 15 = 15 = 15 =	s. and n.6s. an m.6s. an n.6s. 1.25s. 2m.7s. 2m.7s. 9m.46s m.37s. 49s. m.5s. a 23m.396 6m.41s.	nd 5n 528., i 9 nd 1 9. , iSN	n.218. NW =11n 5m.14s.		im.50s., iSS =29n	1.52s., SSS = 34n	1.538.

 $\partial u u u garu coo = o u o 18.$ Long waves were also recorded at Christchurch, Arapuni, Wellington, Rivervlew, Honolulu, Seattle, and other European stations.

- May 26d. Readings also at 0h. (Wellington), 1h. (Tananarive), 2h. (Tucson (3), Mount Wilson (2), Pasadena, Riverside (3), and Tinemaha (3)), 4h. (Mizusawa), 5h. (near Andijan and Tashkent), 7h. (Almata, Andijan, and near Tashkent), 8h. (Ksara and Triest), 12h. (Florence), 14h. (Mizusawa), 16h. (La Paz), 18h. (Tucson, Mount Wilson (2), Riverside (2), and Tinemaha), 20h. (Fort de France and near St. Louis), 23h. (Mount Wilson, Riverside, Tinemaha, and Tucson).
- May 27d. Readings at 0h. (Bergen), 5h. (Copenhagen, Stuttgart, La Jolla, Tucson, Mount Wilson, Pasadena, Riverside, Santa Barbara, and Tinemaha), 6h. (near Berkeley, Branner, and Lick), 10h. (Wellington), 11h. (St. Louis, Tucson, Mount Wilson, Pasadena, Riverside, and Tinemaha), 12h. (near Berkeley), 13h. (Tashkent and near Stalinabad), 14h. (Philadelphia), 15h. (La Jolla, Mount Wilson, Pasadena, Palomar Riverside, Santa Barbara, Tinemaha, Tucson, Florissant, St. Louis, and Vladivostok), 18h. (Tucson, Mount Wilson, Palomar, Pasadena, Riverside, and Tinemaha), 19h. (Helwan and Ksara), 21h. (near St. Louis), 23h. (near Tashkent).

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

#### 1943

#### 186

#### May 28d. 0h. 24m. 6s. Epicentre 48°.2N. 9°.0E. (as on 6d.).

Intensity VIII at Onstmettingen, with much damage: Epicentre in the triangle Hechingen, Ebingen, Balingen. Microseismic 48° 12'N. 9° 2'E.; macroseismic 48° 17'N. 9° 0'E. Given by W. Hiller.

Ebingen

Ravensburg Stuttgart Strasbourg Zürich	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	i 0 14 i 0 12k i 0 19	$     \begin{array}{r}       - 3 \\       - 1 \\       - 3 \\       - 1 \\       0     \end{array} $	$ \begin{smallmatrix} 0 & 24 \\ i & 0 & 19 \\ i & 0 & 31 \\ e & 0 & 33 \\ \end{smallmatrix} $	$-\frac{2}{-7}$ -3 -1			
Basle Chur Neuchatel Brig Besançon	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	e 0 28 e 0 32 e 0 34	$   \begin{array}{c}     - & 1 \\     + & 1 \\     - & 1 \\     + & 1   \end{array} $	i 0 48 e 0 51 e 1 6	$+\frac{2}{5}+\frac{4}{4}$	e 0 58 e 0 38	s• P•	
Milan Cheb Prague Uccle Triest	$\begin{array}{cccc} 2 \cdot 7 & 177 \\ 2 \cdot 9 & 50 \\ 4 \cdot 0 & 62 \\ 4 \cdot 0 & 311 \\ 4 \cdot 1 & 128 \end{array}$	e 1 10 i 1 3k	$^{0}_{P^{*}}^{-1}_{+2}$	i 1 20 e 1 34 e 2 10 i 1 50 i 2 13	+ 1 $S_{s}$ - 2 $S_{s}$	$e_{1} \overline{\begin{smallmatrix} 0 & 54 \\ 1 & 15 \\ 1 & 17 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $	P. P. i	2.1
Paris De Bilt Clermont-Ferrand Florence Potsdam	$\begin{array}{cccccc} 4 \cdot 4 & 278 \\ 4 \cdot 6 & 303 \\ 4 \cdot 7 & 236 \\ 4 \cdot 7 & 161 \\ 4 \cdot 9 & 33 \end{array}$	i 1 12 e 1 19 e 1 28	- 3 0 P* P* Ps	$\begin{array}{ccccccc} e & 2 & 5 \\ i & 2 & 15 \\ i & 2 & 36 \\ i & 2 & 23 \\ i & 2 & 15 \end{array}$	+ 3 S* S* 0	$ \begin{array}{c}                                     $	Pe i	$2 \cdot 4$ 2 \cdot 4 2 \cdot 8
Marseilles Ogyalla E. Kew Kalossa Copenhagen	$\begin{array}{cccccc} 5\cdot 5 & 209 \\ 6\cdot 2 & 88 \\ 6\cdot 9 & 303 \\ 7\cdot 0 & 97 \\ 7\cdot 8 & 16 \end{array}$	(i 1 55) 2 11	P* + 5 +10 S* - 4	$i \begin{array}{ccc} 2 & 8 \\ (2 & 46) \\ (1 \begin{array}{c} 3 & 11 \\ 3 & 19 \end{array}) \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $	$-22 \\ -22 \\ +6 \\ +11 \\ -11$	$(\begin{array}{c} i & 1 & 44 \\ (e & 3 & 9) \\ (i & 2 & 34) \\ - \\ - \\ - \end{array})$	the second se	$3.0 \\ 4.4) \\ -3.9 \\ 3.9 \\ 3.9$
Barcelona Belgrade Stonyhurst Tortosa Bergen	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$e_{(2 \ 16)}^{2 \ 56}_{(2 \ 16)}_{1 \ 55}$	$-\frac{1}{25}^{9}$	$\begin{array}{c} e & 3 & 47 \\ i & 4 & 14 \\ (3 & 7) \\ i & 4 & 12 \\ e & 5 & 37 \end{array}$	$^{+}_{{}^{8}}^{7}_{-56}_{+}^{2}_{{}^{2}}_{{}^{3}}$	$i \frac{\overline{4}}{(2 \ 20)} \frac{39}{(2 \ 20)}$	$\frac{S_{e}}{PP}$ i	5·1 4·6 7·0
Bucharest Toledo Upsala Almeria Granada	$\begin{array}{ccccccc} 12 \cdot 4 & 81 \\ 12 \cdot 5 & 233 \\ 12 \cdot 7 & 20 \\ 14 \cdot 1 & 221 \\ 14 \cdot 9 & 225 \end{array}$	$\begin{array}{r} e & 4 & 30 \\ e & 3 & 0 \\ \hline 4 & 14 \\ i & 3 & 42 \end{array}$	$\frac{PP}{-\frac{2}{2}}$ + $\frac{?}{8}$	$\begin{array}{c} e 5 & 20 \\ e & 5 & 41 \\ 6 & 30 \\ \hline \end{array}$	$-\frac{1}{ss}$		PP SSS e	6·3 7·4 6·6 7·4 7·6
Lisbon San Fernando N. Moscow Helwan Z.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$     \begin{array}{r}       5 & 45 \\       4 & 26 \\       e & 5 & 33     \end{array} $		i 7 54 8 4	858 + 9	5 50 	<b>1</b> <b>PP</b>	8.6

Additional readings :---

Uccle iEZ = 1m.35s., iNZ = 1m.59s.Potsdam eE = 2m.6s.?.

Ogyalla readings reduced by 1 minute.

Si 80

Kew readings reduced by 1 minute. Belgrade e = 3m.10s. and 3m.27s.

Stonyhurst PPP = (2m, 28s.),  $P_s = (2m, 37s.)$ , SS = (3m, 19s.), readings reduced by 2 minutes.

1.00

Long waves were also recorded at Aberdeen and Edinburgh.

.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

#### 1943

187

. /¹²...

May 28d. 20h. 1m. 26s. Epicentre 21°.5S. 179°.0W. Depth of focus 0.080. (as on 1940 Oct. 30d.).

> A = -.9311, B = -.0163, C = -.3644;  $\delta = 0$ ; h = +4; D = -.017, E = +1.000; G = +.364, H = +.006, K = -.931.

Auckland Tuai New Plymouth Wellington Kaimata		$\triangle$ 16.2 17.6 18.5 20.4 22.5	Az. 198 191 191 197 194 199	F m. 3 3 4 4	26 35 49 1 39	0 - C. s. + 5 0 + 6 0 + 19	S. m. s. 6 11 6 36 6 50 7 9 7 44	0-C. 8. + 8 + 7 - 5	$ \begin{array}{c} \text{St}\\ \text{m. s.}\\ 7 & 16\\ 13 & 59\\ 14 & 10\\ \end{array} $	pp. PcP ScS ScS	L. m.
Christehureh Mizusawa Pasadena Mount Wilson Palomar	E. Z.	23.0	195 328 47 47 48	(10 i 11 i 11 i 11 i 11	25 37) 13k 13k 16k	$+13 \\ +13 \\ -1 \\ -2 \\ -1 \\ -1$	$10^{7}$ $\frac{49}{37}$	8 	i 13 24 e 13 21	pP pP	
Riverside Tinemaha Tucson De Bilt Jena	z. z.	$     \begin{array}{r}       80.5 \\       81.7 \\       84.3 \\       149.3 \\       149.5 \\     \end{array} $	47 45 52 355 345	i 11 i 11 i 11 i 18 e 18	15k 21k 35k 45k 44	$ \begin{array}{c} - & 2 \\ - & 2 \\ - & 1 \\ + & 2 \\ [+ & 1] \end{array} $			$\begin{array}{c} e \ 13 \ 30 \\ i \ 13 \ 47 \\ e \ 21 \ 4 \end{array}$	pP pP pPKP	
Uccle Helwan Stuttgart Strasbourg Zürich Chur	z.	150.6 151.3 152.0 152.4 153.5 153.8	$356 \\ 293 \\ 348 \\ 349 \\ 349 \\ 349 \\ 347$	e 18 e 18 e 18 e 18	48 49 43 45 54 46	[+ 4] [+ 4] [- 3] [- 2] [+ 5] [- 3]	e 21 36		$e \frac{19}{21} \frac{2}{14} =$	pPKP	
Additional rea Tuai i=6n New Plymo De Bilt iZ Stuttgart i Strasbourg	1.40s outh = 18 Z = 1	i = 6m. m.52s. 8m.51s	., eZ	=19m	.38.						

May 28d. 22h. 40m. 22s. Epicentre 48°-2N. 9°.0E. (as at 0h.).

Ρ. 0 – C. s. AZ. -C. Supp. 8. m. s. m. s. m. 8. 8. m. Ebingen  $\mathbf{P}^{\bullet}$ 0.0 i 0 2?

Ravensburg	0.6	135	e 0 13	- 2	i 0 21	- 5		-		
Stuttgart	0.6	13	10 10	Pg	10 16	S.				
Strasbourg		295	e 0 19	- 1	i 0 29	S.				
Zürich	0.9	198	e 0 18	- 2	e 0 30	Sr Sr				
Chur	1.4	165	e 0 26	- 1	e 0 47	+ 1				•
Neuchatel	1.8	229	e 0 35	Pr	e 0 59	Sr				
Besancon	2.2	243		<u> </u>	11 14	+ 8				
Cheb	2.9	50	2007 A	( <u>—</u>	e 1 38?	Sg				
Jena	3-2	32	e 0 55	+ 3			il 1	P.	i 1.6	
Uccle	4.0	311			e 2 7	S*		_		
Triest	4.1	128			e 2 2	s• s•		-		

- May 28d. Readings also at 0h. (Triest, Uccle, near Ebingen, Ravensburg (2), Stuttgart (2), Neuchatel, Jena, and near Mizusawa), 1h. (near Ravensburg, Stuttgart (3), and Neuchatel), 2h. (near Stuttgart (2), Ebingen, and Neuchatel), 3h. (near Ebingen (2), and Stuttgart (2)), 4h. (Strasbourg, near Neuchatel, Ravensburg, Stuttgart, and Ebingen), 7h. (Mount Wilson, Tinemaha, Tucson, and Huancayo), 9h. (near Basle), 11h. (Tucson, Mount Wilson, Riverside, and Tinemaha), 12h. (Tashkent and Stalinabad), 15h. (Granada and Helwan), 22h. (near Zürich), 23h. (near Zürich, Neuchatel, Jena, near Ebingen (2), Stuttgart (2), and Strasbourg).
- May 29d. Readings at 2h. (Ksara), 3h. (Bogota, Mount Wilson, Riverside, Tinemaha, Tucson and Huancayo), 4h. (La Paz, Stuttgart, near Berkeley, Branner, and Lick), 6h. (Helwan), 10h. (near Berkeley), 13h. (Belgrade and Triest), 16h. (near Ebingen and Stuttgart), 18h. (near Fort de France, Stuttgart, and near Ebingen), 20h. (Granada), 21h. (near Andijan), 22h. (New Delhi).

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

#### 1943

24

•

#### 188

May 30d. 18h. 9m. 27s. Epicentre 48°.2N. 9°.0E. (as on 28d.).

	Δ	Az.	Р.	0-C.	s.	0-C.	Su	pp.
	0	0	m. s.	8.	m. s.	8.	m. s.	
Ebingen	0.0		i0 1	$\mathbf{P}_{\mathbf{g}}$	i0 2	Se		
Ravensburg	0.6	135	e 0 14	- 1	e 0 21	- 5		<del></del>
Stuttgart	0.6	13	10 9k	Pg	i0 16	$\mathbf{P}$		
Strasbourg	0.9	295	e 0 22	+ 2	10 29	Sr	i0 32	
Zürich	0·9	198	e 0 17	÷ 3	i 0 31	S		<del></del>
Basle	1.2	235	e 0 22	- 2	i0 38	- 3	2222	<del></del>
Chur	1.4	165	e 0 26	- 1	i047	+ 1		<u> </u>
Neuchatel	1.8	229	e 0 34	+ 2	e 0 59	+ 3		
Jena	3.2	32	e 0 58	P*	( <u>201</u>		e 1 14	Pg
Uccle	<b>4</b> ·0	311			e 2 8	S.	20470 (J. 1942)	

- May 30d. Readings also at 0h. (Ebingen (2) and Stuttgart (2)), 1h. (near Berkeley (2), Branner (2), Fresno, Lick (2), and Santa Clara), 2h. (near Ebingen and Stuttgart), 4h. (Jena, Ravensburg, Strasbourg, and Ebingen (2), Stuttgart (2), Basle, and Zürich), 7h. (near Fresno), 8h. (Bogota, Fort de France, and Harvard), 16h. (near Andijan), 18h. (Stuttgart and Fort de France), 19h. (Stuttgart), 20h. (Prague and near Mizusawa), 21h. (Stuttgart (2), Zurich, and near Ebingen).
- May 31d. Readings at 2h. (Granada, Kew, Bermuda, Harvard, Philadelphia, Pittsburgh, Tucson, Riverside, Bogota, Huancayo, near Fort de France, and San Juan), 5h. (Bombay), 7h. (near Bogota), 9h. (Riverview, Arapuni, Auckland, Christchurch, Wellington, Tucson, Riverside, and near Berkeley), 11h. (Ksara), 16h. (Jena), 20h, (Tucson, Santa Clara, near Berkeley, Branner, Fresno, and Lick).

June 1d. 4h. 15m. 16s. Epicentre 20°.4N. 108°.8W. (as on 1943, Jan. 10d.).

 $A = -.3023, B = -.8880, C = +.3465; \delta = -1; h = +5;$ D = -.947, E = +.322; G = -.112, H = -.328, K = -.938.

		Δ	Az.	P. m. s.	0 – C. s.	S. m. s.	0 – C. s.	m. s.	pp.	L. m.
Tucson Palomar Riverside Mount Wilson Pasadena	Z. Z.	$     \begin{array}{r}             0 \\             11 \cdot 9 \\             14 \cdot 8 \\             15 \cdot 5 \\             16 \cdot 0 \\   $	352 333 333 331 331	e 2 55 e 3 32 e 3 43 i 3 49 i 3 48	$+ 1 \\ + 1 \\ + 1 \\ + 1 \\ 0$			e 4 42	<u>٩</u>	e 6·1
Tinemaha Santa Clara Salt Lake City Berkeley Logan		$18.6 \\ 20.4 \\ 20.5 \\ 21.0 \\ 21.4$	337 330 352 330 354	i 4 20 e 4 49 e 4 43 i 4 52 e 5 7	-1 + 8 + 1 + 5 + 16	e 8 49 e 8 49 e 8 49 e 9 3	+24 + 22 + 11 + 18	 e 5 58		e 10.8 e 10.4 e 11.1
Ukiah Lincoln Cape Girardeau St. Louis Florissant	E.	$22 \cdot 4$ $22 \cdot 9$ $23 \cdot 8$ $24 \cdot 2$ $24 \cdot 3$	330 24 40 38 38	e 5 1 e 5 18 e 5 19 e 5 19	$-\frac{5}{+}\frac{5}{3}$ - 1	e 9 19 e 9 18 e 9 45 e 9 43 e 9 43	$^{+15}_{+5}_{+17}_{+8}_{+6}$			e 11 · 4 e 12 · 2 l 2 · 0 e 13 · 0
Bozeman Chicago Columbia Victoria Pittsburgh		$25 \cdot 3$ $27 \cdot 9$ $28 \cdot 1$ $30 \cdot 3$ $31 \cdot 7$	357 34 54 341 44	e <u>5</u> 28	- <u>2</u> 	e 10 0 e 10 38 e 10 46 e 11 201 e 11 35	+ 6 + 1 + 6 + 5 + - 2			e 13·4 e 11·7 e 16·2 13·7 e 17·1
Philadelphia Ottawa Harvard San Juan Seven Falls		$34.7 \\ 36.9 \\ 38.2 \\ 40.2 \\ 40.7$	49 39 46 85 40	$e \frac{8}{7} \frac{0}{11}$ $e \frac{7}{7} 33$	PP - 1 - 7	e 12 22 12 58 e 17 50 e 13 41 e 13 261	$-20 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 $	8 44 9 e 17 8 9	PP SS	e 14.5 e 18.7 e 22.7 e 19.4 21.7
Sitka La Paz Scoresby Sund Granada		$41.5 \\ 54.2 \\ 69.9 \\ 89.3$	339 128 20 50	e 14 35	- <u>;</u> 1	$\begin{array}{c} \mathbf{e} \ 14 \ 18 \\ \mathbf{e} \ 20 \ 26 \\ 1 \ 24 \ 1 \end{array}$	+11 + 12 + 13	e 17 37 e 25 3	ss ss	e 21 · 1 26 · 7 e 33 · 4 39 · 7

For Notes see next page.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

# 1943

### 189

#### NOTES TO JUNE 1d. 4h. 15m. 16s.

Additional readings :---Berkeley eZ = 8m.54s., eN = 8m.58s. St. Louis eE = 10m.45s., 10m.58s., and 11m.24s. Pittsburgh e = 12m.55s. Philadelphia e = 9m.41s. Ottawa SSS = 15m.32s. Harvard e = 18m.38s. and 20m.40s. Long waves were also recorded at Huancayo, Honolulu, De Bilt, Kew, and Uccle

June 1d. 13h. 53m. 2s. Epicentre 48°.2N. 9°.0E. (as on 1943 May 30d.).

 $A = + \cdot 6609, B = + \cdot 1046, C = + \cdot 7432; \delta = +8; h = -5;$  $D = + \cdot 156, E = - \cdot 988; G = + \cdot 754, H = + \cdot 116, K = - \cdot 670.$ 

		Δ	Az.	Р.	0-C.	s.	0-C.	Su	pp.	L.
		0		m. s.	8.	m. s.	<b>s.</b>	m. s.		m.
Ebingen		0.0		i0 4	$\mathbf{P}^{\bullet}$	i0 6	S*			
Ravensburg		0.6	135	i 0 131		10 221	S*			
Stuttgart		0.6	13	10 12a	- 3	i0 19	S.			
Strasbourg		0.9	295	0 19	- 1	10 32	Se	10 22	8	
Zürich		0·9	198	e 0 20a	$\mathbf{P}_{\epsilon}$	e 0 30	S. S.			
Basle		1.2	235	e 0 24	Pr	e 0 40	S,			
Chur		1.4	165	e 0 29	P.	10 47	+ 1	-		
Neuchatel	52	1.8	229	e 0 32	Pr Pr	<b>il</b> 1	+ 1 Sr		2 <del></del>	
Milan	E.	2.7	177	i0 46	+ 1	i 1 23	+ 4			
Cheb	-046	2.9	50	e1 1	P	e 1 38	+ 4 S.	1.000	6 <del>1.55</del>	
Jena		3.2	32	10 51	- 1	i1 38	S* Sr	10 58	P*	i 1.7
Prague		4.0	62	e 1 16	Pr	e 2 11	Sr			
Uccle	E.	4.0	311		+4			el 17	Pg	
Triest	10100	4.1	128	e 1 15	P*	i 2 16	S.			
Paris		4.4	278	e 1 37 %	$\mathbf{P}_{\mathbf{f}}$	i 2 16 1 59	- 3	2 24	S.	
Clermont-Ferr	and	4.7	236	i1 32	Pr	i 2 40	Sr	i246	SS:	
Florence		4.7	161	1 2 37	P. S.					12.9
Potsdam		4.9	33			e 2 43	Se			i 3·1
Kalossa		7.0	97	e 3 581	Sr				-	

Additional readings :---Neuchatel iP_s =0m.37s., e =1m.7s. Jena iNZ =1m.4s., iN =1m.10s. Clermont-Ferrand P_sP_s =1m.41s.

June 1d. 14h. 17m. 57s. Epicentre 48°.2N. 9°.0E. (as at 13h.).

 $A = +6609, B = +.1046, C = +.7432; \delta = +8; h = -5.$ 

	Δ	Az.	Р.	0 – C.	s. 0	$-\mathbf{C}.$	Sul	pp.	L.
	0	•	m. s.	8.	m. s.	8.	m. s.		m.
Ebingen	0.0		i0 3	$\mathbf{P}^{\bullet}$	i0 4	S*			
Ravensburg	0.6	135	e 0 11?	Pr	10 201	S.			-
Stuttgart	0.6	13	i0 11a	P	i0 18	Sz			
Strasbourg	0.9	295	e 0 19	Pr	i 0 31	S.			
Zürich	0.9	198	e 0 18	$\mathbf{P}_{\mathbf{s}}$	e 0 29	S. S.		-	19 <u>11-171</u>
Basle	1.2	235	e 0 23	P	i 0 30	S.	e 0 40	Sr	-
Chur	1.4	165	e 0 29	Pr	e 0 48	S.		_	
Jena	3.2	32	e 0 51	- 1	i 1 39	S* Ss*		—	-

June 1d. Readings also at 1h. (near La Paz), 2h. (near Frunse), 3h. (La Plata and Irkutsk), 5h. (La Plata and La Paz), 6h. (Mobile and Bombay), 7h. (Mobile and Toledo), 8h. (Auckland, Arapuni, Wellington, Christchurch, Riverview, and Mobile), 9h. (De Bilt, Paris, and Scoresby Sund), 12h. (near Mizusawa), 13h. (Helwan, Ksara, and Copenhagen), 14h. (Balboa Heights, Triest, and near Zurich, Stuttgart (2), and Ebingen (2)), 16h. (St. Louis, Logan, Tinemaha, Haiwee, Pasadena, Mount Wilson, Riverside, La Jolla, Palomar, Tucson, Kew, and near Basle, Zürich, Stuttgart, and Ebingen), 22h. (Tinemaha, Palomar, Riverside, Pasadena, Mount Wilson, Tucson, and Stuttgart), 23h. (near Almeria and Granada).

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

#### 1943

象

#### 190

June 2d. 2h. 55m. 23s. Epicentre 39°.5N. 71°.9E. (as on 1942, Jan. 8d.).

A =  $+ \cdot 2404$ , B =  $+ \cdot 7354$ , C =  $+ \cdot 6335$ ;  $\delta = -7$ ; h = -1; D =  $+ \cdot 951$ , E =  $- \cdot 311$ ; G =  $+ \cdot 197$ , H =  $+ \cdot 602$ , K =  $- \cdot 774$ .

		Δ	Az.	<b>P</b> .	0 – C.	s.	0 – C.	Sup	p.	L.
Stalinabad Tashkent New Delhi Sverdlovsk Bombay	N.	2.6 2.7 11.7 18.8 20.6	$249 \\ 313 \\ 156 \\ 340 \\ 179$	m. s. i 0 44 i 0 50 i 2 47 a i 4 21 e 4 39	B. 0 + 5 + - 2 - 4	m. s. e 4 55 i 7 52 e 8 32	- 9 - 9 + 2 + 3	m. 8. $-\frac{-}{5}$ 14 5 0	ss PP	m.  5·5 1 9·6
Calcutta Hyderabad Moscow Ksara Kodaikanal	N. E. E.	22.0 22.7 27.9 29.3 29.6	$136 \\ 165 \\ 318 \\ 270 \\ 169$	e 4 57 9 5 5 56 e 6 9 e 7 5	- 1 + 2 + 3 PP	i 9 2 (9 5) 10 37 e 11 4 i 10 55	+ 8 - 4 + 0 5 9	i 10 12		i 11.6 (11.4) 
Bucharest Helwan Upsala Potsdam Copenhagen		$34.1 \\ 34.5 \\ 39.2 \\ 41.8 \\ 41.9$	$294 \\ 267 \\ 320 \\ 309 \\ 314$	e 6 48 6 49 9 0 e 7 56 e 7 55	$-{}^{0}_{3}$ + {}^{3}_{1}	e 10 50 i 12 19 e 13 21 e 17 19? 14 12	$   \begin{bmatrix}                                  $	$e \overline{\frac{7}{9}} \frac{16}{377} \\ e \overline{\frac{9}{9}} \frac{377}{28} \\ e \overline{\frac{9}{28}} $	i PP PP	13.6 e 20.6
Triest Cheb Florence Stuttgart Chur		42.4 42.5 44.6 44.8 45.0	299 306 297 304 302	e 7 56 e 5 43 i 8 16 e 8 17 e 8 18	- , ² ,0 - 1	i 14 19 e 14 49 e 14 55	$-\frac{1}{-\frac{3}{0}}$	e 9 39 e 9 44 e 20 15 e 9 59	PP PP PP	e 25.6 e 25.6
Bergen Zürich Basle De Bilt Uccle		45.4 45.5 46.1 46.6 47.7	321 303 303 310 308	e 8 19 e 8 25 i 8 33 e 8 41	$-\frac{4}{3}$ + 1 + 1	e 17 48	<b>ss</b> 	e 9 7 e 18 47 e 18 58	- ss ss	e 23.6 e 25.6
Aberdeen Kew Stonyhurst Toledo Granada Ottawa	z.	49.7 50.0 50.7 56.7 57.6 90.6	317 309 313 297 293 338	$ \begin{array}{c}                                     $	$-\frac{1}{0}$ + 2	= e 17_37		e 19 37 e 20 0 e 19 37 9 13 0	SS SS PP	$   \begin{array}{r}     i & 31 \cdot 0 \\     e & 27 \cdot 6 \\     e & 30 \cdot 6 \\     \hline     30 \cdot 8 \\     49 \cdot 6   \end{array} $

Additional readings and notes :--

Bombay PPPN = 5m.22s., iSE = 8m.23s., SSEN = 9m.22s.Hyderabad gives S as P and L as S. Upsala ePIN = 9m.12s., ePPN = 10m.25s., eSN = 15m.18s., eE = 15m.53s. phases have

```
been wrongly identified.
Triest eSS =17m.34s.
Stuttgart eSS =18m.7s.?
Stonyhurst i =21m.54s. and 24m.26s.
Toledo i =10m.0s.
Long wayes were also recorded at Paris and Tortosa.
```

June 2d. 5h. 24m. 5s. Epicentre 16°.9N. 86°.0W.

 $A = +.0668, B = -.9551, C = +.2889; \delta = +14; h = +5;$ D = -.998, E = -.070; G = +.020, H = -.288, K = -.957.

		Δ	Az.	Р. m. s.	0 – C. s,	S. m. s.	0 - C. s.	m. s.	op.	L. m.
Balboa Heights		10·1 16·9	$141 \\ 135$	e 2 25 e 4 2	$^{-3}_{+3}$	e 4 13	-12	=	—	
Bogota Columbia		17.6	14 83	e4 8	0	e 7 36	+13		_	e 9·1
San Juan Cape Girardeau	E.	$18.9 \\ 20.6$	353	e 4 29 e 4 42	+ 5 - 1	e 7 59 e 8 19	$^{+6}_{-10}$		_	e 9·6
St. Louis		22.0	351	e5 0	+ 2	i92	+ 6			
Florissant Fort de France		$22 \cdot 2 \\ 24 \cdot 0$	351 94	e 4 59 5 24	$\frac{-1}{+7}$	e 9 2 e 10 12	+ 2 SS		_	
Pittsburgh		24.0	12	i5 19	+ 2	19 42	+10			
Bermuda		24.7	48	e 5 15	- 9	e 9 34	-10			e 11·2

Continued on next page.

3/2

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

191

		Δ	Az.	Р.	0 – C.	s.	0 – C.	Su	pp.	L.
		0	0	m. s.	8.	m. s.	8.	m. s.		m.
Chicago		24.8	356	e 5 47	+22	e 9 48	+ 2			e 11·7
Philadelphia		24.8	22	e 5 29	+ 4	e 9 53	+ 7	16 24	PPP	e 13.7
Fordham		26.1	23	i 5 38	+1	e 10 14	+ 7	<u> </u>		e 13.9
Tucson		27.2	310	e 5 46	- ī	e 10 20	- 5		· · · · · · ·	e 16.2
Harvard		28.3	24	1 5 57	Õ	e 10 49	+ ě	1641	$\mathbf{PP}$	e 13.9
Ottawa		29.7	15	69	- 1	11 5	- 1	1000	-	14.9
Palomar	Z.	32.2	308	e 6 33	$+ \bar{1}$					
Seven Falls		32.6	20	6 371	+ 2	11 54	-+- 3		-	17.9
Riverside		32.9	308	e 6 36	- 2			3 <u></u> -	-	·
Mount Wilson	z.	33.5	308	e 6 42	- ī			10000	3	
Pasadona		33-5	308	e 6 44	+ 1	(e 12 1?	) - 4		<i>a</i> <b></b>	e 12·0
Tinemaha		34.8	312	16 54	Ō	·····			- 220	0.12.0
Bozeman		35.5	330		_	e 12 35	- 1			e 17·4
La Paz		37.6	151	e 7 43	+25					20.9
Saskatoon		38.8	340	×		e 13 25	- 1			25.9
Sitka		54.6	330		-	e 17 8	- 3			e 24·4

Additional readings :---

Bogota e = 4m.7s.

Florissant iS?E =9m.8s.

Fordham i = 5m.41s.

Tucson i = 6m.3s., e = 8m.14s.

Long waves were also recorded at Huancayo, De Bilt, Kew, and Stuttgart.

June 2d. Readings also at 2h. (near Lick), 4h. (Auckland, Christchurch, Arapuni, Wellington, and Riverview), 5h. (near Granada), 7h. and 9h. (near Andijan), 10h. (near Stalinabad), 11h. (Mount Wilson, Tucson, and Tinemaha), 13h. (De Bilt and Kew), 15h. (near Mizusawa and near Ferndale), 20h. (Ebingen and near Stuttgart) 21h. (near La Paz), 23h. (near Lick).

June 3d. 12h. 13m. 15s. Epicentre 24°.5S. 180°. Depth of focus 0.090 (as on 1943 April 28d.)

 $A = -.9110, B = .0000, C = -.4124; \delta = -1; h = +3;$ D = 000, E = +1.000; G = +.412, H = 000, K = -.911.

L.

		•	0	ш. в.	в.	ш. в.	в.	m, s,		m.
Auckland		13.1	199	3 7	+18	5 22	+16			
Arapuni	32	14.0	193	· · ·		5 451				
Tuai		14.5	189	3 6	+ 3	5 38	+ 8	13 46	ScS	
New Plymouth		15.4	196	3 21	÷ 9	6 4	+18	10 10	000	고문장
Wellington		17.3	193	3 33	$\frac{7}{4}$ 3	6 26		13 58	9.9	
Wennig ton		11.9	100	0 00	τo	0 20	+ 8	13 58	ScS	-
Kaimata		19.3	198	3 52	+ 4	6 57	+ 5	13 40	SoS	
Christchurch		19.9	195	5 45 9	. 3				~~~~~	_
Brisbane	N.	24.4	256	e 7 12	8	18 3	-11	18 43	8	1000
Riverview		26.8	242	i4 50k	- 5	18 44	- 7	10 10		
Honolulu		50.4	27	A 8 1	- 4	e 14 24	-1i		신가 있는	12.514
Honorata		00 X	~ •	00 1	5555	011 21				
Santa Barbara	z.	81.9	47	i 11 22	+ 4					
Pasadena	03450	82.7	48	i 11 18k	- 4	e 20 47	- 4	1 13 26	pP	
Mount Wilson		82.9	48	i 11 19k	- 4		PKKP	1 13 27	pP	-
Palomar	Z.	83.2	49	111 21	- ã		PKKP	i 13 38	pP	2223
Riverside		83.2	48	111 211	- 4		PKKP	1 13 26	pP	
1014010100		00 2	<b>40</b>			0 20 00	TREE	1 15 20	pr	10.000 S
Tinemaha		84.4	45	i 11 27k	- 4	e 21 6	- 1	i 13 36	pP	
Tucson		86.8	52	i 11 41	- 1	e 21 21	- 9	e 13 43	nP	
Sitka		89.9	23			e 21 43	[+13]	e 27 58	pP SS	
Bozeman		93.7	41	e 27 49	2		1 1 201	e 28 31	ŝŝ	
Huancayo		98.1	107	0 17 4	PKP	e 22 15	[+ 1]		PS	4556
IIIIancayo		00 1			TIM	0 10	1 + 1	e 26 8	FO	
Irkutsk		100.8	322	e 16 42	PP	i 22 16	[-11]	-	3 <u></u>	
Tashkent		120.9	304	_		1 22 44	[-63]			
Scoresby Sund		132.3	10	e 20 29	pPKP	e 37 16	SS	e 20 46	PP	1000
Ksara		147.4	294	e 18 34	[-1]		~~	e 20 40	ΡP	· · · · · · · · · · · · · · · · · · ·
Copenhagen		147.5	346	e 18 29	(- 61	27 52	SKKS	0 20 10		
Cohomagon		+#1 0	UIV	0 10 10	r 01	41 04	SILIDO	3555	100	

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1.45	<b>A</b>	<b>.</b>	<b>n</b>	
	112	л	740	
	1000	-		

			Δ	Az	. Р.	0 – C.	s.	0 – C.	L.	
			0		m. s.	8.	m. s.	8.	m.	
Helwan	Z.	151.7	287	18	36 [- 4]	22 5	PKS	22 27	PP	
Jena	Z.	152.1	342	18	30 (-10)					
De Bilt	Z.	152.2	353	i 18	41k(+1)	e 20 55	9	<del></del>		
Kew		153-1	A set of the set of	e 21	45?) pPKF				<u> </u>	e 21·8
Sofia		153.6		e 18			<del></del>	e 31 15	9	
Stuttgart		154.7	345	1 18	40 [- 4]	· ····		i19 3	pPKP	
Basle		156.2		e 18				e 19 10		
Zürich		156.2		e 18						
Granada		167.0		e 20			[+56]	23 35	$\mathbf{PP}$	93.4

192

Additional readings :— Riverview iEZ =7m.33s. and 8m.10s., iEN =11m.47s. and 14m.34s., iN =15m.40s. Tucson i =13m.53s., e =17m.0s., ePKKP =29m.28s. Bozeman 32m.23s. Huancayo e =30m.12s. Scoresby Sund e =29m.45s. and 41m.30s. Helwan PKKP?Z =18m.51s., eZ =20m.59s., PPP?Z =25m.37s., eE =28m.17s. Jena eN =18m.36s., iZ =18m.42s. Stuttgart iZ =18m.48s., eZ =21m.0s., e =28m.33s., 29m.15s., 32m.57s.?, and 40m.30s. Granada SKKS =29m.47s., SS =42m.52s. Almeria PP =21m.16s., e =26m.23s. and 30m.5s.

June 3d. 19h. 53m. 41s. Epicentre 15°.6S. 173°.6W. (as on 1941 February 24d.).

Felt in Apia M.M. II. Epicentre near 16°S. 174°W. (Apia); 16°S. 173°W. (Pasadena). Annual Report for 1943, Apia Observatory, Wellington, 1950.

> $A = -.9576, B = -.1074, C = -.2673; \delta = -2; h = +6;$ D = -.111, E = +.994; G = +.266, H = +.030, K = -.964.

	Δ	Az.	Р.	0 – C.	s.	0 – C.	Supp.	. L.
	•	o	m. s.	8.	m. s.	8.	m. s.	m.
Apia	2.5	45	i0 41a	- 2	i1 24	Se		
Auckland	23.6	204	5 12	- 1	9 43	+18		- i13.0
Arapuni	24.3	201			9 197	-18		ScS —
Wellington	27.5	200	5 49	- 1	10 41	+11	12 49 I	$\begin{array}{ccc} P_{c}S & 14 \cdot 3 \\ SSS & e \ 17 \cdot 8 \end{array}$
Riverview	36.5	235	i7 14a	+ 5	e 13 10	+19	e 15 46 S	SSS e 17·8

Sydney Honolulu Santa Barbara Santa Clara Berkeley	z. z.	36.5 39.8 71.4 71.6 71.8	$235 \\ 24 \\ 46 \\ 42 \\ 42 \\ 42$	e 9 19? i 11 25 e 11 32 i 11 29	PPP + 1 + 7 + 3	e 13 41 	- <u>1</u> - <u>5</u>	$\frac{-}{\frac{2}{2}}$	- PS	e 17·8
La Jolla Pasadena Mount Wilson Palomar Riverside	z.	$72 \cdot 2$ 72 \cdot 3 72 \cdot 4 72 \cdot 8 72 \cdot 8	48     46     44     48     46     46     4	e 11 29 i 11 28 i 11 28 e 11 30 e 11 31	$   \begin{array}{c}             0 \\             - 1 \\             - 2 \\             - 2 \\           $					e 29.7
Haiwee Tinemaha Tucson Victoria Sitka		73.5 73.9 76.6 77.8 79.1	45 44 51 33 21	i 11 38 i 11 39 i 11 53 e 12 11	+ 2 0 - 1 + 3	$\begin{array}{c}\\ e & 21 & 41 \\ e & 22 & 1 \\ i & 22 & 12 \end{array}$	+ 1 + 8 + 5	i 12 5	P _e P	e 32·1 e 34·3 e 35·6
Salt Lake City Logan Bozeman Florissant St. Louis	E.	$   \begin{array}{r}     80 \cdot 1 \\     80 \cdot 6 \\     83 \cdot 1 \\     94 \cdot 5 \\     94 \cdot 5 \\     94 \cdot 5   \end{array} $	43 42 39 52 52	e 12 16 1 12 18 	$+\frac{3}{2}$	e 22 21 e 22 26 e 22 46 e 23 56 e 24 2	+ 3 + 3 - 2 [- 2] [+ 4]	$e 1\overline{6} 59$ $= 1\overline{13} 26$	PPP PcP	e 34 ·1 e 34 ·1 e 40 ·8 e 46 ·7
Huancayo Chicago La Paz Pittsburgh Philadelphia	z.	$94.6 \\ 97.3 \\ 99.9 \\ 102.7 \\ 107.2$	$104 \\ 49 \\ 110 \\ 51 \\ 53$	e 22 57		e 24 39e 24 12e 24 45e 25 0	$\begin{bmatrix} + & 4\\ - & 1 \end{bmatrix}$ $\begin{bmatrix} + & 5 \end{bmatrix}$	e 30 59	<b>ss</b> 	e 43 · 1 e 45 · 3 46 · 3 e 55 · 5 e 46 · 3

Continued on next page.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1.46	146		100
- 19	<b>8</b> 3.	<b>A</b> 1	9 - C
	28	ЩЪ,	<b>a</b>
- <b>-</b> -	<b>W</b> .		
		114	

198

		Δ	Az.	and the second	2.	0 – C. 8.	m. s.	0 – C. s.	m. s.	pp.	L. m.
Fordham	3	107°3	$\hat{52}$				e 25 5	[+ 4]	e 28 15	PS	
Harvard	1	109.2	50	e 24	25	1	e 28 25	PS			e 55·3
Seven Falls		109.9	45	-	Ē		e 25 251				53.3
Bermuda		13.9 122.5	61 11	e 20	18	3	e 25 38 e 27 3	$\{+10\}$ $\{-28\}$	e 20 58	PP	e 46·8 e 61·9
Scoresby Sund	3	122.0	11	0 20	10		021 0	1 201	0 20 00		0 01 0
Copenhagen	1	139.7	354	e 19	30	[ 0]	-				
De Bilt		143.6	1	e 19	41	[+ 4]		( 1 10)	e 22 49	PP	
Contraction of the second seco		143.8	6	e 19	38	[+1]	e 30 1	{ <b>+18</b> }	e 19 55	pPKP	
Jena		44.5	355	e 19	the second se	[+ 6]					
Uccle z	5. ]	144.9	3	e 19	41k	[+ 2]	1000	10	25377-0		1000
Paris	1	146.7	5	i 19	50	[+ 8]			<del></del>	<del></del>	
Stuttgart		146.8	357	e 19		[+ 6]	e 33 497	PSKS			e 84·6
Strasbourg	1	147.1	358	e 19		(+11)					
Ksara		147.8	310	e 20	1	[+17]	1000		e 23 30	PP	
Basle		148-1	0	e 19	47	[+ 3]	( market				
Zurich	1	148.3	359	e 19	55	[+10]	3 <u></u>				
Chur		148.7	358	e 19		[+ 4]				<del></del> 9	
Neuchatel	- 3	148.7	359	e 19	Contraction of the second s	[+ 5]					Ξ
Sofia		149.3	336	e 20	the second se	[+16]	· · · · · · ·				-
Helwan 2	ζ. ]	153.0	307	e 19	58	[+ 6]	1		e 23 57	$\mathbf{PP}$	-
Toledo		154-1	19	e 19	57	[+ 4]			i 20 24	PKP:	86.3
		154.4	10	e 20		PKP ₂					e 88·3
Granada		156.7	21	i 19		[-24]	26 42	[-19]	20 33	PKP ₁	
Almeria		157.4	18	e 20	40	PKP,	27 30	[+28]	24 31	$\mathbf{PP}$	86.8
Additional readi Auckland PeS Berkeley eQN Tucson e =13 Logan e =23 Harvard e =3 Bermuda eSS Scoresby Sun Kew ePKP ³ Jena iNZ =19 Stuttgart eZ Strasbourg 1 Helwan eZ = Toledo iPP = Granada PP = Almeria pSK8	s = 1 s = 1	1m.39 29m.44 348., e 7s. and .37s. 34m.31 =40m =23m. 47s., i 9m.53s n.57s. n.57s. m.54s.	8. PP? 1 29n 8. .248. 338. N = 2 ., 201 . SK	QE = =14n 1.11s. 20n .3 n.21s KS =	29m 1.42s 2s., 5 ., an 30m	.578. , e = 221 iE = 20m i 22m.4( .318., SS	.41s. )s. =40m.25	s., SSP	=45m.31s	3.	

Almeria pSKS = 28m.9s., SS = 44n .24s., SSS = 50m.14s. Long waves were also recorded at Christchurch, San Juan, Ukiah, and at other European stations.

June 3d. 20h. 48m. 2s. Epicentre 15°.6S. 173°.6W. (as at 19h.).

#### Felt in Apia M.M. III. Epicentre near 16°S. 174°W. (Apia). Annual Report for 1943, Apia Observatory, Wellington 1950.

		Δ	Az.	Р.	0-C.	s.	0-C.	Su	pp.	L.
		•	•	m. s.	8.	m. s.	8.	m. s.		m.
Apia		2.5	45	i0 45a	+ 2	i1 10	- 4			
Auckland		23.6	204	5 10	- 3	9 22	- 3	12 20	PcP	i 15·3
Tuai		24.5	198	5 26	+ 4	9 43	+ 3			
Wellington		27.5	200	5 50	0	10 36	+ 6	6 36	PP	13.0
Riverview		36.5	235	—	-	e 13 9	+18	e 15 53	SSS	e 17·7
Sydney		36.5	235	-		e 12 58	+ 7			
Honolulu		39.8	24			e 13 22	PeS			e 18·3
Santa Barbara	Z.	71.4	46	e 11 24	0	_			-	-
Santa Clara	z.	71.6	42	e 11 29	+ 4					
Ukiah	12122	72.0	40		in <del>Tabl</del> e	e 21 31	PPS	Correct.		e 32·2
La Jolla		72.2	48	e 11 34	$^{+5}_{-1}$					
Pasadena		72.3	46	1 11 28	- 1					e 29·8
Mount Wilson		72.4	46	i 11 27	- 3				<del>,</del>	
Palomar	z.	72.8	48	i 11 30	- 2					
Riverside	z.	72.8	46	e 11 28	- 4					

Continued on next page.

# 

× .

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943		51 - 54 13	194			
Haiwee Tinemaha Tucson Victoria Sitka	73·9 4 76·6 5 77·8 3	mg	0 - C. s. + 1 - 2 - 3 - 3 $P_c P$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Supp. m. s. i 12 6 PcP e 27 2 SS	L. m. 
Salt Lake City Logan College Bozeman Florissant E.	$   \begin{array}{r}     80.6 & 4 \\     82.6 & 1 \\     83.1 & 3   \end{array} $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+ 2 + 2 + 4 + 5 + 5	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$e \frac{23}{2} 10 PS$	e 34 · 1 e 38 · 1 e 40 · 2 e 36 · 0
Huancayo Chicago U.S.C.G.S. La Paz Philadelphia Fordham		9	+61 S PP	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	e 28 16 PS	e 42.5 e 44.4 46.0 e 47.4
San Juan Bermuda Scoresby Sund Upsala Bergen	$\begin{array}{rrrr}113.9&6\\122.5&1\\135.1&35\end{array}$	3 e 19 58	PP [-12] [+ 6] PP [+36]	e 29 11 PS e 25 26 [-2] e 30 40 PS	e 29 26 PS e 20 38 PP e 20 58 1	e 51·3 e 56·2 e 53·7
Aberdeen Copenhagen De Bilt Kew Jena	139·7 35 143·6	1 119 41a 6 e 19 36	$\begin{array}{c} PP \\ [+ 5] \\ [+ 4] \\ [- 1] \\ [+ 2] \end{array}$	$e \frac{26}{589[+13]}$	e 23 22 ? 23 13 ? e 22 58 PP (e 26 12) PPP	e 26·2
Uccle Z. Paris Bucharest Stuttgart Z. Strasbourg	$\begin{array}{c} 144 \cdot 9 \\ 146 \cdot 7 \\ 146 \cdot 8 \\ 146 \cdot 8 \\ 146 \cdot 8 \\ 35 \\ 147 \cdot 1 \\ 35 \end{array}$	7 e 19 46	$[ + 1] \\ [ + 10] \\ [ - 7] \\ [ - 7] \\ [ + 4] \\ [ + 7] \end{bmatrix}$	$e 2\overline{6} 587[+\overline{9}]$	e 23 5 PP	e 80.0 40.0
Ksara Basle Zürich Chur Neuchatel	$\begin{array}{ccccccc} 147.8 & 31 \\ 148.1 & & \\ 148.3 & 35 \\ 148.7 & 35 \\ 148.7 & 35 \\ 148.7 & 35 \\ \end{array}$	0 e 19 50 9 e 19 53 8 e 19 51	[+13] [+6] [+8] [+5] [+7]		e 23 11 PP	
Sofia Triest Helwan Toledo	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	1 e 19 58	$[ + 8] \\ [ + 12] \\ [ + 6] \\ [ + 6] \\ ]$		23 58 PP	107.0

e 20 21 PKP, 107.0 19 e 20 0 10 i 24 44 Toledo [+7]154.1 Tortosa E. 154.4 10 — e 87·0 San Fernando 156.5 [+ [+ 3] 6] 156.7 26 33 Granada 20 33 PKP, [-28]78.0 18 e 20 12 27 Almeria 157.4 [+14]3 [+1]24 13 PP 81.5 Additional readings :---Wellington sS = 11m.53s.,  $P_cS? = 12m.53s.$ Salt Lake City e = 26m.42s. Logan e = 18m.4s. and 28m.37s. College e = 27m.17s.Huancayo eSKS =23m.38s., e = 30m.16s. Philadelphia ePP! = 19m.17s., eSS = 33m.52s.Kew eZ = 20m.20s., e = 21m.58s.?, eZ = 23m.32s. Jena iE = 19m.44s. Uccle iZ =19m.43s. and 20m.26s. Stuttgart ePKPZ = 19m.53s., eZ = 20m.34s. Strasbourg e=20m.30s. Helwan PKKP?Z = 20m.22s. Toledo PP? = 23m.57s. Granada PP=24m.13s., SKKS=30m.21s., SKSP=33m.15s., SS=44m.12s., SSP= 46m.21s. Almeria e = 30m.58s. and 33m.32s. Long waves were also recorded at Arapuni, Christchurch, Potsdam and Cheb.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

### 1943

#### 195

June 3d. 22h. 24m. 28s. Epicentre 48°.2N. 9°.0E. (as on 1d.).

 $A = +.6609, B = +.1046, C = +.7432; \delta = +8: h = -5.$ 

	Δ	Az.	Р.	0 – C.	s.	0 – C.		pp.	L.
	0	0	m. s.	в.	m. s.	8.	m. s.		m.
Ebingen	0.0	-	e0 4	- 3	i0 6	- 5			
Ravensburg	0.6	135	e 0 16?	+ 1	10 221	- 4	—		<del></del>
Stuttgart	0.6	13	0013	- 2	i0 20	- 6			<u>a - a</u> a
Strasbourg	0.9	295			0 32	- 2			<del></del> 2
Zürich	0.8	198	e 0 21	+ 1	e 0 34	0	—		

Basle		1.2	235	e 0 25	+ 1	e 0 42 10 50	+ 1			<del></del> )
Chur		1.4	165	e 0 29	+ 2	10 50	+ 4			
Neuchatel		1.8	229	e 0 38	Ps	il 1	Sr	—	-	
Jena	N.	3.2	32			e 1 261	- 6	e 1 30	8	S

- June 3d. Readings also at 1h. (Stuttgart and near Ebingen), 2h. (La Paz), 3h. (Kodaikanal), 4h. (Hyderabad and Bombay), 5h. (Ebingen, Stuttgart, and Zurich), 6h. (Bacau, Campulung, Cernauti, near Bucharest, and Focsani), 9h. (near Mizusawa), 11h. (Ksara), 16h. (Kodaikanal), 19h. (Basle), 21h. (Mount Wilson, Palomar, Tucson, Riverside, and near Apia).
- June 4d. Readings at 2h. (near Berkeley and Branner), 4h. (Stuttgart and near Ebingen), 10h. (near Fort de France), 11h. (near Tashkent), 14h. (Kew), 20h. (near Mizusawa), 21h. (Granada), 23h. (Huancayo, San Juan, Bermuda, Columbia, Philadelphia, Tucson (2), Mount Wilson (2), Pasadena (2), Palomar, Riverside, Tinemaha (2), Scoresby Sund, Kew, and Stuttgart).

June 5d. 20h. Undetermined shock.

```
Apia iP = 29m.38s.a, iS = 30m.42s., i = 30m.47s.
Riverview iZ = 35m.42s., iN = 41m.2s., iEN = 44m.27s.
Nagano P = 38m.50s.
Osaka P = 38m.568.
Sendai P = 38m.57s.
Kobe P = 39n .18.
Santa Barbara ePZ = 39m.27s., eZ = 40m.26s.
Pasadena iP = 39m.31s., iZ = 39m.58s. and 40m.28s.
Mount Wilson iP = 39m.32s.
Palomar iPZ = 39m.32s., iZ = 40m.0s., eZ = 40m.30s.
Riverside iPZ = 39m.33s., eZ = 40m.29s.
Tinemaha iP = 39m.41s., iZ = 40m.8s., iEZ = 40m.40s.
Tucson iP = 39m.51s., e = 40m.51s.
Jena eN = 47m.22s., eE = 47m.28s.
Stuttgart eZ = 47m.25s., 47m.31s., and 48m.35s.
Strasbourg ePKP = 47m.33s.
Zurich eP = 47m.34s.k.
Florissant eN = 50m.14s., iN = 50m.18s., eN = 50m.40s.
```

- June 5d. Readings also at 1h. (near Tashkent), 7h. (near Almeria and Granada), 13h. (near Mizusawa), 16h. (near Ebingen, Stuttgart, and Zurich), 21h. (La Paz and Montezuma), 22h. (Bogota, Huancayo, San Juan, near Fort de France, Ebingen, and Stuttgart).
- June 6d. Readings at 0h. (Ebingen and Stuttgart), 1h. (Mount Wilson, Riverside, Tinemaha, Tucson, Ukiah, and Salt Lake City), 4h. (near Fresno), 5h. (De Bilt, Kew, Stuttgart, Belgrade, Cheb, Florence, Triest, Zürich, and Granada), 7h. (near Ferndale), 11h. (near Bogota), 12h. (near Tashkent), 15h. (Cheb and Stuttgart).'

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

### 1943

*

#### 196

June 7d. 11h. 40m. 20s. Epicentre 45°.0N. 38°.0E.

 $A = + \cdot 5591$ ,  $C = + \cdot 4368$ ,  $C = + \cdot 7047$ ;  $\delta = -1$ ; h = -4; D = + \cdot 616, E = - \cdot 788; G = + \cdot 555, H = + \cdot 434, K = - \cdot 710.

	∆ Az.		-C. S. s. m. s.	0 – C. s.	Supp. m. s.	L. m.
Istanbul Focsani E. Bacau Bucharest Cernauti	7.6 242 7.6 280 7.9 285 8.5 271 8.9 296	요즘은 아님과 같은 것을 것을 가지?	-15 - 4 = 3 28 - 1 = 3 34		- 남성상 강영상의 가슴을	
Campulung Moscow Sofia Ksara Helwan	$\begin{array}{cccc} 9\cdot 2 & 277 \\ 10\cdot 7 & 359 \\ 10\cdot 9 & 363 \\ 11\cdot 3 & 189 \\ 16\cdot 0 & 202 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$-1 \qquad 4 29 \\ - 0 \qquad -$	$-\frac{10}{-10}$ +12		$ \begin{array}{c} & 5 \cdot 7 \\ \hline & & - \\ \hline & & e & 6 \cdot 3 \\ \hline & & 1 & 8 \cdot 0 \end{array} $
Triest Potsdam Sverdlovsk Florence Upsala	$\begin{array}{ccccccc} 17 \cdot 1 & 281 \\ 18 \cdot 0 & 303 \\ 18 \cdot 4 & 43 \\ 19 \cdot 1 & 275 \\ 19 \cdot 3 & 327 \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		-10 + 6 + 9 - 22	 	– – – – – – – – – – – – – – – – – – – –
Copenhagen Chur Stuttgart Milan E. Zürich	$\begin{array}{ccccccc} 19 \cdot 4 & 313 \\ 19 \cdot 8 & 286 \\ 20 \cdot 0 & 292 \\ 20 \cdot 3 & 281 \\ 20 \cdot 5 & 287 \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$   \begin{array}{rrrr}     -1 & e 7 50 \\     -1 & e 8 19   \end{array} $	$-14 \\ -23 \\ + 2 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 $		$ \begin{array}{c} & 10 \cdot 6 \\ \hline & e & 10 \cdot 4 \\ \hline & & \hline \end{array} \end{array} $
Strasbourg Basle Neuchatel De Bilt Tashkent	$\begin{array}{cccccc} 20 \cdot 9 & 291 \\ 21 \cdot 1 & 288 \\ 21 \cdot 6 & 287 \\ 22 \cdot 7 & 301 \\ 23 \cdot 0 & 89 \end{array}$	$\begin{array}{c} \mathbf{e} \ 4 \ 46 \\ \mathbf{e} \ 4 \ 48 \\ \mathbf{e} \ 4 \ 42 \\ 15 \ \mathbf{6a} \\ \mathbf{e} \ 5 \ 8 \ \mathbf{+} \end{array}$	4 0 10		$i \frac{5}{5} 2 P$ $i \frac{5}{5} 22 P$	$\frac{\mathbf{P}}{\mathbf{P}} = \frac{-}{\mathbf{P}}$
Uccle Clermont-Ferrand Bergen z. Andijan Toledo z.	$\begin{array}{cccccccc} 23\cdot 2 & 298 \\ 24\cdot 4 & 284 \\ 24\cdot 8 & 321 \\ 25\cdot 4 & 88 \\ 31\cdot 2 & 276 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$+\frac{4}{30}$		e 11.7
Additional reading Focsani eN = 2n		m.43s.				

Bacau eN = 2m.4s.?. Bucharest ePN = 2m.13s., eSN = 3m.52s., iE = 3m.59s.

Potsdam ePN =4m.20s. Upsala eE =4m.57s. and 8m.25s. Copenhagen 8m.9s., Q =9m.40s. Stuttgart eZ =7m.52s. and 8m.47s., e =8m.50s. Strasbourg e =5m.24s. Long waves were also recorded at Cheb, Kew, and Granada.

#### June 7d. 12h. European shock.

Tortosa PN =38m.11s., iN =39m.7s., SN =40m.22s. Almeria eP =39m.4s.,  $P_g = 39m.20s.$ ,  $P_g S_g = 39m.53s.$  and 39m.57s.,  $S_g = 40m.20s.$ Granada P = 39m.16s.,  $P_g = 39m.36s.$ ,  $iS_g = 40m.53s.$  and 41m.3s.Toledo ePZ = 39m.35s., eS = 41m.40s. Paris iP =40m.49s., L = 44m. San Fernando ePE =41m.28s., eSE =44m.38s. Jena iPN =44m.40s., eN =48m.43s. and 49m.49s., eE =49m.55s. Long waves were also recorded at De Bilt, Kew, and Uccle.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

### 1943

2

### 197

June 7d. 23h. 20m. 7s. Epicentre 3°.5S. 102°.3E. (as on 1940 June 26d.).

A =  $-\cdot 2126$ , B =  $+\cdot 9753$ , C =  $-\cdot 0606$ ;  $\delta = +8$ ; h = +7; D =  $+\cdot 977$ , E =  $+\cdot 213$ ; G =  $+\cdot 013$ , H =  $-\cdot 059$ , K =  $-\cdot 998$ .

		<u>۸</u>	Az.	P. m. s.	0 – C.	S. m. s.	0 – C.	m. s.	pp.	L. m.
Colombo Kodaikanal Calcutta Perth Bombay	E. N. E.	24.6 28.2 29.2 31.0 36.6	$294 \\ 300 \\ 333 \\ 157 \\ 308$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+ 5 PP + 6 PP - 3	i 11 34 i 10 55 11 38 i 12 49	SS - 3 +12 - 4	$i \begin{array}{cccc} & 7 & 5 \\ i \begin{array}{cccc} 7 & 5 \\ 12 & 10 \\ & 7 & 58 \\ 15 & 23 \end{array}$	PPP SS PPP SS	$10.0 \\ 15.1 \\ 13.8 \\ 15.1 \\ 15.1 \\$
New Delhi Dehra Dun Nake Miyazaki Kumamoto	N.	$40.0 \\ 40.8 \\ 41.1 \\ 44.8 \\ 45.0$	325 328 38 37 35	i 7 37k e 6 56 e 7 58 8 8 e 8 20	-1-49+11-9+1	i 13 37 e 13 9 14 33	$-\frac{7}{47}$ $-\frac{7}{22}$	e 15 24		$\begin{array}{r} 18.7\\19.1\\23.6\\ \hline \end{array}$
Hukuoka Zinsen Koti Hamada Osaka		45 · 5 46 · 6 47 · 2 47 · 3 49 · 9	34 27 37 34 37	$     \begin{array}{r}       9 & 19 \\       e & 10 & 25 \\       e & 8 & 37 \\       8 & 33 \\       8 & 42 \\       8 & 42 \\     \end{array} $	$+56 \\ PP \\ + 1 \\ - 4 \\ - 15$	e 15 7 18 27 14 49 16 3	+ 2 SS - 4	e 18 32		e 29·3
Andijan Nagano Stalinabad Tokyo Cen. Met. Vladivostok	Obs	$51 \cdot 9$ $52 \cdot 1$ $52 \cdot 1$ $52 \cdot 4$ $53 \cdot 5$	$331 \\ 36 \\ 327 \\ 39 \\ 27$	$     \begin{array}{r}       9 & 7 \\       6 & 9 & 15 \\       i & 9 & 15 \\       e & 11 & 9 \\       e & 9 & 22 \\     \end{array} $	- 5 + 1 + 1 PP - 2	i 16 27 e 16 28 16 38	$-\frac{8}{-\frac{14}{-19}}$	12 13	PPP i	i 20·3
Tashkent Brisbane Riverview Sydney Sendai	N.	53 · 8 53 · 9 54 · 5 54 · 6 54 · 8	330 122 130 130 38	i 9 23 i 9 31 i 9 39k e 10 17 e 9 35	- 3 + 4 + 7 PeP + 1	16 53 i 17 5 i 17 18 e 17 14 17 13	-87+38+4+1	i 17 22		1 27·0 25·5
Mizusawa Irkutsk Tananarive Sapporo	E. N.	55.5 55.5 55.6 55.6 58.2	$37 \\ 37 \\ 250 \\ 33$	e 17 24 e 17 18 e 9 50 e 9 47 9 59	\$ \$ +10 + 7 + 1	(e 17 24) (e 17 18) 17 23 17 32 18 2	$- \begin{array}{c} 0 \\ - \\ - \\ + \\ + \end{array}$	 1 <u>7</u> _41	PPS e	(25.9) (25.9) 24.1 25.3
Ksara Christchurch Auckland Wellington Arapuni		72.6 73.4 73.9 74.6 74.8	307 135 128 132 129	$\begin{array}{r} e \ 11 \ 38 \\ 11 \ 42 \\ 14 \ 35 \\ \hline \end{array}$	+ 7 + 6 PP	$egin{array}{cccc} e & 21 & 3 \\ 21 & 14 \\ 21 & 18 \\ 21 & 25 \\ 19 & 53 \end{array}$	+ 79877	$2\overline{6}$ 5 $2\overline{5}$ 53 ?	ss ss e	$36.5 \\ 32.4 \\ 38.0 \\ 35.9$
Helwan Moscow Focsani Bacau Bucharest		75·4 79·0 82·1 82·5 82·6	302 329 317 318 315	i 11 44k 12 5 e 11 539 e 12 599 e 12 25	$-31 \\ -31 \\ +33 \\ -1$	21 23 21 56 e 20 597 e 22 38 i 22 39	-10 -10 -4 -4	e 12 11  e 12 33	P _c P 	40·9
Cernauti Sofia Belgrade Kalossa Ogyalla		83.6 84.3 86.7 87.9 88.6	319 313 315 317 318	e 12 27 e 12 35 e 12 41 e 12 48 e 13 9	$- \frac{4}{0}$ $- \frac{6}{5}$ + 13	e 22 45 e 22 53 e 23 23 e 23 35 23 48	$= \frac{8}{710} + \frac{8}{100}$	e 16 10 e 23 20 e 13 16	PP e SKS PcP	54·2
Upsala Prague Triest Potsdam Cheb		$90.3 \\ 91.3 \\ 91.5 \\ 92.3 \\ 92.6$	$330 \\ 320 \\ 315 \\ 322 \\ 320$	e 16 41 e 13 6 e 13 23 ? e 16 55	$\frac{PP}{-4} + \frac{10}{PP}$	e 23 27 e 23 27 i 23 36 i 24 19 e 24 25	$\begin{bmatrix} - & 7 \\ - & 13 \\ [ - & 5 ] \\ [ - & 5 ] \\ + & 4 \\ + & 7 \end{bmatrix}$	e 23 52 i 24 13 52	skks e	$43 \cdot 9$ $46 \cdot 9$ $44 \cdot 9$ $46 \cdot 9$ $51 \cdot 9$
Florence Jena Chur Milan Stuttgart	Е. Е.	93·1 93·1 94·4 94·7 94·7	314 320 316 315 319	e 13 21 e 13 21 e 13 27 e 13 27 e 13 22	+ 4 + 4 + 4 - 2	i 24 43 e 24 17 e 23 52 24 35 e 24 40	$+21 \\ - 5 \\ [-6] \\ - 1 \\ + 4$	e 13 47 e 24 6 5 e 13 26	$\frac{P_{e}P}{P_{e}P}$ e	
Zürich Neuchatel Bergen Besançon De Bilt		95·1 96·2 96·5 96·8 97·1	317 317 331 317 322	e 13 21 e 25 3 i 13 41		(e 25 3) e 24 537 e 24 8 1 25 3	+15 + 2 + 2 + 2 + 7 + 7	 i 24 16		50·2 43·9

Continued on next page.

1.1

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

198

	Δ	Az. P.	0 – C.	336 C 1962		pp. L. m.
Uccle Paris Kew Aberdeen Tortosa	97.7 99.1 100.6 100.7 N. 101.2	o m. s. 320 e 14 14 318 i 17 49 321 e 13 54 328 e 23 33 310 e 14 10	5. +36 PP + 3 i +16	m. s. e 24 58 e 24 22 [ e 25 24 i 25 31 23 22	s. m. s. -3 e 17 37 -1] $-1-1$ e 24 31 +5 i 24 31 +3 (e 27 53)	PP e 40.9 e 46.9 SKS e 40.9 SKS e 47.6
College Stonyhurst Almeria Scoresby Sund Granada	$101.5 \\ 101.5 \\ 103.9 \\ 104.2 \\ 104.8$	324 i 20 16 307 e 18 25 343 e 18 14	PPP PP PP	e 24 21 [ i 25 26 24 46 [ e 25 40 27 55	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	SKKS e 45.2 e 51.9 PPS 51.4 SKS e 40.1 - 1 53.3
Toledo San Fernando Sitka Ivigtut Victoria	104.8 106.9 109.8 118.3 120.6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	PP [-9]	e 28 38 e 36 22 e 25 531 [	$\begin{array}{c} - & - \\ - & - \\ - & - \\ - & - \\ + & 1 \end{array} \begin{array}{c} - \\ - & - \\ - & - \end{array} \begin{array}{c} - \\ - & - \\ - & - \end{array} \begin{array}{c} - \\ - & - \\ - & - \end{array} \begin{array}{c} - \\ - & - \\ - & - \end{array} \begin{array}{c} - \\ - & - \\ - & - \end{array} \begin{array}{c} - \\ - & - \\ - & - \end{array} \begin{array}{c} - \\ - & - \\ - & - \\ - & - \end{array} \begin{array}{c} - \\ - & - \\ - & - \\ - & - \end{array} \begin{array}{c} - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - &$	$ \begin{array}{c} - & 57.9 \\ 54.4 \\ 59 & 645.1 \\ - & 651.1 \\ - & 57.9 \end{array} $
Saskatoon Berkeley Bozeman Tinemaha Logan	$125.9 \\ 126.9 \\ 128.9 \\ 130.0 \\ 131.2$	44 e 20 43 29 e 21 16 42 e 19 13	$PP \\ PP \\ PP \\ [+ 1] \\ [+ 5]$	the second se	$ \begin{array}{c} - & e & 23 & 22 \\ - & e & 32 & 23 \\ e & 32 & 23 \\ \mathbf{SKP} & e & 24 & 11 \\ \mathbf{SKP} & e & 24 & 11 \end{array} $	PPP e 60.1 PPS e 55.0 PPP e 49.8
Mount Wilson Pasadena Salt Lake City Riverside Seven Falls	z. 131.6 131.6 131.8 z. 132.2 136.2	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{bmatrix} - & 7 \\ + & 2 \end{bmatrix}$ SKP $\begin{bmatrix} + & 5 \end{bmatrix}$	i 22_46	$\begin{array}{ccc} \mathbf{SKP} & \mathbf{i} & 19 & 23 \\ \mathbf{sKP} & \mathbf{e} & 21 & 39 \\ \mathbf{SKP} & \mathbf{\overline{}} \\ \mathbf{SKP} & \mathbf{\overline{}} \\ \mathbf{SKP} & \mathbf{\overline{}} \\ \mathbf{SS} & \mathbf{\overline{}} \end{array}$	$\begin{array}{c} \mathbf{PKP} & \mathbf{e} & 60 \cdot 4 \\ \mathbf{PP} & \mathbf{e} & 60 \cdot 4 \\ \mathbf{-} & 6 & 64 \cdot 5 \\ \mathbf{-} & 57 \cdot 9 \end{array}$
Tucson Ottawa Chicago Florissant Pittsburgh	$137.8 \\ 138.3 \\ 140.9 \\ 143.0 \\ 143.2$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	[+1] PP SKP [+1] PP	e 29 53	$ \begin{array}{c} \mathbf{SKP}\\(+42)\\ \mathbf{SKP}\\ \mathbf{SKP}\\ \mathbf{i} 30 34 \end{array} $	$\begin{array}{c} & e & 62 \cdot 2 \\ & e & 60 \cdot 9 \\ & e & 56 \cdot 3 \\ & e & 62 \cdot 6 \\ & e & 71 \cdot 4 \end{array}$
St. Louis Philadelphia Bermuda Columbia La Paz San Juan Huancayo	143 · 2 143 · 6 148 · 8 149 · 5 158 · 0 161 · 4 164 · 4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{bmatrix} - & 9 \\ PP \\ [+ & 3] \\ ? \\ 1 \\ [+ & 6] \\ [+ & 5] \\ PP \end{bmatrix}$	e 23 20 e 42 21 e 43 0	$\begin{array}{c} SKP & = & = \\ SKP & e & 35 & 51 \\ SS & = & = \\ +39 \\ +39 \\ +39 \\ PPS & e & 24 & 32 \\ PPS & e & 24 & 35 \\ \end{array}$	

Additional readings :.

Calcutta ePP = 6m.54s.

```
Perth SSS = 13m.18s.
Bombay iE =7m.32s. and 7m.45s., PPE =8m.31s., PPPE =8m.54s., iE =9m.55s.,
    12m.57s., 13m.32s., and 14m.7s., SSSE =15m.57s., ScSE =17m.4s.
New Delhi PPP = 9m.29s., P_cPN = 9m.58s., iN = 15m.16s., SS = 16m.6s., i = 17m.11s.
Tokyo SPN =12m.36s., ePeP =14m.0s., SSN =18m.1s., ScSN =21m.53s.
Riverview iE =17m.57s., iSSE =21m.15s., iZ =21m.52s.
Mizusawa L's given as S's.
Tananarive SS = 21m.26s.
Christchurch PP = 14m.56s., SSS = 30m.1s., Q = 31m.53s.
Wellington SSS = 30m.38s., Q = 31m.53s.?
Helwan PPZ = 14m.38s., eN = 21m.48s.
Bucharest iPE = 12m.29s., iPPE = 15m.29s., eE = 22m.9s.
Belgrade e = 25m.57s.
Ogyalla eSE = 23m.268.
Upsala iE = 24m.32s., eSSN = 29m.53s.?, eE = 31m.53s.?. eSSS?N = 35m.53s.?.
Florence ePPE =16m.45s., ePPPE =19m.20s., iSKSE =23m.53s., isS =25m.27s.,
    iPSE = 25m.46s.
Jena eEN = 24m.23s.
Stuttgart ePPZ =17m.5s., eSKS =23m.56s., eSS =31m.11s.?.
De Bilt iPS =26m.16s., eSS =31m.53s.?, eSSS =35m.53s.?.
Uccle eE = 24m.10s., and 32m.44s.
Kew ePPZ =18m.38s., eSKKSZ =25m.12s., eSKKSN =25m.30s., eSIEZ =26m.44s.,
    eZ = 27m.30s. and 31m.42s., eSSIZ = 32m.36s.I.
Aberdeen iE = 25m.21s., eE = 32m.57s.
Tortosa eN =17m.2s.
College eSS = 32m.16s.
Stonyhurst 21m.21s. and 23m.59s.
Almeria pP=18m.58s., sP=19m.15s., SKKS=29m.1s., Sf=29m.6s., SS=35m.51s.,
    SSS = 40m.24s.
Scoresby Sund e = 19m.54s., eSS = 33m.0s.
```

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

# 1943

# 199

Granada PP = 20m.8s., PS = 29m.33s., PPS = 30m.53s., SS = 35m.23s.Toledo i =18m.32s. Sitka e = 22m.13s., ePS = 27m.35s. Berkeley eZ = 22m.28s. Logan e = 30m.34s.Pasadena eSSZ=37m.29s.?. Salt Lake City e = 41m.46s.Tucson e = 19m.35s, and 35m.0s. Chicago e = 30m.24s. and 36m.30s. St. Louis iZ =19m.38s., eN =43m.52s. Philadelphia e = 31m.36s. and 43m.24s. Bermuda e = 30m.51s. La Paz  $iPKP_2Z = 21m.2s., PPP? = 29m.2s.$ San Juan e = 32m.11s., 44m.49s., and 52m.33s. Huancayo e = 30m.34s. and 33m.51s. Long waves were also recorded at Honolulu, Ukiah, Clermont-Ferrand, Marseilles, and Edinburgh.

1

÷.

June 7d. Readings also at 0h. (near Andijan), 1h. (Columbia and near Tashkent), 3h. (Bogota and La Paz), 6h. and 7h. (near Bogota), 13h. (Riverview, Kodaikanal, Calcutta, and Tashkent), 15h. (Fresno), 18h. (Guadalajara, Puebla, Vera Cruz, and Tucson), 19h. (Ottawa, Pittsburgh, St. Louis, Bozeman, Salt Lake City, Haiwee, La Jolla, Mount Wilson (2), Pasadena (2), Tucson, Palomar (2), Riverside (2), Santa Barbara, Tinemaha (2), and Sitka), 21h. (Bogota), 23h. (Tucson, Mount Wilson, Pasadena, Riverside, and Tinemaha).

June 8d. 1h. 15m. 27s. Epicentre 33°.7N. 36°.0W.

Epicentre 65°N. 90°W. (stations of the U.S.S.R.).

 $A = + \cdot 6745, B = - \cdot 4900, C = + \cdot 5523; \delta = +9; h = +1;$  $D = - \cdot 588, E = - \cdot 809; G = + \cdot 447, H = - \cdot 325, K = - \cdot 834.$ 

	Δ	Az.	Р.	0 – C.	s.	0 – C.	Sur	p. 1	L.
	•	•	m. s.	8.	m. s.	8.	<b>m.</b> s.	1. Sec. 1. Sec	n.
Lisbon	22.2	70	5 1	+1	8 59	- 1	57	P	
Halifax	23.9	307	e 5 22	+ 6	e 9 45	+15		- 12	
Bermuda Son Formanda	24.0	276	0 5 18	+ 1	e 9 46	+14		— e 10	1 C C C C C C C C C C C C C C C C C C C
San Fernando Toledo	24 · 5 26 · 2	76 68	e 5 18 e 5 33	<u> </u>	1071026	$^{+27}_{+17}$	5 56	PP 11	.0
101000	20.2	00	60.00	- 0	10 20	<b>T1</b>	0 00	rr .	
Granada	26.5	73	i 5 33	- 8	i 10 21	+ 7	9 11	PcP -	
Almeria	27.5	74	69	+19	i 10 59	+29	9 12	$P_cP$ 13	
Ivigtut	28.6	348	e 6 3	+ 3	e 10 40	- 8		— e 12	•6
Harvard	29.2	299	i 5 59	- 6					1
Seven Falls	29.5	309	e 5 59	9	e 10 57	- 5	e 13 517	SSS 15	•6
Tortosa	29.7	66	6 22	+12	10 37	- 29	7 11	PP 11	.7
San Juan	30.9	249	e 6 48	+28	e 11 50	+26	a transferrer	- e 13	
Stonyhurst	31.0	40	6 26	+ 5	11 17	- 9	13 29	SSS -	
Edinburgh	31.7	37			11 1	-36			
Kew	31.7	45	e 6 22	- 5	e 11 32	- 5	e714	PP e 12	•6
Reykjavik	31.7	12	10 4	8	i 11 36	- 1	12 54	SS e 13	.8
Philadelphia	31.8	294	e 6.36	+ 8			e 9 10	9 e 13	
Clermont-Ferrand	32.1	57	e 6 26	- 5	e 11 43	0		— e 15	
Paris	32.3	51	e 6 28	- 5	i 11 41	- 5	e 7 26	PP 13	
Ottawa	32.5	305	e 6 40	+ 6	e 11 43	- 6		- 15	•6
Aberdeen	32.8	35	i741	+64	i 11 43	-11	i14 3	SSS i 18	.3
Uccle	33.9	47	e 6 44	- 3	i12 8	- 3	e 7 53	PP e 13	
Besançon	34.3	55	e 6 49	- 1	e 12 15	- 2		- 14	and the second se
De Bilt	34.7	45	16 53	- 1	i 12 17	- 7		e 14	.6
Neuchatel	34.9	54	e 6 47	- 8	1000 B				-
Basle	35.4	54	e7 0	0	i12 33	- 1			-
Strasbourg	35.7	52	e7 3	+ 1	i 12 36	- 3	8 29	PP e 16	.6
Zürich	36.1	54	e7 1	- 4	e 12 38	- 7			
Milan	36.4	58 52	i7 9 e7 5	+ 1 5	i 12 46 e 12 52	- 4	—	PP e 17	•3
Stuttgart	36.6	52	e75	5	e 12 52	- 1	e 8 22	PP e 17	•0

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

200

		Δ	Az.	P.	0 – C.	S. m. s.	0 – C. s.	m. s.	op.	L. m.
Chur Columbia Scoresby Sund Florence Bergen		36·7 37·2 37·6 37·7 37·8	$     \begin{array}{r}                                     $	m. s. e 7 13 e 8 54 e 6 54 i 7 20 e 7 8	$^{B.}$ + 3 PP - 24 + 1 - 12	e 13 20 e 12 57 i 13 27	$+18 \\ -11 \\ +17 \\ -11$	$e \frac{8}{8} \frac{26}{43}$	PP PP	e 16.3 e 15.8 e 14.8 e 15.6
Jena Cheb Potsdam Triest Prague		$38.4 \\ 38.8 \\ 39.5 \\ 39.5 \\ 40.1$	49 50 47 57 51	e 7 24 e 7 37 e 7 337 i 7 337 e 7 40	$   \begin{array}{c}     - & 1 \\     + & 9 \\     - & 1 \\     - & 1 \\     + & 1   \end{array} $	e 13 20 13 27 e 13 33? i 13 33 e 13 47	$+ 1 \\ + 4 \\ - 4 \\ + 1$	e 8 57 e 8 41 i 9 17 e 9 0	PP PP PP	e 16.6 e 18.6 e 15.6 e 18.6 e 16.6
Chicago Ogyalla Kalossa Upsala St. Louis		$41 \cdot 1 \\ 42 \cdot 5 \\ 43 \cdot 1 \\ 43 \cdot 4 \\ 43 \cdot 5$	$298 \\ 54 \\ 56 \\ 37 \\ 294$	e 7 55 e 7 33 i e 8 0 (e 7 57) e 7 58	$^{+ 8}_{- 26}$ $^{- 4}_{- 9}$ $^{- 9}_{- 9}$	 e 14 34	2	e 9 39 e 8 3? e 8 15 (e 10 33?) i 8 17	PP P PPP P	e 17.0 e 21.6 e 22.6 (e 20.6) e 17.9
Florissant Belgrade Sofia Bucharest Saskatoon	N.	43.6 44.3 46.6 48.3 52.8	294 59 61 58 314	e 8 16 e 8 35 e 8 397 e 9 217	+ 3 + 3 + 3 + 6 + 2	e 14 47 e 14 45 e 15 23 i 15 48 e 16 49	+ 93 + 32 + 32 + 32	i 14 54 e 8 48	PS P	e 23.8 22.1 23.6 25.6
Moscow Helwan Bozeman Logan Salt Lake City		$53.9 \\ 56.5 \\ 57.0 \\ 58.7 \\ 59.1$	43 74 308 303 302	9 34 e 9 45 e 10 52 e 10 20 e 10 13	+7 +62 +18 +9	$\begin{array}{cccc} 16 & 57 \\ 17 & 41 \\ e & 17 & 48 \\ e & 18 & 2 \\ e & 18 & 9 \end{array}$	-54 + 54 + -2	e 11 54 e 13 1 e 17 36	PP PP ₽	e 27 · 8 e 24 · 2 e 29 · 8
Tucson Victoria Tinemaha Riverside Mount Wilson	z. z. z.	$61.5 \\ 64.1 \\ 65.1 \\ 65.8 \\ 66.2$	292 313 300 297 297	e 10 18 e 10 33? e 10 37 e 10 53 e 10 48	- 3 - 5 - 8 4 4	e 19 21 ?	+ 7	e 12 44 i 10 59 i 11 0	PP P P	e 25·1 32·6
Pasadena Sitka Ukiah College Tashkent Andijan Tananarive		66 · 3 66 · 9 67 · 8 68 · 5 78 · 6 80 · 8 95 · 1	$297 \\ 325 \\ 304 \\ 335 \\ 49 \\ 48 \\ 109 \\$	e 10 53 e 13 29 e 19 3 e 13 36 e 12 32 e 12 32 23 20	+ 1 PP ? PP + 3 + 15	e 19 45? e 19 53 e 20 10 e 21 25? 29 22	$+ \frac{3}{4}$ + $\frac{2}{-37}$ - $\frac{37}{8}$	i 11 6 e 24 10  42 27	P SS 	e 32.9 e 32.9 e 33.7 e 32.7 44.8

```
Additional readings :—
Lisbon SN = 7m.23s. The true S reading was wrongly identified as L.
Toledo SN =9m.11s. The true S reading was wrongly identified as L.
Granada pP = 5m.51s., sS = 10m.55s.
Almeria PP =6m.53s., PPP =7m.9s., Q =11.6m., SSS =12m.29s.
Stonyhurst S = 8m.34s., SSS = 11m.49s., S_cS = 12m.56s., phases wrongly identified.
Uccle eSN = 11m.578.
Strasbourg eS = 12m.27s., SS = 14m.46s.
Stuttgart eSS=15m.11s., eQ=15.8m
Scoresby Sund e =10m.2s.
Florence iPPPE =9m.11s., iSSE =15m.39s., iSSSE =16m.28s.
Jena ePNZ = 7m.33s.
Potsdam iSE = 13m.40s.
Chicago e = 10m.34s.
Ogyalla eE = 9m.38.1
Upsala readings have been increased by 3 minutes.
St. Louis iZ = 8m.20s.
Belgrade e = 11m.41s. and 19m.32s.
Bucharest iPPE = 10m.40s., eSN = 15m.43s., iS<sub>c</sub>SE = 18m.32s., iSSE = 18m.59s.
Helwan eZ = 10m.45s., SSN = 23m.47s.
Tucson ipP =10m.37s., e =17m.4s.
Mount Wilson i=11m.5s.
```

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

### 1943

26

#### 201

L.

m.

9.5

June 8d. 20h. 42m. 38s. Epicentre 3°.0S. 102°.0E. Epicentres 3°S.,  $102^{\circ} \cdot 5E$ . (U.S.C.G.S.); 0°, 98°E. (stations of the U.S.S.R.). A = -.2076, B = +.9768, C = -.0520;  $\delta = -6$ ; h = +7; D = +.978, E = +.208; G = +.011, H = -.051, K = -.9999. 0 - C.0 – C. Р. s. Supp. AZ. Δ m. s. 8. m. s. 8. m. s. Colombo 24.2 294 i 5 18 Kodaikanal 27.7 300 i 5 12 a -40+245 40 i 9 57 E.

Calcutta Hyderabad Perth	E. N. E.	27.7 28.7 30.9 31.6	300 333 312 157	1 5 1 5 (6 6	12 a 57 k 28) 27	-40 - 4 + 8 + 1	$ \begin{array}{r} 1 9 57 \\ 1 10 12 \\ (11 31) \\ 11 37 \end{array} $	$^{+24}_{-38}$ + 7 + 2	i 6 25 (7 27) 7 7	PP PP PP	$12.2 \\ (15.9)$
Bombay New Delhi Nake Miyazaki Hukuoka	E.	$36.0 \\ 39.4 \\ 40.9 \\ 44.6 \\ 45.2$	308 325 38 37 34	e 7 i 7 e 7 8	4 31 k 46 14 37	$     \begin{array}{c}             - 1 \\             - 2 \\             - 2 \\           $	$     \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$+ 5 \\ + 9 \\ - 1 \\ + 11$	8 32 8 59	PP PP - e	17.5 20.9 18.8
Zinsen Koti Hamada Kobe Nagoya		$46 \cdot 3 \\ 47 \cdot 0 \\ 47 \cdot 1 \\ 48 \cdot 8 \\ 50 \cdot 2$	27 37 34 37 38	e 8 e 8 e 8	29 35 25 46 59	$ \begin{array}{r} 0 \\ 0 \\ -10 \\ -3 \\ -1 \end{array} $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$     \begin{array}{r}       0 \\       - 1 \\       - 5 \\       - 3 \\       - 46     \end{array} $			
Osima Stalinabad Nagano Yokohama Tokyo Cen. Met.	Ob.	$51 \cdot 4$ $51 \cdot 5$ $51 \cdot 9$ $52 \cdot 0$ $52 \cdot 2$	$     \begin{array}{r}       40 \\       327 \\       36 \\       39 \\       39 \\       39 \\       39 \\       39 \\       39 \\       39 \\       39 \\       39 \\       39 \\       39 \\       39 \\       39 \\       39 \\       39 \\       39 \\       39 \\       39 \\       39 \\       39 \\       39 \\       39 \\       39 \\       39 \\       39 \\       39 \\       39 \\       39 \\       39 \\       39 \\       39 \\       39 \\       39 \\       39 \\       39 \\       39 \\       39 \\       39 \\       39 \\       39 \\       39 \\       39 \\       39 \\       39 \\       39 \\       39 \\       39 \\       39 \\       39 \\       39 \\       39 \\       39 \\       39 \\       39 \\       39 \\       39 \\       39 \\       39 \\       39 \\       39 \\       39 \\       39 \\       39 \\       39 \\       39 \\       39 \\       39 \\       39 \\       39 \\       39 \\       39 \\       39 \\       39 \\       39 \\       39 \\       39 \\       39 \\       39 \\       39 \\       39 \\       39 \\       39 \\       39 \\       39 \\       39 \\       39 \\       39 \\       39 \\       39 \\       39 \\       39 \\       39 \\       39 \\       39 \\       39 \\       39 \\       39 \\       39 \\       39 \\       39 \\       39 \\       39 \\       39 \\       39 \\       39 \\       39 \\       39 \\       39 \\       39 \\       39 \\       39 \\       39 \\       39 \\       39 \\       39 \\       30 \\       30 \\       30 \\       30 \\       30 \\       30 \\       30 \\       30 \\       30 \\       30 \\       30 \\       30 \\       30 \\       30 \\       30 \\       30 \\       30 \\       30 \\       30 \\       30 \\       30 \\       30 \\       30 \\       30 \\       30 \\       30 \\       30 \\       30 \\       30 \\       30 \\       30 \\       30 \\       30 \\       30 \\       30 \\       30 \\       30 \\       30 \\       30 \\       30 \\       30 \\       30 \\       30 \\       30 \\       30 \\       30 \\       30 \\       30 \\       30 \\       30 \\       30 \\       30 \\       30 \\       30 \\       30 \\       30 \\       30 \\       30 \\       30 \\       30 \\       30 \\       30 \\       30 \\       30 \\       30 \\       30 \\       30 $	i 9 e 9 9 9	$     \begin{array}{r}       7 \\       8 \\       11 \\       48 \\       24 \\     \end{array} $	-2 -1 +35 +9	16 25 16 27 e 16 40	$-\frac{3}{-\frac{8}{-1}}$		E PP e	33·5 24·2
Tashkent Vladivostok Brisbane Sendai Irkutsk	N.	$53 \cdot 2 \\ 53 \cdot 2 \\ 54 \cdot 4 \\ 54 \cdot 6 \\ 55 \cdot 1$	330 27 122 38 2	i 9 9 1 9 9 9 9	24 23 31 31 46	$^{+2}_{+10}$ $^{-1}_{+10}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	+ 4 - 5 - 3 + 6	i 20 25	ss i	28.2
Riverview Sydney Mizusawa Tananarive	E. N.	$55 \cdot 1$ $55 \cdot 1$ $55 \cdot 3$ $55 \cdot 3$ $55 \cdot 5$	$130 \\ 130 \\ 37 \\ 37 \\ 250$	19 e9 e9 e9	35 a 52 31 35 43	-1 + 16 - 7 - 3 + 4	i 17 20 i 17 22 17 30 17 25 17 29	+ 2 + 4 + 9 4 + 5	e 23 34 ?	Q e e PP	$26.7 \\ 24.5 \\ 24.4 \\ 24.5 \\ 26.3$
Sapporo Sverdlovsk Ksara Christchurch		$56.9 \\ 58.0 \\ 68.4 \\ 72.1 \\ 73.9$	34 33 337 307 135	9 9 e 10 e 11 11	54 56 58 27 % 40	+ 5 - 18 - 18 + 1	18 5 i 19 51 e 20 58 21 8	$+\frac{8}{-16}$ + 8 - 2	i 18 23  14 48	PPS e	30·8 25·8 34·5
Johannesburg Auckland Helwan Wellington Arapuni		74·3 74·5 74·8 75·1 75·3	244 128 302 132 129	i 21 11 11 11 e 13	28 33 40 46 22 ?	S 9 - 9 4 0	(i 21 28) 21 17 21 22 21 22 21 17 21 223	$+13 \\ + 27 \\ + 7 \\ - 4$	$   \begin{array}{r}     21 & 32 \\     14 & 31 \\     26 & 17   \end{array} $	ScS PP SS	35·4 39·4 36·4 32·4
Tuai Moscow Istanbul Focsani Bacau		76.6 78.4 79.2 81.6 82.0	130 329 312 317 318	12 12 12 e 12 e 12	2 5 0 34 ? 34 ?	$^{+ 8}_{+ 18} \\ ^{- 8}_{+ 13} \\ ^{+ 11}$	21 34 21 50 21 56 e 22 39 e 22 37	$-6 \\ -10 \\ -12 \\ + 6 \\ 0$	29 40	sss	$51 \cdot 3$ 39 \cdot 4 40 \cdot 4
Bucharest Campulung Cernauti Sofia Belgrade		$82.1 \\ 83.0 \\ 83.0 \\ 83.7 \\ 86.1$	315 316 319 313 315	e 12 e 12 e 12 e 12 e 12	40% 32 32	-5+12+4 +40-3	1 22 38 e 22 42 i 22 48 e 22 50	- 5 + 1 + 1 + 4	1514 -2824 -2824 -24		34 · 4 38 · 4 43 · 4 34 · 8 47 · 8
Kalossa Ogyalla Upsala Prague	N. E. N.	87 ·4 88 ·0 89 ·7 89 ·7 90 ·7	317 318 330 330 320	e 12 13 e 13 e 13 e 13	$\begin{array}{c} 14\\9\\19\end{array}$	-3 + 21 + 8 + 18 + 10	23 31 23 48 e 23 56 e 23 52 e 23 56	$^{+1}_{+12}$ + 4 - 5	e 24 19 e 16 35 e 17 9 e 24 34 i	PS e PP e	47.9 44.4 42.4 43.4 36.4

Continued on next page.

6.1

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

#### 1943

 $\mathbb{P}_{i}(\mathbf{r})$ 

10.0

202

	Δ	Az. P. . m. s.	0 – C. s.	S. 0-C. m. s. s.	m. s. L.
Triest Potsdam E. Cheb Copenhagen Florence	90.9 91.7 92.0 92.2 92.6	$\begin{array}{c} 315 & \mathbf{e} \ 13 \ 11 \\ 322 & \mathbf{e} \ 13 \ 22 \\ 320 & \mathbf{e} \ 13 \ 22 \\ 326 & 13 \ 17 \\ 314 & 1 \ 13 \ 28 \end{array}$	+ 4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Jena Chur Milan Stuttgart Zürich	92.6 93.9 94.1 94.1 94.5	320e1322316e1316315e1323319e1317317e1323		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Strasbourg Neuchatel Basle Bergen Besançon	95.0 95.6 95.7 95.9 96.3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+7 -3 +1 +9	e 24 5 $[+4]$ e 24 8 $[+4]$ e 24 36 $-8$ 24 17? $[+11]$ e 24 28 $\{+1\}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
De Bilt Marseilles Uccle Clermont-Ferrand Paris	96.6 96.9 97.2 98.3 98.5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$^{+10}_{PS}$ $^{0}_{+12}$ $^{+11}_{+11}$	i 24 52 0 i 24 56 $-1$ i 24 53 $-13$ e 24 23 $[+3]$	i 24 22 SKKS e 40.4 i 31 42 SS 40.7 e 25 57 1 45.6 41.4
Barcelona Kew Aberdeen Honolulu Tortosa E.	$\begin{array}{r} 99.4 \\ 100.0 \\ 100.2 \\ 100.6 \\ 100.7 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	PP +11 + 5 PP 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Stonyhurst Edinburgh College Almeria Scoresby Sund	$100.9 \\ 101.0 \\ 101.2 \\ 103.4 \\ 103.7$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\mathbf{PP}_{-30}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Granada Toledo San Fernando E. Reykjavik Lisbon	$104.2 \\ 104.2 \\ 106.4 \\ 106.9 \\ 108.3$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+14 ? PS	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Sitka Ivigtut Victoria Seattle Ferndale	109.5 117.7 120.3 121.4 124.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Contraction of the second s	$ \begin{array}{c} e & 25 & 47 \\ e & 25 & 25 \\ 36 & 51 \\ \hline \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Ukiah Saskatoon Berkeley Santa Clara Bozeman	$125.4 \\ 125.5 \\ 126.7 \\ 127.2 \\ 128.6 \\$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	9 [-14] PP	e 26 23 [+16] 1 32 36 PPS e 38 31 SS	e 37 44 SS e 51.2 e 38 10 SSP 53.4 i 21 14 PP e 69.9 e 21 13 PP e 53.8
Tinemaha Z. Santa Barbara Z. Logan Pasadena Z. Mount Wilson Z.	129.8 130.2 130.9 131.4 131.5	42 i 19 12 45 e 19 12 33 e 19 14 45 i 19 15 45 e 19 14	$\begin{bmatrix} i & 0 \\ 0 \end{bmatrix}$ $\begin{bmatrix} i & 0 \end{bmatrix}$ $\begin{bmatrix} + & 1 \end{bmatrix}$	$\begin{array}{c} - & - & - \\ e & 26 & 30 & [+ & 8] \\ e & 31 & 50 & PS \\ e & 31 & 50 & PS \\ e & 31 & 50 & PS \end{array}$	e 32 2 PS — e 38 37 SS e 53·3 e 21 41 PP e 57·4 i 22 41 SKP —
Salt Lake City Riverside z. Palomar z. Seven Falls Shawinigan Falls	$131.6 \\ 132.1 \\ 132.8 \\ 135.6 \\ 136.4$	34 e 19 20 45 e 19 14 45 e 19 14 352 19 36 354 e 21 58	$\begin{bmatrix} - & 2 \\ + & 1 \\ + & 1 \end{bmatrix}$	<u>40</u> 988	e 43 55 SSS e 53.0 e 31 43 PS — e 32 0 PS — e 32 0 PS — e 22 221 PP 56.4 e 40 461 SSP 63.4
Halifax Rio de Janeiro E. Tucson Ottawa La Plata E. N.	$137.6 \\ 137.7 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.8 \\ 137.$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} PP \\ [-10] \\ [-2] \\ [+38] \end{array}$	e 40 10? SS 1 23 3 PKS 26 34?[-1] 23 4 PKS 23 16? PKS	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Continued on next page.

1.1

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

208

		Δ	Az.	P.	0-C.	s.	0 – C.		pp.	L.
Lincoln Vermont Harvard Weston Chicago		$     \begin{array}{r} & \circ \\ 138 \cdot 7 \\ 139 \cdot 3 \\ 140 \cdot 2 \\ 140 \cdot 3 \\ 140 \cdot 4 \\ \end{array} $	$\hat{20} \\ 354 \\ 352 \\ 352 \\ 352 \\ 12$	m. 8. e 22 35 e 22 37 e 19 33 19 38 e 22 28	$\begin{array}{c} \mathbf{PP} \\ \mathbf{PP} \\ [+ 2] \\ [+ 7] \end{array}$	m. s. e $27$ 30 e $41$ 2 e $40$ 47	8. [+52] SS	m. s. e 34 35 23 9 i 23 20	PPS SKP	т. е 64.7 і 61.7 е 76.4 е 55.5
Fordham Florissant New Kensington Pittsburgh St. Louis		$\begin{array}{r} 142 \cdot 1 \\ 142 \cdot 6 \\ 142 \cdot 6 \\ 142 \cdot 7 \\ 142 \cdot 8 \end{array}$	$\begin{array}{r} 353\\16\\2\\16\\16\end{array}$	e 19 39 e 19 35 18 58 i 19 42 e 19 32	$ \begin{array}{c}     1 \\     7 \\     7 \\     7 \end{array} $	$\begin{array}{r} e & 42 & 14 \\ e & 23 & 343 \\ e & 42 & 17 \end{array}$	PSS PKS PSS	e 22 42 1 19 43 e 28 583 i 23 22 i 19 46	PF PKP PKKP SKP PKP	e 64.5
Philadelphia Cape Girardeau Bermuda Columbia La Paz	E.	$143.1\\144.2\\148.2\\149.0\\158.3$	$355 \\ 15 \\ 338 \\ 5 \\ 206$	e 19 47 e 19 44 e 19 50 e 20 0 20 0	[+6] + 14]	i 41 28 i 42 17 e 26 28 26 46	SS [-24] [-17]	e 22 45 e 23 0 i 20 8	PP PF PKP	e 60.3 e 61.5 e 67.6 66.4
Fort de France San Juan Huancayo Balboa Heights Bogota		159.7 160.8 164.8 173.8 175.6	14	e 20 7 e 20 14 e 20 15 e 20 22 e 20 16	(+9) (+11)	e 26 59 e 27 0	[=6] 	e 24 57 1 24 40 e 26 2	PP PP PP	e 67 ·2 e 63 ·0
Additional read Calcutta iN Hyderabad I Perth PPP =	=81 PeP =7m	m.9s., i E = (9m)	1.198.)	), $iE = (1 2m.57s.$	3m.40s.).		been a	dded to al	l readi	ngs.
Bombay iE SSE =1: New Delhi P S ₀ SEN = Tokyo PN =	5m. PPP = 16	188. = 9m.2 m.598.	7s., P	$_{c}P = 9m.$	49s., iS =	13m.31s.,	ssn =	16m.2s., S	SS =16	3m.24s.

Belgrade  $iP_cP = 12m.59s.$ , ePPS = 24m.22s., i = 24m.34s. and 30m.11s.Kalossa PN = 12m.52s., PE = 13m.7s.Ogyalla ePPN = 17m.14s., eN = 25m.12s.Upsala eE = 17m.54s., ePPPN = 18m.53s., ePPPE = 18m.59s., eSKS = 23m.33s..PS?E = 24m.22s., eSSN = 29m.41s., eSSE = 29m.45s.,eSSSN = 33m.22s.? eSSS!E = 34m.22s.?, eN = 37m.22s.?, eE = 38m.22s.?.Cheb ePS = 24m.40s.Copenhagen 24m.50s. Florence iPPE = 16m.53s., iPPPE = 19m.15s., iPSE = 25m.40s., iSSE = 30m.47s. Jena ePN =13m.27s., eZ =14m.41s., eN =15m.9s., 15m.53s., and 24m.9s., eE = 36m.22s.? and 36m.52s.?, eN = 37m.22s.,?, eEN = 38m.52s.?. Stuttgart iZ =13m.33s., e =25m.6s., eSP =25m.50s., ePPS = 27m.27s., e =28m.56s., eSS = 31m.22s., eQ = 47.4m.Zürich PS = 24m.46s. Strasbourg ePP = 17m.41s., ePPS = 27m.9s.Bergen iZ = 17m.37s., SS = 30m.42s., SSS = 35m.17s.? De Bilt eE = 22m.52s., iE = 27m.42s., eSS = 31m.42s., eSSS = 36m.22s.Uccle eZ = 16m.16s., iE = 27m.48s. and 32m.31s., iN = 35m.14s., iE = 36m.38s. Aberdeen iE = 37m.58s., iN = 40m.1s.Kew ePPEZ =18m.27s., ePPPNZ =19m.55s., eSKKSEN =24m.59s., ePSE =26m.35s., eSSN = 30m.37s., eSSE = 30m.59s., eSSSN = 36m.7s. Honolulu e = 26m.1s. and 31m.38s., eSS? = 33m.41s., e = 34m.23s. Tortosa PSE = 25m.47s., Q = 43m.33s.Stonyhurst i = 23m.23s. and 25m.13s., iS = 26m.8s., i = 26m.16s. College e = 18m.1s., ePS = 26m.47s., e = 37m.20s., and 40m.5s.Almeria PKP =17m.56s., PP =18m.55s., PPP =21m.50s., i=22m.50s., SKKS = 25m.53s., PPS = 28m.49s., SS = 33m.30s.Scoresby Sund e =16m.53s., 22m.34s., and 31m.36s. Granada S = 27m.4s., PPS = 28m.12s., SS = 33m.18s.Toledo e = 17m.38s., SS? = 35m.56s.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

### 1943

 $\mathbf{204}$ 

```
San Fernando PKP?E =19m.15s., SPS?E =31m.22s.

Lisbon PKPE =18m.36s., PKPZ =19m.2s., SKSN =26m.1s.

Sitka e = 21m.40s., eSKS? = 25m.40s., e = 27m.35s., 1 = 34m.42s., e = 41m.35s.

Ivigtut eSS = 37m.35s., eSSS = 41m.28s., e = 49m.29s.

Victoria eN = 23m.38s., S = 28m.21s., SSS = 40m.28s.?.

Ukiah e = 47m.5s.

Saskatoon e = 46m.22s.?.

Berkeley iN = 21m.20s. and 42m.8s., iZ = 60m.13s.

Bozeman e = 24m.13s. and 32m.41s., eSSS = 43m.19s.

Logan iPKS? = 22m.54s., e = 30m.46s. and 33m.37s., eSSS = 43m.26s.

Pasadena iSKPZ = 22m.42s.

Salt Lake City e = 19m.27s.

Seven Falls PPS = 34m.40s.?, e = 49m.58s.?.
```

Rio de Janeiro ePN = 22m.54s. Tueson i = 22m.55s., e = 25m.59s. and 27m.34s., ePS = 31m.50s., ePPS = 33m.10s.e = 41m.8s. and 45m.38s.Ottawa e = 30m.10s.?, PPS = 34m.34s..?, SS = 40m.28s.?, SSS = 46m.4s.?. La Plata E 20m.58s.?, 28m.22s., SSS? =45m.34s., and 54m.28s. La Plata N PP? =21m.34s., SKS =29m.40s.Lincoln e = 36m.29s. and 41m.48s. Vermont e = 29m.38s., 39m.1s. and 47m.16s. Chicago e = 29m.17s. and 37m.34s., i = 40m.51s., e = 44m.26s. Fordham e = 20m.19s. New Kensington e = 43m.52s.? and 61m.28s?. St. Louis eN =39m.45s. Philadelphia i = 24m.36s., iSKS? = 27m.45s., i = 30m.26s., e = 32m.46s., 35m.58s., and 40m.25s., eSSS = 47m.2s.Cape Girardeau eE = 20m.45s. and 25m.47s. Bermuda e = 29m.16s., 37m.24s., and 50m.54s. Columbia e = 33m.8s. and 35m.13s.La Paz iPKP₂Z = 20m.54s., iSKPZ = 23m.47s., iPP?Z = 24m.58s., SKKS? = 31m.10s., PSKSN = 34m.52s., SSN = 44m.47s., SSSN = 51m.22s. San Juan e = 30m.29s., 35m.12s., and 44m.6s., eSS? = 46m.37s., e = 52m.51s.Huancayo i = 24m.40s., e = 34m.35s., ePKPPKP? = 43m.59s., e = 46m.12s. and 55m.32s. Bogota  $eP_cP_i = 20m.46s.$ ,  $eS_i = 26m.30s.$ , e = 29m.22s. and 32m.42s.

June 8d. Readings also at 0h. (Paris and near Bogota), 1h. (Stonyhurst, Barcelona, and Toledo), 4h. (near Berkeley and near Irkutsk), 11h. (near Berkeley), 12h. (Branner), 14h. (Helwan, near Ksara, Stuttgart, and near Ebingen), 18h. (Stuttgart, Fort de France, near La Paz, La Plata, Mount Wilson, Palomar, Pasadena, Riverside, Tinemaha, and Tucson), 19h. (Tashkent), 20h. (near St. Louis).

June 9d. 3h. 6m. 15s. Epicentre 1°.2S. 101°.0E.

	$\mathbf{A} = -\mathbf{\cdot}$ $\mathbf{D} = +\mathbf{\cdot}$			·9814, C 191;		$\delta = \frac{\delta}{04}, \ H = -$	-2; 020, K	$\begin{array}{c} h = +7 \\ = -1 \cdot 000 \end{array}$		
Colombo Kodaikanal Calcutta Perth Isigakizima	E. N.	∆ 22.6 26.0 26.6 33.6 33.9	Az. 291 298 333 157 40	P. m. s. i 5 6 i 5 10 e 5 32 6 50 e 6 46	a + 3 - 26 - 10	S. m. s. (9 21) 9 40 i 10 52 13 13 12 15	0-C. s. +14 -26 +36 PeS + 4	m. s. 10 39 16 42 8 20	pp. SS PPP PPP	L. m. 9·4
Bombay New Delhi Naha Kagosima Miyazaki	Е.	$34.1 \\ 37.4 \\ 37.5 \\ 43.0 \\ 43.8$	307 325 41 38 39	i 6 51 i 7 16 e 7 21 e 8 2 8 10	+ 4	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	+ 1 - 5 Pe ² + 8	8 13 8 17 		17·1 18·6
Hukuoka Zinsen Heizyô Hamada Muroto		44.3 45.2 46.0 46.2 46.4	$36 \\ 28 \\ 32 \\ 36 \\ 40$	8 15 e 8 21 8 47 e 8 28 i 8 18	+ 2 + 1 + 20 + 20 - 12	$15 54 \\ 15 56 \\ 15 23 \\ 15 18$	$+53 \\ PPS \\ + 8 \\ 0$			
Kobe Nagoya Stalinabad Frunse Misima		48.0 49.4 49.4 49.9 50.6	39 40 327 335 41	e 8 41 8 55 (1 8 55 (e 8 59 9 2	+ 2 + 2 + 2	15 41 16 25 (i 16 3) 16 8	$     \frac{9}{+3} $ $     -9 $			

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

205

۲

÷2.

	÷	\$	Az.	m.	1000	0 – C. s.	S. m. s.	0 – C. s.	m. s.	pp.	L. m.
Nagano Yokohama Tokyo Cen. Met. O Vladivostok Irkutsk	эь.	$51.1 \\ 51.3 \\ 51.5 \\ 52.1 \\ 53.4$	40 42 41 29 3	9 9 6 9 (9 (9	8 23 13) 46)	$+ 2 \\ 0 \\ + 14 \\ - 1 \\ + 22$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$PS + 50 P_cS - 17 + 6$	10 22	P _c P	17·2
Sendai Mizusawa Tananarive Mori Brisbane N	я.	$53.8 \\ 54.4 \\ 55.2 \\ 56.0 \\ 56.2$	$39 \\ 38 \\ 248 \\ 35 \\ 123$	e 9 9 (9 e 9	25 16 39 44) 13	$-11 \\ -15 \\ +21 \\ +31 \\ -31$	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	+ 4 - 1 + 4 PPS - 17	1712 1130 12120	PS PP SS (e	24·3 25·3 29·3) 28·4
Riverview Sydney Sapporo Sverdlovsk Ksara		$57.0 \\ 57.0 \\ 57.0 \\ 66.3 \\ 70.2$	$131 \\ 131 \\ 34 \\ 338 \\ 306$	i 9 e 9 e 10 (1 10 e 11	45 a 57 1 46) 20	-5+7+11 +-6+3	i 17 32 18 7 e 20 39	-11 PPS $+\overline{11}$	i 11 51 e 13 3 i 11 1 	PP PPP e PeP	27.0 28.5 25.0
Helwan Johannesburg Christehureh Auckland Moscow		$73 \cdot 1$ 74 · 2 75 · 9 76 · 3 76 · 4	301 243 135 128 329	(11) $(11)$ $(11)$ $(11)$	32 391) 47 5 50)	$   \begin{array}{c}     - & 2 \\     - & 1 \\     - & 3 \\     + & 13 \\     - & 3   \end{array} $	$\begin{pmatrix} 21 & 0 \\ i & 21 & 15 \\ 21 & 24 \\ 21 & 35 \\ (21 & 34) \end{pmatrix}$	(3) = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 =	(1 12 21?) 26 22 22 10	) PP PeP i SS ScS	32·3 37·2 36·7
Wellington Arapuni Istanbul Tuai Focsani		77.0 77.2 77.2 78.5 79.6	$132 \\ 129 \\ 313 \\ 130 \\ 317$	e 15 11 12 e 12	58 457 35 18 15	+ 2 + 22 + 14 + 5	21 33 20 27 21 35 21 48 e 22 21	-12 -12 -13 +9	$\begin{array}{r}12 & 25\\ e & 23 & 9\\ 28 & 45\\ e & 12 & 33 \end{array}$		37 · 8 37 · 8 50 · 7
Bacau Bucharest Campulung Cernauti Sofia		80.0 80.1 81.0 81.0 81.8	318 316 316 319 313	e 12 i 12 e 12 e 12 e 12	11 18 18	-12 -20 +1	e 22 19 1 22 20 e 22 28 e 22 20 e 22 20 e 22 28	+ 22 + 17 - 7	e 12 16 1 12 16	PeP PeP = e	33.8 34.8 34.8 34.2
Belgrade Kalossa Ogyalla Apia Upsala	N.	84 · 1 85 · 4 86 · 0 87 · 0 87 · 7	$315 \\ 316 \\ 317 \\ 104 \\ 330$	e 12 12 12 e 23 e 12	49 46 57	-1 +9 +3 -6	22 59 23 12 23 24 (e 23 57 23 32	+ 1 + 1 + 7 + 30 + 30 - 7	$\begin{array}{cccccccc} i & 12 & 36 \\ 24 & 1 \\ e & 26 & 24 \\ e & 13 & 9 \end{array}$	PS e	42.8 38.8 38.8 45.7 35.8
Prague Triest Cheb Copenhagen Florence		88.7 88.9 90.0 90.2 90.6	$320 \\ 316 \\ 320 \\ 325 \\ 314$	12 i 12 e 13 e 13 e 13	7	$+ 1 \\ + 1 \\ + 3 \\ + 3 \\ + 3$	e 23 22 1 23 23 e 23 40 23 54 1 24 1	$ \begin{bmatrix} - & 2 \\ - & 3 \\ - & 2 \\ - & 2 \\ + & 1 \end{bmatrix} $	$\begin{array}{r} - \\ e & 37 & 3? \\ 23 & 15 \\ i & 13 & 25 \end{array}$	— e	35.8 43.8 47.8 36.8
Jena Chur Milan Stuttgart Zürich	Е.	$90.6 \\ 91.9 \\ 92.1 \\ 92.1 \\ 92.5$	321 317 315 319 317	i 13 e 13 e 13 e 13 e 13	4 8 16 9 11	-13 + 34 + 33 - 33	i 24 4 e 23 42 i 23 46 e 24 13 e 24 18	$ \begin{array}{c} + & 4 \\ [- & 2] \\ [+ & 1] \\ + & 1 \\ + & 1 \end{array} $	e 23 36 	SKS e	40·8 45·4 38·3
Strasbourg Basle Neuchatel Bergen Besançon		93.0 93.2 93.6 93.9 94.3	319 317 317 330 317	e 13 e 13 e 13 13 e 15	19 16 17 18 55	+ 21 - 23 - 39	e 24 23 e 24 26 e 23 46 e 24 27 e 23 58	+ 2 + 3 [-7] - 2 [+1]	$e 17 34 \\ e 16 48 \\ e 13 47$	PP PeP e	37·8 43·8 37·8
De Bilt Marseilles Uccle Clermont-Ferrand Paris		94.5 94.9 95.1 96.4 96.5	322 313 321 315 318	e 13 e 13 e 13 i 13	26 32	$-\frac{2}{0}$	$egin{array}{cccc} { m e} & 24 & 31 \\ { m e} & 25 & 45 \\ { m i} & 24 & 34 \\ { m e} & 24 & 7 \\ 24 & 50 \end{array}$	$   \begin{bmatrix}     - & 3 \\     PS \\     - & 5 \\     [ - & 2] \\     - & 1   \end{bmatrix} $	i 24 1 i 13 54 e 19 38 e 24 9	SKS e PeP SKS e	37·8 39·8
Barcelona Kew Aberdeen Tortosa Edinburgh		97 ·4 98 ·0 98 ·1 98 ·7 98 ·9	$312 \\ 322 \\ 327 \\ 311 \\ 326$	e 15 i 13 i 14 e 13	7 41 12 55	$+ \frac{2}{+32} + \frac{32}{+13}$	$egin{array}{cccc} 26 & 25 \\ 1 & 25 & 9 \\ 25 & 9 \\ 25 & 14 \\ 24 & 22 \end{array}$	PS + 5 + 5 + 4 [ 0]	e 17 32 20 8	PP e	40·1 44·8 44·9 49·5

Continued on next page,

æ

1.00

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

206

		Δ	Az.	P. m. s.	0 – C. s.	S. 0-C. m. s. s.	Supp. m. s.	L. m.
Stonyhurst College Honolulu Almeria Scoresby Sund		98.9 100.0 100.8 101.5 101.7	324 24 68 307 343	e 14 15 e 16 53 e 14 49 e 14 4 e 13 55	+32 + 57 + 57 + 9 - 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	i 26 29 PS e 17 57 PP e 27 28 PS	0.000
Granada Toledo San Fernando Reykjavik Lisbon	E.	$102.3 \\ 102.3 \\ 104.5 \\ 104.9 \\ 106.4$	308 310 307 338 310	i 13 58 e 17 20 e 15 3 31 51 18 2	-1 + 55 ? [-24]	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	24       42       SK8         i       17       53       PP         20       20       20       PPI         e       33       391       SSI         18       45       PP	58·7 54·3
Sitka Ivigtut Victoria Seattle Saskatoon		$108.4 \\ 115.7 \\ 119.4 \\ 120.5 \\ 124.2$	$28 \\ 343 \\ 32 \\ 32 \\ 20 \\ 20 \\ 31 \\ 20 \\ 32 \\ 20 \\ 32 \\ 32 \\ 32 \\ 32 \\ 32$	e 16 0 e 19 25 e 20 6 e 20 54 22 45	PP PP PP	e 25 22 $[+17]$ e 27 35 $\{+25\}$ 26 $3?[-1]$		- e 45·9 - 50·8 - e 38·6
Ukiah Berkeley Santa Clara Bozeman Tinemaha		$124.8 \\ 126.1 \\ 126.6 \\ 127.5 \\ 129.2$	$41 \\ 42 \\ 42 \\ 27 \\ 40$	e 18 58 i 19 13 e 20 47 e 21 12 e 19 12	$\begin{bmatrix} - & 4 \\ + & 8 \end{bmatrix}$ PP PP [+ 2]	e 31 4 PS e 31 33 PS e 22 33 PKS	e 20 40 PP i 20 58 PP e 38 33 SS	- KO 4
Santa Barbara Logan Salt Lake City Mount Wilson Pasadena	z.	129.6130.0130.7130.9130.9	44 31 32 43 43	e 19 16 e 19 17 e 19 34 e 19 14 i 19 14	$[ + 5] \\ [ + 5] \\ [ + 21] \\ [ 0] \\ [ 0] \\ [ 0] \end{bmatrix}$	i 22 37 PKS i 31 59 PS e 22 38 PKS i 22 38 PKS i 22 38 PKS i 22 32 PKS	e 21 35 PP e 31 51 PS i 21 36 PP	e 53.8 e 55.7 e 52.3
Riverside La Jolla Seven Falls Shawinigan Falls Halifax		$131.5 \\ 132.2 \\ 133.7 \\ 134.5 \\ 134.6$	43 44 352 353 344	e 19 13 e 19 20 e 19 33 e 19 45 e 21 45	[+25]	i 22 34 PKS i 22 41 PKS e 22 38 PKS e 22 51? PKS e 39 45? SS	e 40 0 SSI e 44 459 SSS	- 56·8
Ottawa Vermont Tucson Lincoln Des Moines		$135.9 \\ 136.6 \\ 137.0 \\ 137.4 \\ 137.7 \\$	357 354 41 19 15	$\begin{array}{cccc} 19 & 21 \\ e & 20 & 8 \\ e & 19 & 17 \\ e & 22 & 53 \\ e & 23 & 5 \end{array}$	[- 2] [- 8] PKS PKS	22 457 PKS e 27 16 7 e 26 13 [-21] e 41 11 SSP e 26 53 [+18]		65.8 e 56.5 e 54.6 e 58.5 e 51.0
5.000 A A A A A A A A A A A A A A A A A A	E. N. Z.	$138 \cdot 3$ $138 \cdot 4$ $138 \cdot 8$ $139 \cdot 0$ $139 \cdot 0$ $139 \cdot 0$ $139 \cdot 0$	$351 \\ 351 \\ 10 \\ 207 \\ 207 \\ 207 \\ 207$	e 19 29 19 17 e 22 14 20 27 16 15 23 2	[+2] [-11] PP [+58] PKS	e 23 1 PKS 32 39 PS 23 333 1 23 9 PKS	e 22 53 PP 23 0 PKS e 40 32 SS 40 457 SS 19 457 PKI	e 58·4 56·8
Fordham New Kensington Pittsburgh Florissant St. Louis	z.	$140.3 \\ 140.8 \\ 140.9 \\ 141.2 \\ 141.3 \\$	$352\\1\\14\\14$	e 19 25 e 21 51 e 19 43 e 19 26 e 19 37	$ \begin{bmatrix} - & 6 \\ ? \\ [+11] \\ [-7] \\ [+4] \end{bmatrix} $	1 23 17 PKS	i 23 8 PK8 e 41 91 SS i 22 36 PP e 22 36 PP	e 62.6
Philadelphia Cape Girardeau Bermuda Columbia Fort de France	E.	$141.3 \\ 142.8 \\ 146.2 \\ 147.3 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.8 \\ 157.$	$353 \\ 13 \\ 337 \\ 3 \\ 306$	e 20 5 e 19 55 e 19 35 e 19 52 e 20 15	[+32] [+20] [-6] [+9] [+17]	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		e 60·2
San Juan La Paz Huancayo Balboa Heights		158.8 159.4 166.3 172.3	324 212 196 4	e 20 13 i 20 4 e 20 39 e 20 31	[+14] [+4] [+32] [+20]	$3\overline{1}\ 32\ \{+\overline{23}\}\$	e 24 25 PP i 21 14 PKP e 45 6 SS	1 75.8

Additional readings :---

Perth PPP = 8m.45s.

Bombay iE =7m.8s., and 7m.31s., PcPE =9m.17s., iE =11m.32s.

New Delhi  $P_cP = 9m.41s.$ , SSN = 15m.22s., SSE = 15m.43s. Stalinabad, Frunse, Vladivostok, and Irkutsk readings have been reduced by 30m. Tananarive PPP = 12m.45s., SS = 20m.52s.

Mori readings reduced by 1 minute.

Brisbane iQN = 24m.30s.

Riverview iE =12m.57s., iNZ =17m.35s., Q?N =24m.13s.

Sydney e =19m.51s.?.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

# 1943

# 207

Sverdlovsk reading reduced by 30 minutes. Helwan PPPN =15m.50s. Johannesburg readings reduced by 10 minutes. Christchurch i =23m.25s., Q =31m.45s. Auckland i =22m.35s. and 24m.35s., Q? =31  $\cdot$ 8m., PKP,PKP =41m.45s.?. Moscow readings reduced by 30 minutes. Wellington iZ =14m.17s., Q =31  $\cdot$ 8m. Arapuni e =26m.3s., Q? =30  $\cdot$ 8m. Bucharest ipPE =12m.43s., iPPEN =15m.19s., iPSEN =22m.57s., eSSE =27m.22s. Belgrade iPcP =13m.2s., iPP =16m.18s., iPS =24m.4s., e =35m.3s. Kalossa SE =23m.8s. Upsala ePP?E =16m.45s.?, eSKSN =23m.17s., SE =23m.37s., eE =25m.13s., eSSE =

29m.45s.?, eSS?N = 30m.45s.?, eSSSE = 32m.45s.?. Cheb e = 13m.40s.Florence iPPPE =19m.51s., iSKSE =23m.37s., iSE =24m.24s. Jena iP = 13m.8s., eN = 23m.45s.?, eE = 31m.15s.?, eN = 31m.45s.?, and 36m.24s., eZ = 36m.278.?.Stuttgart ePPZ =17m.11s., eSKS =23m.13s., eSPZ =26m.3s., eSS =31m.15s. Strasbourg e = 19m.59s., eSKS = 23m.46s., PS = 26m.1s.Bergen ePP = 17m.5s., eZ = 17m.33s., eE = 21m.58s., SKS = 23m.52s., eSS = 30m.38s. De Bilt ePS = 25m.45s.?, eSS = 30m.45s.?. Uccle eZ = 16m.2s., eE = 20m.21s., iSKSE = 24m.3s., iE = 25m.27s., iSSE = 31m.51s., iN = 34m.46s.Clermont-Ferrand ePS = 26m.46s., ePPS = 27m.28s.Kew ePPPN =19m.28s.?, iSKS =24m.18s., iSKKSEZ =24m.40s., iPSEN =26m.18s., eSSN = 30m.50s.?, eSSSNZ = 34m.45s.?, eQEN = 39.8m. Aberdeen iEN = 28m.47s., iN = 38m.57s.Tortosa SKSE = 24m.22s., PSE = 26m.32s., QN = 41m.25s Stonyhurst P = 14m.25s., SKS? = 24m.15s., iPS = 27m.13s., iPPS = 28m.13s., SS = 32m.18s., SSS = 35m.18s., Q = 42m.25s. College e = 22m.21s., 26m.14s., and 30m.11s., eSS = 32m.28s., e = 39m.10s. Honolulu e = 19m.51s., eSS = 32m.1s., e = 38m.4s.Almeria ePKP? =17m.23s., PPP =20m.56s., SKKS =25m.10s., PS =27m.14s., SS = 32m.45s., Q = 43m.24s.Scoresby Sund e = 14m.7s., eSKS? = 24m.49s.Granada PP =17m.43s., PPS = 26m.53s., SS = 33m.18s., SSS = 40m.30s., Q = 47.8m. Toledo SS? = 38m.23s.San Fernando PS?E = 31m.39s.Lisbon N =18m.14s., PPZ =18m.22s., N =19m.32s. and 22m.25s., SKSE =24m.55s., iPSE = 27m.9s., SSN = 33m.21s., E = 34m.26s., N = 44m.51s.?. Sitka e = 20m.43s. and 26m.58s., eSS? = 33m.5s., e = 37m.3s. Ivigtut e = 20m.57s., 27m.36s., and 33m.59s., eSS = 41m.5s. Victoria eN = 22m.2s., e = 32m.10s.Seattle e = 26m.54s. Saskatoon SS = 35m.56s. Ukiah e = 32m.2s., 35m.33s., and 36m.58s. Berkeley iPN = 20m.33s., iN = 23m.22s. Bozeman e = 33m.38s., 43m.51s., and 49m.17s.

Logan e=24m.41s., ePS=30m.19s., ePKP,PKP?=39m.53s., eSSS=41m.35s., e= 45m.55s. Salt Lake City e = 34m.17s., eSSS = 43m.46s.Mount Wilson iZ = 19m.34s., eSKKPZ? = 31m.55s. Seven Falls e = 33m.1s. Shawinigan Falls e=38m.9s.?. Ottawa PPS = 34m.3s., SS = 40m.15s., SSS = 45m.45s.?. Vermont ePS = 31m.28s., e = 45m.58s. Tucson e=19m.55s., i=20m.8s., 25m.1s., and 27m.34s., e=30m.18s., iPS=33m.15s., e = 34m.24s. and 36m.54s., ePKP,PKP = 40m.32s., e = 46m.54s. Des Moines e = 37m.41s. and 44m.21s. Chicago e=33m.23s., eSSS=44m.30s., e=45m.53s. La Plata SKKSN = 25m.45s.?, E = 35m.15s., SSSN = 43m.45s.?. Fordham i = 31m.18s. New Kensington e = 31m.15s.?, and 37m.27s.?. Florissant iPPPZ = 25m.43s. Philadelphia i=23m.44s., e=25m.55s., i=31m.19s., e=42m.37s. Cape Girardeau ePPE = 23m.49s. Bermuda e=24m.15s., 41m.50s., and 53m.18s. Columbia e = 31m.51s. and 45m.7s. San Juan e = 22m.40s., 27m.52s., 39m.30s., and 43m.11s. La Paz iZ=23m.6s., iPPZ=25m.2s., PSKSZ=35m.26s., SSN=45m.51s., SSSN= 51m.53s. Huancayo i = 26m.14s. and 28m.11s., e = 33m.0s. Long waves were also recorded at Rio de Janeiro, Ferndale, and Montezuma,



These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

# 1943

#### 208.

June 9d. 4h. Undetermined shock.

Pasadena suggests probably Tonga region. Depth 600 kms. Apia iP = 6m.9s., iS? = 7m.50s.Wellington P = 8m.5s., S = 11m.21s.,  $S_cS = 18m.9s.$ Santa Barbara iPNZ =14m.57s. La Jolla eP = 15m.1s. Mount Wilson iP =15m.1s.k, iZ =15m.48s., eZ =17m.8s. Pasadena iP = 15m.2s.k, eZ = 17m.10s. Riverside iP = 15m.4s., iEZ = 17m.10s. Palomar iPZ =15m.58.k. Tinemaha iP = 15m.11s.k, iZ = 15m.36s., eZ = 17m.25s. Tucson iP=15m.24s., i=15m.42s., epP=16m.13s., ePP=17m.37s., e=24m.50s., 28m.25s., and 33m.39s. Jena iEN = 22m.36s., iE = 22m.40s.Ksara 22m.37s. Stuttgart eZ = 22m.37s., iZ = 22m.44s., eZ = 22m.54s. Basle eP = 22m.38s.Zürich eP = 22m.38s. Chur eP = 22m.40s.Neuchatel eP = 22m.41s. Strasbourg ePKP = 22m.44s.

June 9d. Readings also at 3h. (Bogota), 5h. (near Branner), 6h. (Rio de Janeiro), 7h. (Paris, Besançon and near Bogota), 8h. (Sofia and Neuchatel), 9h. (Ksara, New Delhi, and near Berkeley (2)), 11h. (near Tashkent) 12h. (New Delhi, Palomar, Tinemaha, Mount Wilson, Tucson, and Riverside), 13h. (near Tashkent), 15h. (New Delhi), 16h. (near Tashkent), 18h. (Tinemaha (2), Riverside, Mount Wilson (2), Pasadena, Palomar, Tucson (2), Huancayo, and La Paz), 19h. (Uccle and Kew), 20h. (La Paz, La Plata, Stuttgart, and Berkeley), 21h. (Huancayo, Tinemaha, Pasadena, Mount Wilson, Riverside, Tucson, Ksara, Granada, and near Stuttgart and Ebingen), 22h. (Fort de France and Stuttgart), 23h. (Fort de France and near Berkeley).

June 10d. 7h. Algiers.

"Annales de l'Institut de Physique du Globe de Strasbourg," 2e partie. Seismologie, vol. VII-VIII, p. 30. Monts des Ksours, felt near Geryville. Epicentre 33°·2N. 0°·0 suggested, but the observed times do not fit.

Tortosa PN = 49m.0s., SN = 50m.40s., LN = 51m.25s. Granada iP = 49m.19s., P* = 49m.37s. and 49m.45s., PgSg = 50m.24s. and 50m.33s., S₂ = 50m.43s. and 51m.1s. Toledo iPZ = 49m.27s., SE = 52m.10s., L = 53m.5s. Almeria Pg = 49m.41s., PgSg = 50m.5s., 50m.10s., and 50m.25s., Sg = 50m.45s., 50m.51s., and 50m.56s. Barcelona e = 49m.47s., eL = 50m.44s. Clermont-Ferrand e = 50m.2s. Paris iP = 50m.40s., e = 54m.27s., L = 55m.30s. Stuttgart ePZ = 50m.43s., eS i = 54m.14s., eL = 55m.12s. Uccle eNZ = 51m.6s., eL = 55m. Jena eEN = 51m.18s. Florence eE = 51m.58s., eLE = 53m.23s. Triest e = 54m.9s. Long waves were also recorded at Cheb, De Bilt, and Kew.

- June 10d. Readings also at 0h. (San Juan, Tucson, Mount Wilson, and Pasadena), 1h. (near Tashkent), 3h. (near Berkeley and near Balboa Heights), 4h. (near Mizusawa), 5h. (Paris, Bogota, near Berkeley, Branner, and Lick), 6h. (near Berkeley), 9h. (Ebingen and Stuttgart), 10h. (Mount Wilson, Tucson, and Riverside), 11h. (Huancayo), 15h. and 17h. (Ksara), 18h. (near Helwan).
- June 11d. Readings at 8h. (Apia, Arapuni, Auckland, Christchurch, Wellington (2), Riverview, Mount Wilson, Pasadena, Riverside, Tinemaha, Tucson, Huancayo, and Stuttgart), 9h. (Chicago, Philadelphia, Paris, Stuttgart, and Granada), 14h. (near Mizusawa), 15h. (near Fresno), 17h. (New Delhi and near Tashkent).



These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

# 1943

#### 209

June 12d. 4h. 20m. 58s. Epicentre 46°.4N. 12°.9E. (as on 1939 April 25d.).

Felt at Tolmezzo and Tarcento (46° 20'N. 13° 15'E.). Epicentre 46°.4N. 13°.1E. "Annales de l'Institut de Physique du Globe de Strasbourg, 2e partie, Seismologie, vols VII-VIII., p. 30.

$$A = + \cdot 6746, B = + \cdot 1545, C = + \cdot 7218; \delta = -5; h = -4;$$
  

$$D = + \cdot 223, E = - \cdot 975; G = + \cdot 704, H = + \cdot 161, K = - \cdot 692.$$
  

$$\triangle Az, P. O - C. S. O - C. Supp. L.$$
  

$$a M. S. S. M. S. S. M. S. M.$$

Trioct

Triest		1.0	142	e v 10	- 0	00 31	- 0			100
Chur		2.4	281	e 0 41	0	e 1 12	0		1	
Ravensburg		2.6	302	e1 8	$P_g$	e 1 21	S.			
Milan	Z.	2.7	250	e 0 54	$\mathbf{P}_{\mathbf{g}}$					
Zürich	5550	3.1	288	e 0 50	- 1	e 1 29	0			
Stuttgart		3.4	316	e 0 54	- 1	e 1 36	- 1	i1 5	Ps	
Basle		3.8	290	e1 2	+ 1	e 1 59	S*	_		*******
Neuchatel		4.1	281	e1 4	- 1	e 1 51	- 4	0.000		
Strasbourg		4.1	305	e1 7	+ 2	e 1 53	- 2	e 1 19	$\mathbf{P}_{\mathbf{g}}$	
Jena		4.6	349	e 1 32	$\mathbf{P}_{\mathbf{g}}$	e 2 0	- 7	e 2 19	S*	i 2.5

Additional readings :— Stuttgart iS =1m.48s., iS = 1m.52s. Strasbourg S* = 2m.7s.?.

June 12d. Readings also at 1h. (near Harvard), 10h. (Triest), 11h. (near Tashkent), 16h (Brisbane, Riverview, Tucson, Wellington, Mount Wilson, Pasadena, Palomar, Riverside, and Tinemaha), 19h. (Tucson), 23h. (Tacubaya).

June 13d. 5h. 11m. 38s. Epicentre 40°.9N. 142°.7E.

Scale VI at Hatinohe, Urakawa, and Aomori ; V at Miyako, Hakodate, Morioka, Obihiro, and Mizusawa ; IV at Sapporo, Sendai, and Onahama ; II-III at Sakata, Shirakawa, Niigata, and Mito. Epicentre 40°.9N. 142°.7E. Shallow. Radius of macroseismic area 300 km.
Seismological Bulletin of Central Meteorological Observatory Japan, for the year 1943. Tokyo 1950, pp. 24, 25, with macroseismic chart.
Pasadena suggests deep focus.

	•		m.	8.	s.		m. s.	8.	m. s.		m.
Hatinohe	0.9	247	0	23k	+ 3		0 36	+ 2			
Miyako	1.4	203	0	28	+ 1		0 49	+ 3	<del></del>		1 <del>- 1</del>
Aomori	1.5	267	0	32k	+ 4	£	0 44	- 5		-	Constanting of the second s
Mizusawa	$2 \cdot 1$	214		40	<b>7</b> 3		1 9	+ 5			-
Sapporo	2.4	335	0	43	+ 2		1 16	+ 4			
Sendai	3.0	208		50	0		1 33	+ 6		—	
Hukusima	3.6	209	0	50	- 8					-	
Onahama	4.2	200	1	6	- 1		1 38	-19		—	
Aikawa	4.5	232		12k	+ 1		2 14	+ 9		—	
Mito	4.8	202	1	17	+ 2		2 35	Sr			
Utunomiya	4.9	208		17	0		2 42	S.			
Kakioka	5.1	204		15	- 5		2 42	S*	. —		
Tukubasan	$5 \cdot 1$	204		17	- 3		2 24	+ 4			/ <b></b>
Maebasi	$5 \cdot 3$	214		24	+ 2		2 47	8.			
Tyosi	5.3	196	1	37	$\mathbf{P}^*$		2 55	Sg			
Nagano	5.5	221	1	27	+ 2		3 2	Sr			
Tokyo Cen. Met. Ob.	5.7	205		28	0		2 35	0			
Yokohama	5.9	204	1	46 36	P*		2 57 3 8	S* S*			_
Hunatu	6.2	211	1	36	+ 1 + 2		38	S*			
Kohu	6.2	213	1	37	+ 2			-			100 C
Misima	6.5	208	1	40	+ 1		3 11	S*			
Osima	6.6	204		39	- 2		2 57	- 1			
Shizuoka	6.8	211	1	46	+ 2		3 8 3 33	+_ 5			
Gihu	7.2	222		56	+7	2	3 33	8* 8*			
Nagoya	$7 \cdot 2$	220	1	56k	+ 7		3 41	8.			

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

210

		^	Az.	P. m. s.	0 – C. s.	m. s.	0 – C. s.	m. s.	pp.	L. m.
Omaesaki Hamamatu Hikone Kameyama Kyoto	Η.	7 ·2 7 ·3 7 ·6 7 ·8 8 ·0	211 214 225 221 225	1 57 2 8 1 56k 2 4 2 4	+ 8 P* + 1 + 6 + 4	3 36 3 57 3 32 3 54 3 45	S* S* + 9 S* +12	=		
Toyooka Osaka Kobe Owase Wakayama		8.2 8.4 8.6 8.6 8.9	$232 \\ 224 \\ 226 \\ 219 \\ 224$	2 10 2 12 2 12a (2 20) 2 17	+7+6+3+11+5	3 52 3 37 3 49 (4 21)	+14 - 6 + 1 S*			
Sumoto Siomisaki Muroto Hamada Koti		9.0 9.3 10.2 10.3 10.3	$226 \\ 219 \\ 224 \\ 238 \\ 228$	$     \begin{array}{cccc}       2 & 17 \\       2 & 26 \\       2 & 34 \\       2 & 32 \\       2 & 35 \\     \end{array} $	+ 49 + 30 + 3	$     \begin{array}{r}             4 & 23 \\             4 & 36 \\             4 & 51 \\             \overline{4} & 51 \\             \overline{4} & 47 \\             \overline{4} & 47 \\             4 & 7         \end{array} $	ss ss ss			
Matuyama Simidu Izuka Hukuoka Kumamoto		$10.6 \\ 11.2 \\ 12.0 \\ 12.2 \\ 12.5$	231 227 237 237 234	$     \begin{array}{ccc}       2 & 24 \\       (2 & 51) \\       3 & 4 \\       3 & 38 \\       3 & 2     \end{array} $	-12 + 7 + 9 PPP 0	$\begin{pmatrix} 4 & 21 \\ (5 & 40) \\ 6 & 4 \\ 6 & 5 \\ 5 & 55 \\ 5 & 55 \\ \end{matrix}$	-16 888 888 888			
Zinsen Dairen Nake Naha Irkutsk		12.9 16.3 16.5 19.3 28.4	$260 \\ 270 \\ 225 \\ 226 \\ 308$	$     \begin{array}{r}       3 & 10 \\       3 & 58 \\       3 & 59 \\       4 & 32 \\       1 & 5 & 55 \\       1 & 5 & 55 \\     \end{array} $	+ 3 6 5 3	5 55 7 11 5 37 8 21	sss ss ss			
College Calcutta Frunse Sitka Sverdlovsk	N.	45.3 48.9 49.5 52.7 53.0	$35 \\ 266 \\ 297 \\ 43 \\ 317$	e 8 18 i 8 54k e 8 54 e 9 16 9 16	-3402 -25	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{-9}{+7}$ -7 PS	$\begin{array}{c} e & 18 & 14 \\ i & 9 & 7 \\ e & 11 & 19 \\ \end{array}$	pP i	$   \begin{array}{r}     18 \cdot 6 \\     23 \cdot 5 \\     21 \cdot 9   \end{array} $
Honolulu Tashkent New Delhi Stalinabad Hyderabad	Е. Е.	53.5 53.7 54.1 55.3 59.4	93 297 279 294 267	e 9 38 i 9 24 i 9 28k i 9 38 i 9 38 10 4	$^{+14}_{-2}$ $^{-1}_{0}$ -2	$\begin{array}{r} e & 17 & 5 \\ i & 17 & 24 \\ i & 17 & 6 \\ \hline 18 & 18 \\ \end{array}$	$\frac{PS}{PPS} + 1 + 3$	$\begin{array}{r} \mathbf{e} \ 13 \ 23 \\ \mathbf{i} \ 11 \ 27 \\ 12 \ 10 \\ 12 \ 21 \end{array}$	PPP e	22·6
Bombay Victoria Seattle Kodaikanal Moscow	E. E.	62.8 63.1 64.2 64.7 64.8	<ul> <li>Comparison Comparison (Comparison)</li> </ul>	i 10 27 10 39 e 11 43 e 10 38) 10 40	-37+64 +64 -3	i 19 1 18 50 e 19 53 (i 19 18)	+ 3 -12 PPS - 3	$   \begin{array}{ccc}     10 & 51 \\     23 & 40 \\     (23 & 53)   \end{array} $	pP SS SS e	29·4 27·0
Colombo Ferndale Ukiah Scoresby Sund Brisbane	N.	$65 \cdot 1 \\ 66 \cdot 9 \\ 68 \cdot 4 \\ 68 \cdot 4 \\ 68 \cdot 7$	57	10 42 e 10 5 e 11 14 e 10 59 i 11 21	$-3 \\ -51 \\ + 8 \\ - 7 \\ +14$	19 27 e 18 52 e 19 57 i 20 2 i 20 13	$     \begin{array}{r}       0 \\       -57 \\       -10 \\       -5 \\       + 3     \end{array} $	e 13 26 i 24 32	PP e	$33.4 \\ 31.7 \\ 27.7 \\ 27.6 \\ 32.9$
Apia Saskatoon Berkeley Upsala Branner	E.	68 · 8 69 · 6 69 · 8 69 · 9 70 · 1	334	$e \begin{array}{c} 11 & 22 \\ e & 11 & 11 \\ 11 & 9 \\ e & 11 & 23 \\ \end{array}$	+ 9- 3- 6+ 7	$\begin{array}{c} \mathbf{e} \ \ 20 \ \ 40 \ \mathbf{i} \\ 20 \ \ 13 \\ \mathbf{i} \ \ 20 \ \ 7 \\ \mathbf{e} \ \ 20 \ \ 15 \end{array}$	PPS - 8 - 16 - 9	24 44 1 13 48	PP e	$31.4 \\ 32.1$
Santa Clara Lick Bozeman Fresno Tinemaha	N.	70.3 70.5 71.6 72.0 72.8	46	i 11 30 e 11 16 e 11 29 e 11 25 i 11 28 a	$+13 \\ - 2 \\ + 4 \\ - 3 \\ - 4$	$\begin{array}{r} e \ 20 \ 25 \\ e \ 20 \ 35 \\ e \ 20 \ 48 \\ e \ 20 \ 54 \end{array}$	$-\frac{4}{-\frac{9}{-\frac{1}{4}}}$	e 14 7	— е	32·4 34·0 30·8
Bergen Haiwee Santa Barbara Logan Salt Lake City	z.	73.2 73.5 73.5 73.7 74.3	340 56 59 49 50	i 11 34 i 11 33 i 11 34 i 11 36 e 11 37	- 1 - 32 - 22 - 4	20 56 e 20 58 e 21 5	$-\frac{6}{-\frac{10}{-10}}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	P PP e	33·4 33·5 31·9

Continued on next page.

20 -

.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

# 1943

211

		Δ	Az.	P. m. s.	0 – C. s.	S. 0-C. m. s. s.	m. s.	p. L. m.
Mount Wilson Pasadena Riverview Sydney Copenhagen		° 74.7 74.7 74.8 74.8 74.9	$58 \\ 58 \\ 173 \\ 173 \\ 334$	i 11 39a i 11 39a i 12 0a e 11 39	-4 -4 +16 -5	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$   \begin{array}{r}     i 14 17 \\     e 25 407 \\     i 25 33 \\     \hline     14 28   \end{array} $	$\begin{array}{c} PP & -1 \\ SS & e & 34 \cdot 1 \\ SS & e & 31 \cdot 4 \\ \hline PP & 33 \cdot 4 \end{array}$
Cernauti Riverside Bacau Palomar La Jolla	z. z.	75·1 75·3 75·9 76·0 76·1	322 58 321 58 59	e 11 42 i 11 41 e 11 51 e 11 47 i 11 47	- 4 - 6 + 1 - 4	$\begin{array}{r} e \ 21 \ 287 \ + \ 4 \\ e \ 21 \ 39 \ + \ 7 \\ \hline \end{array}$	i 11 58	$\stackrel{\mathbf{P}}{=} \begin{array}{c} \mathbf{38 \cdot 4} \\ \mathbf{38 \cdot 4} \\ \mathbf{-} \end{array}$
Focsani Perth Potsdam Campulung	E. N.	76·3 76·3 76·6 77·4 77·7	320 320 204 332 320	e 11 57 e 12 0 21 37 e 11 57 e 12 1	+ 5+ 8- 1+ 1	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	e 14 521	SS 40.7 PP e 34.4 38.4 38.4 38.4 38.4 38.4
Bucharest Aberdeen Ivigtut Prague Ogyalla	E. N.	77.9 77.9 77.9 78.7 78.9 78.9	$319 \\ 342 \\ 6 \\ 329 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ 325 \\ $	e 11 58 12 0 e 12 7 e 12 54 e 11 58 e 12 2	$-3 \\ -1 \\ +6 \\ +48 \\ -9 \\ -5$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	i 14 23 27 4  e 22 221	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Jena Edinburgh Cheb Kalossa Ksara		79.1 79.3 79.5 79.5 79.7	331 342 331 324 306	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$     \begin{array}{r}             - & 4 \\             - & 23 \\             - & 3 \\             - & 1 \\             - & 1       \end{array} $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	e 27 523 14 44 e 22 36 e 22 24	$\begin{array}{ccc} \mathbf{SS} & \mathbf{e} & \mathbf{31 \cdot 4} \\ \mathbf{PP} & \mathbf{-} \\ \mathbf{PS} & \mathbf{e} & \mathbf{42 \cdot 4} \\ \mathbf{PS} & \mathbf{e} & \mathbf{40 \cdot 4} \\ \mathbf{PS} & \mathbf{e} & \mathbf{40 \cdot 4} \\ \mathbf{PS} & \mathbf{-} \end{array}$
Belgrade De Bilt Sofia Tucson Stonyhurst		$     \begin{array}{r}       80 \cdot 2 \\       80 \cdot 3 \\       80 \cdot 4 \\       80 \cdot 5 \\       81 \cdot 0     \end{array} $	$322 \\ 335 \\ 319 \\ 56 \\ 340$	e 12 11 i 12 11a e 12 15 i 12 11 e 12 29	-3-3-4+11	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	i 15 31 e 15 22 i 16 36 e 15 12	PP e 30.3 PP e 30.3 PP 35.4
Stuttgart Uccle Strasbourg Lincoln Kew		$81.7 \\ 81.7 \\ 82.4 \\ 82.4 \\ 82.5$	331 335 332 42 338	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$- 4 \\ - 5 \\ 0 \\ + 19 \\ - 5$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	i 15 40 15 22 e 15 40 e 28 3 i 15 34	PP e 40·4 PP e 42·4 PP 38·4 SS e 37·8 PP e 38·4
Triest Auckland Zürich Chur Des Moines		82.5 82.8 83.1 83.2 83.3	327 156 331 330 38	e 12 21 12 42 e 12 25 e 12 26 e 16 24	$     \begin{array}{r}       - & 5 \\       + 15 \\       - & 4 \\       - & 3 \\       PP     \end{array} $	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	i 29 22 28 221 e 28 32	SS e 35.9 38.4 SS 38.1
Basle Paris Neuchatel Arapuni Milan		83·4 84·0 84·0 84·2 84·5	331 335 331 154 329	e 12 26 a i 12 31 e 12 30 e 18 227 i 12 30	- 4 - 2 - 3 - 6	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrr} 1 \overline{6} & 0 \\ 29 & 227 \\ 33 & 1 \end{array}$	PP 843.4 38.4 SS 42.4
Florence Helwan Chicago Clermont-Ferranc Wellington	1	$85 \cdot 1 \\ 85 \cdot 2 \\ 85 \cdot 9 \\ 86 \cdot 5 \\ 86 \cdot 5 \\ 86 \cdot 8$	$327 \\ 306 \\ 36 \\ 333 \\ 157$	i 12 38 i 12 36k e 12 37 i 12 42 13 3	-1 -3 -6 -4 +16	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	i 12 53 e 15 49 e 16 21 i 16 10 13 18	pP PP PP e 34·9 PP e 40·8 pP 40·6
Florissant St. Louis Seven Falls Shawinigan Falls Ottawa		87 · 1 87 · 3 87 · 4 87 · 4 87 · 5	39 39 23 24 27	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$-3 \\ -4 \\ +10 \\ -3 \\ -5 $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	i 16 26 i 16 7 16 38 28 28 i	$\begin{array}{c} PP & e & 39 \cdot 0 \\ PP & & -1 \\ PP & & 39 \cdot 4 \\ \hline & & 42 \cdot 4 \\ SS & e & 39 \cdot 4 \\ \hline & & SS & e & 39 \cdot 4 \end{array}$
Marseilles Christchurch Cape Girardeau Vermont Pittsburgh	E.	87.8 88.3 88.7 89.1 90.2	$331 \\ 159 \\ 40 \\ 26 \\ 32$	$\begin{array}{ccccccc} e & 12 & 46 \\ & 12 & 47 \\ e & 12 & 52 \\ e & 13 & 6 \\ i & 13 & 1 \end{array}$	- 6 - 8 - 5 + 3	e 23 49 $\begin{bmatrix} -15 \end{bmatrix}$ 22 49 9 1 23 47 + 4 1 23 36 $\{+1\}$ 1 23 49 - 7	16 32 23 29 e 16 13 e 16 34	$\begin{array}{c} - & e & 41 \cdot 4 \\ PP & 40 \cdot 0 \\ SKS & - \\ PP & e & 37 \cdot 8 \\ PP & - \end{array}$
Barcelona Harvard Weston Tortosa Fordham	N.	$90.6 \\ 91.4 \\ 91.6 \\ 91.7 \\ 92.1$	331 25 25 332 27	e 13 22 e 13 5 i 13 7 i 13 7 e 13 9	+17 - 4 - 3 - 2 - 3	e 23 36 [ 0] e 23 58 $\{+6\}$ i 24 15 $+6$ 24 8 $-2$ e 23 43 $[-2]$	e 17 6 6 16 46 16 52 117 2	PP e 39·4 PP e 39·4 PP 42·5 PP 42·4

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943					212					
Philadelphia Toledo Columbia Almeria Granada		∆ 92·4 94·1 95·3 96·3 96·4	Az. 28 334 35 332 333	P. m. s. e 13 12 i 13 18 e 13 47 13 28 13 30	0 - C. - 2 - 4 + 20 - 4 - 2	S. m. s. e 23 41 24 9 e 23 56 24 26 24 42	0 - C. 8. [- 6] $\{- 3\}$ $\{- 7\}$ $\{- 7\}$ $\{- 8\}$	Su m. s. e 16 46 13 45 e 17 32 13 57 13 43	pp. PP PP PP pP	L. m. c 40·9 e 42·5 46·4 45·6
Lisbon Tacubaya San Fernando Bermuda Tananarive	N.	96.7	338 57 335 23 259	13 31 e 13 53 e 13 56 e 17 58	2525	24 31 i 25 27 e 25 50 25 26	$ \{ \begin{array}{c} 0 \\ + 24 \\ + 6 \\ + 6 \\ -10 \} \end{array} $	$ \begin{array}{r} 17 & 27 \\ i & 17 & 50 \\ e & 32 & 48 \\ 28 & 39 \end{array} $	PP PP SS PPS	43·8 46·4 e 49·8 55·2
San Juan Fort de France Bogota Huancayo La Paz		$115.2 \\ 120.0 \\ 123.6 \\ 136.0 \\ 144.0$	$30 \\ 26 \\ 45 \\ 60 \\ 56$	e 19 52 e 19 47 e 19 58 e 19 58 e 19 27 19 37	PP PP PP [+ 4] [ 0]	e 27 34 e 26 42 i 23 12	1 	$\begin{array}{c} e & 29 & 43 \\ e & 22 & 48 \\ e & 40 & 11 \\ 26 & 10 \end{array}$	PS PKS SS PPP	e 46·2 
Rio de Janeiro La Plata	E. E. N. Z.	162.7	16 74 74 74	e 24 47 21 36 20 46 20 16		(e 44 41) 25 18 22 523 24 53	$\mathbf{PP}$	46 28? 44 22?	ssp ss	e 44.7 76.6 78.3 77.4
Additional read Owase read Simidu read College i = Calcutta iF Sitka i = 9n Honolulu e New Delhi Hyderabad Bombay P 23m.33 Victoria e = Kodaikanal Ferndale el Scoresby Su Saskatoon Berkeley el Upsala i = 1 Lick ePN = Bozeman el Tinemaha i	ings lings 15m 15m 15m 15m 15m 15m 15m 15m 15m 15m	decreas decreas 4s. =10m.5 s., e = 1 m.6s. =21m.1 E = 26m 1.14s. E = 26m n.14s. E = (12n) 1.14s. E = 10m.8s e = 16m 8m.12s. 11m.24 56s., PI 1.21s., e 25m.13 = 11m.4	ed by sed b 0s., i 2m.3 9s. .118. 9s. .538. 1.558. 1.558. .18., 9PN = .18., eS 58.	y 4 minut y 4 minut sSN = 160 s. and 190 , PSE = 14 ), all read i = 22m.1 PN = 11m = 15m.55s 1m.34s. SSS = 28m	tes. n.16s., i n.15s., i 8m.38s., m.55s., ings inc 8s., eSS .27s., eS ., eSS = .35s.	SS = 20m. $S_cSE = 19m$ $S_cSE = 19m$ SE = 19m reased by = 24m.20s. SEN = 20m 25m.22s.?	23s. m.39s., 1.25s., 1 1 minut .27s.	$S_cSE = 20n$	n.258.,	SSE =

Bergen 12 = 110.458., 1E = 210.108., SS = 250.498.

Haiwee iEZ = 11m.49s., iEN = 11m.58s.Logan i = 21m.15s., e = 25m.23s. and 29m.17s.Salt Lake City e = 26m.9s.Mount Wilson iZ = 11m.55s. Pasadena iZ =12m.1s. Riverview iSN =21m.21s., i =21m.27s., iEN =25m.54s., N =30m.3s. Copenhagen i = 11m.52s., 14m.40s., 21m.26s., and 26m.16s.?. Palomar iZ = 12m.4s. La Jolla iZ =11m.578., i =12m.7s. Perth S = 31m.7s., SS = 36m.17s., SSS = 38m.40s., phases wrongly identified. Potsdam iSKSIN =21m.56s. Bucharest ePN =12m.9s., iPEN =12m.11s., iN =14m.23s., iE =15m.20s., iN = 15m.24s., iSN = 22m.3s.Aberdeen SSSN = 30m.52s. Jena iPN =12m.16s., eN =22m.22s. Edinburgh eSKS = 21m.57s., PS = 22m.20s., PPS = 22m.38s., SS = 26m.37s., SSS = 26m.37s.29m.37s. Belgrade i = 12m.24s., e = 13m.9s. and 14m.33s. De Bilt eSS = 27m.42s., eSSS = 32m.42s.Tucson i =12m.27s. and 13m.32s., e = 22m.23s., 23m.9s. and 27m.48s. Stonyhurst ePPP=16m.22s.?, iSKS=22m.32s., iScS=22m.42s., iPS=22m.52s., iPPS =23m,12s., SS =26m.48s., SSS =27m.22s. Stuttgart iZ = 12m.28s., ePPP = 17m.34s.?, iS = 22m.42s., eSS = 27m.47s., eQ = 37m.52s., ePKP PKPZ = 39m.10s. Uccle iZ = 12m.30s. and 12m.44s., PPPN = 17m.26s., PPPPN = 19m.0s., SSE = 27m.46s., SSSE = 31m.9s.Strasbourg e = 12m.35s. and 12m.52s., ePPP = 17m.27s. Lincoln e = 32m.16s. Kew ePcPZ=12m.34s.?, iPS=22m.52s., iPPSEN=23m.9s., eSSEN=28m.22s., eSSZ = 29m.26s., eSSS = 30m.52s.?, eQ = 33m.52s.?. Auckland  $Q = 34 \cdot 4m$ .

#### Continued on next page.



**b**1.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

# 1943

# 213

Des Moines iS = 22m.46s. Paris eS = 22m.46s. Arapuni Q = 37 ·4m. Florence iPSE = 23m.39s., iSSE = 28m.37s. Helwan eZ = 13m.37s., SKKSE = 23m.37s., eS = 23m.54s., iE = 24m.13s. Chicago eSS = 28m.38s. Clermont-Ferrand i = 16m.44s. Wellington pPPZ = 16m.32s., i = 22m.47s., sS = 23m.27s., sSS = 29m.7s., SSS = 32m.22s.?, Q = 36m.52s. Florissant iZ = 13m.7s., iSKKSE = 23m.32s., iPS?E = 24m.2s., eSSE = 29m.7s. St. Louis iZ = 13m.9s. and 16m.28s., eE = 22m.28s., eSKSE = 23m.0s., iSKKSE = 23m.0s.

23m.34s. Seven Falls SS = 28m.44s., e = 35m.22s.?. Christchurch PPS = 23m.44s., SS = 28m.30s., Q = 35m.10s. Cape Girardeau eSKS?E = 24m.4s. Vermont e = 18m.12s., i = 25m.12s., eSS = 29m.31s., eSSS? = 33m.46s.Harvard e =13m.25s. and 25m.9s. Weston PS? = 25m.20s., SS = 30m.26s.Tortosa iN =14m.3s., PSN =25m.6s., PPSN =25m.48s., SSN =30m.23s., SSSN = 34m.54s., Q = 37m.53s.Fordham i = 13m.22s, iPPS = 25m.42s,  $iSS_{1}^{2} = 31m.5s$ . Philadelphia e = 19m.5s., iS = 23m.44s., iPPS = 25m.9s., e = 30m.6s.Toledo PP = 17m.20s. Columbia e = 31m.2s. Almeria PP = 17m.19s., pPP = 17m.40s., sPP = 17m.53s., PPP = 19m.18s., pPPP = 19m.39s., SKKS = 23m.57s., pS = 24m.59s., SP = 25m.35s., pPS = 26m.1s., SS = 30m.43s., sSS = 31m.26s., SSS = 34m.37s., PKP, PKP = 38m.37s. Granada sP =13m.57s., PP =17m.7s., pPP =17m.27s., sPP =17m.39s., SKS =23m.51s., sS = 25m.18s., PPS = 26m.57s., SS = 31m.12s., sSS = 31m.48s., Q = 36m.16s.Lisbon PPZ =17m.30s., E =18m.0s., SKSN =24m.18s., SSE =31m.41s., SSN =31m.44s., Z = 33m.4s.?.San Fernando SSE = 31m.43s.Tananarive SS = 34m.23s., iE = 45m.25s. Bogota e = 20m.18s., and 21m.48s.Huancayo e = 23m.23s., 32m.24s., 34m.31s., and 44m.34s. La Paz iPKPZ = 19m.42s., iSKKS = 33m.17s., SSZ = 42m.12s.

June 13d. 5h. 58m. 12s. Epicentre 40°.9N. 142°.7E. (as at 5h. 11m.).

 Scale V at Aomori; IV at Hatinohe, Urakawa, Mizusawa; II-III at Miyako and Hakodate. Epicentre 40°.9N. 142°.7E., shallow. Radius of macroseismic area 300 km.
 Seismological Bulletin of Central Meteorological Observatory, Japan, for year 1943. Tokyo 1950, pp. 25, 26, with macroseismic chart.

A AZ D = 0 = C Supp

	$\Delta$	AL.	г.	0 - 0.	<b>.</b>	$\mathbf{U} - \mathbf{U}$ .	Sul	op.
	•	0	m. s.	8.	m. s.	8.	m. s.	
Hatinohe	0.9	247	0 22	+ 2	0 38	+ 4		_
Miyako	1.4	203	0 25a	- 2	0 43	- 3		
Aomori	1.5	267	0 31k	$+ \bar{3}$			-	
Mizusawa E	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	214	0 39	+2	1 6	+ 2		
Sapporo	2.4	335	0 42	÷ĩ	1 15	$^{+2}_{+3}$		
Suppord	~ *	000	U IN	_ <b>1</b> ▲	1 10	τv	1993	
Sendai	3.0	208	0 49a	- 1	1 29	+ 2	1 34	S*
Onahama	4.2	200	1 2	- 5	1 59	$+\tilde{2}$		·
Aikawa	4.5	232	(1 0k)	-11		- ī		
Mito	4.8	202	1 15	10	$\begin{pmatrix} 2 & 4 \\ 2 & 6 \end{pmatrix}$	_ â		
Kakioka	5.1	204	î 15k	_ ¥	2 18	- b - 2		1.6.6
LUDIVEW	• •	201	I IOK	- 5	2 10		2	
Tukubasan	5.1	204	1 17	- 3	1 15	- 5		0.000
Maebasi	5.3	214	1 23	+ ĭ	2 44	S*		
Tyosi	5.3	196	<b>î 19</b>	- 3	2 39	Š*	722	
Nagano	5.5	221	1 28	+ 3	2 57	Š,		
Tokyo Cen. Met. O	b. 5.7	205	1 26	- 2	2 32	- 3		
104, 0 004. Mot. 0			* • •		4 04	- •		
Yokohama	5.9	204	1 25	- 6	-			
Kohu	6.2	213	1 37	$+ \tilde{2}$	3 6	S*		
Misima	6.5	208	1 39	, <u>0</u>	36 38	s* s*		_
Osima	6.6	204	1 39	- Ž	2 53	- 5		
Shizuoka	6.8	211	1 44	õ	$\begin{array}{ccc} 2 & 53 \\ 3 & 9 \end{array}$	+ 6		-
	•••				0 0		2010/01/0	17-001
Gihu	7.2	222	1 58	+ 9	3 38	s. s.		· · · · · ·
Nagoya	7.2	220	1 57	$^{+9}_{+8}$	3 46	S*		-
Omaesaki	7.2	211	1 50	$\div$ 1	3 41	8.		
Hamamatu	7.3	214	2 12	P.				-
Hikone	7.6	225	1 55	- 0	3 49	S.		
			-			100		

Continued on next page.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

214

	Δ	Az.	Р.	0 – C.	s.	0 – C.	Suj	pp.
	0	0	m. s.	8.	m. s.	8.	m. s.	
Kameyama	7.8	221	2 1	+ 3	3 58	s• s•		
Kyoto	8.0	225	2 3	+ 3	4 5	S•		$\equiv$
Toyooka	8.2	232	2 7	+ 4			-	_
Ösaka	8.4	224	$\begin{smallmatrix}2&7\\2&12\end{smallmatrix}$	+ 6	$   \begin{array}{r}     3 & 45 \\     3 & 44   \end{array} $	+ 2		-
Kobe	8.6	226	2 8	- 1	3 44	- 4		
Wakayama	8.9	224	2 4	- 8	<del></del>			( <del></del>
Sumoto	9.0	226	1 16	-57	4 21	S*		
Siomisaki	9.3	219	2 27	+10		~~~		
Muroto	10.2	224	2 28	- 3	5 2	SSS		
Hamada	10.3	238	2 34	+ 2	4 57	SSS		0
Koti	10.3	228	2 35	$^{+}_{-}$ $^{3}_{8}$	-			3-2-2-2-3 3
Matuyama	10.6	231	2 28	- 8	4 38	+ 1		
Hukuoka	12.2	237	3 30	PPP	-			
Kumamoto	12.5	234	3 18 3 30	PP	<u> </u>			
Zinsen	12.9	260	3 30	PPP	5 54	SS		
Kagosima	13.5	230	3 1	-14		-		
Tomie	13.9	238	2 44	1	_	_		
Tinemaha	72.8	56	i 11 26	- 6			i 11 34	Р
Haiwee I	. 73.5	56	i 11 30	6				
Santa Barbara 2	. 73.5	59	i 11 39	+ 3				0
Mount Wilson 7	. 74.7	58	i 11 36	- 7				-
Pasadena	74.7	58	e 11 37	- 6			i 11 44	P
Riverside 2	. 75-3	58	e 11 38	- 9				
	. 76.0	58	e 11 44	- 1				
Ksara	79-7	306	e 12 10?	- 1	e 22 24	+11		
Tucson	80-5	56	e 12 10	- 5	e 22 26	+ 4	e 15 21	$\mathbf{PP}$
The second Contract size is the first second s second second s Second second se Second second sec	. 81.7	331	e 12 17	- 5	_			
	. 85.2	306	e 12 39	0				
St. Louis	87.3	39	i 12 44	- 6	i 22 58	[-18]		
Harvard	91.4	25	i13 2	- 7			10000	

Tucson i =12m.18s., e =22m.42s.

Epicentre 40°.9N. 142°.7E. (as at 5h.). June 13d. 8h. 16m. 4s.

Scale IV at Urakawa, Hatinohe, Miyako, and Aomori ; II-III at Hakodate and Hukusima. Epicentre 40°.7N. 143°.1E., shallow. Radius of Macroseismic area 300km. Seismological Bulletin of Central Meteorological Observatory, Japan, for year 1943,

Tokyo, 1950, p.p. 26, 27, with macroseismic chart.

	Δ	Az.	Ρ.	0-C.	S. 0-C.	Supp.	L.
	-	0	m. s.	8.	m. s. s.	m. s.	m.
Hatinohe	0.9	247	0 20a	0	0 39 + 5		
Miyako	1.4	203	0 24	- 3	044 - 2		
Aomori	1.5	267	0 29 a	+ 1	053 + 4		
Mizusawa	$\hat{2} \cdot \check{1}$	214	e 0 37	0	140		
Sapporo	2.4	335	0 39 m	- 2	1 11 - 2		
Sendai	3.0	208	0 48	- 2	1 27 0		<u></u> 8
Hukusima	3.6	209	0 59	+ 1	2 1 Sg		0.000
Onahama	4.2	200	1 3	- 4	1 39 - 18		
Aikawa	4.5	232	1 13	+ 2	2 22 S*		
Mito	4.8	202	1 12	- 3	2 11 - 1		
Utunomiya	4.9	208	1 14	- 3	2 39 S.		
Kakioka	5.1	204	1 15	- 5	$2\ 25\ +\ 5$		
Tukubasan	5.1	204	1 16	- 4	2 16 - 4		
Maebasi	5.3	214	1 24	+ 2	2 44 S* 2 46 S*	and a second	
Tyosi	5.3	196	1 21	- 1	246 S*		
Nagano	5.5	221	1 24	- 1	2 52 S*		
Tokyo, Cen. Met. Ob.	5.7	205	1 26	- 2	2 32 - 3	==	
Yokohama	5.9	204	1 31	0	$2 \ 10 \ -30$		
Kohu	6.2	213	1 36	+ 1	3 4 S*		
Misima	ĕ.5	208	1 42	+ 3	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

215

Osima Shizuoka Gihu Nagoya Omaesaki		∆ 6.6 6.8 7.2 7.2	Az. 204 211 222 220 211	m. s.	O -C. 8. - 6 + 7 + 7 P•	S. m. s. (2 50) 3 12 3 35 3 31 3 33	0-C. 8. 89 +\$***	m. s.	фр. 	L. m. 
Hamamatu Hikone Kameyama Kyoto Osaka		7.3 7.6 7.8 8.0 8.4	$214 \\ 225 \\ 221 \\ 225 \\ 224$	$     \begin{array}{ccccccccccccccccccccccccccccccccc$		$     \begin{array}{r}       3 & 31 \\       3 & 41 \\       \overline{3} & 53     \end{array} $	$+\frac{1}{13}$ +10			
Kobe Wakayama Sumoto Siomisaki Muroto		$     \begin{array}{r}       8 \cdot 6 \\       8 \cdot 9 \\       9 \cdot 0 \\       9 \cdot 3 \\       10 \cdot 2     \end{array} $	$226 \\ 224 \\ 226 \\ 219 \\ 224$	2 13 a 2 20 2 12 2 40 2 15	$^{+}_{+} {}^{4}_{8} \\ ^{-}_{-} {}^{1}_{1} \\ ^{+}_{+} {}^{23}_{-} \\ ^{-}_{-} {}^{16}$	$\begin{array}{r}4 & 1\\ \hline 4 & 11\\ \hline 5 & 5\end{array}$	$+13 \\ +\overline{13} \\ \mathbf{S}^{\bullet}$			
Hamada Koti Matuyama Hukuoka Kumamotó		$10.3 \\ 10.3 \\ 10.6 \\ 12.2 \\ 12.5$	238 228 231 237 234	$   \begin{array}{ccccccccccccccccccccccccccccccccccc$	0 PP + 1 PPP PP	4 59 4 39	ss + 2 			
Zinsen Irkutsk College Sverdlovsk Tashkent		12.9 28.4 45.3 53.0 53.7	260 308 35 317 297	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$+ \frac{4}{6} - \frac{7}{7} - \frac{13}{7}$	$\begin{smallmatrix}&5&57\\&10&45\\e&14&48\\&17&0\\&17&13\end{smallmatrix}$	$_{\rm PS}^{\rm 0}$	e 18 18		e 21 <u>·0</u>
Moscow Scoresby Sund Tinemaha Haiwee Mount Wilson	z.	64.8 68.4 72.8 73.5 74.7	323 355 56 56 58	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$-11 \\ -9 \\ +2 \\ 0$	e 19 12 E 19 54		e 11 32	- P 	e 32.7
Pasadena Riverside Palomar Ksara Tucson	z. z. z.	74.7 75.3 76.0 79.7 80.5	58 58 58 306 56	e 11 42 e 11 38 e 11 44 e 12 8 e 12 12	-19 - 7 - 3 - 3	e 22 12	- 1	i 11 47	P	
Stuttgart Helwan St. Louis San Fernando	E.	81.7 85.2 87.3 97.9	331 306 39 335	e 12 13 i 12 35 i 12 40 e 17 10	-9 -4 -10 PP.	e 22 38 e 23 24 1 23 15	+ 4 $s_cs$ -14			

Additional readings :---Osima readings decreased by 1m. Helwan eZ = 12m.50s.

#### June 13d. 8h. 36m. 55s. Epicentre 41°.0N. 143°.3E.

 Scale V at Urakawa; IV at Hatinohe, Miyako, Hakodate, Aomori, and Mizusawa. Epicentre 41°.0N. 143°.3E., shallow. Radius of macroseismic area 300km.
 Seismological Bulletin of Central Meteorological Observatory, Japan, for year 1943, Tokyo, 1950, pp. 27, 28, with macroseismic chart.

> $A = -.6069, B = +.4523, C = +.6535; \delta = -3; h = -2;$ D = +.598, E = +.802; G = -.524, H = +.391, K = -.757.

	Δ	Az.	Р.	0-C.	s.	0-C.	Supp	p.	L.
	o	0	m. s.	8.	m. s.	8.	m. s.		m.
Hatinohe	1.4	251	0 26k	- 1	0 45	- 1			
Miyako	1.7	216	0 31	0	0 51	- ŝ	-	-	
Aomori	1.9	264	0 33k	- 1	0 58	- ĭ			_
Mizusawa	2.5	222	0 44	+1	1 11	- 3			1000
Sapporo	2.5	325	0 43a	Ō	1 16	+ ž			
Sendai	3.3	214	0 48	- 5	1 39	+ 4			
Hukusima	3.9	214	1 13	P.	1 59	+ 4 S*		1225	2220
Onahama	4.5	205	1 10k	- 1	1 58	- 7			
Aikawa	4.9	234	1 18k	+ î	2 23	+ 8		- <u>193</u> 9	
Mito	5.1	206	(1 20 m)	' Ô	(2 30)	<b>+10</b>			_

Continued on next page.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

(( <b>+</b> ))												
1943		216										
Utunomiya Kakioka Tukubasan Tyosi Maebasi		∆ 5·2 5·3 5·3 5·6 5·7	Az. 212 208 208 201 217	1 1 1	1. I	0 - C. s. 0 - 2 - 2 + 1	S. m. s. 2 38 2 23 2 23 2 49 2 49 2 48	0 - C. 8. + 16 - 2 - 5 + 16 + 13	m. s.	p.	Ľ. m.	
Nagano Tokyo, Cen. Met. C Yokohama Kohu Misima	)b.	$5.9 \\ 6.0 \\ 6.3 \\ 6.5 \\ 6.8$	$224 \\ 209 \\ 208 \\ 216 \\ 211$	1 1 1	32 31 k 38 41 41	$+ 1 \\ + 1 \\ + 2 \\ + 2 \\ - 3$	$     \begin{array}{cccc}       3 & 3 \\       2 & 36 \\       2 & 49 \\       2 & 56 \\       3 & 13 \\     \end{array} $	$+23 \\ - 7 \\ - 1 \\ + 1 \\ + 10$				
Osima Shizuoka Omaesaki Gihu Hamamatu		7.0 7.2 7.5 7.6 7.7	$206 \\ 214 \\ 214 \\ 224 \\ 217$	(1 (1 1	44) 47 56) 57 14	$-22 \\ -22 \\ +32 \\ +18$	$(2 58) \\ 3 17 \\ \overline{3 24} \\ 3 40$	-10 + 4 + 1 + 15				
Nagoya Hikone Kyoto Toyooka Osaka		7 ·7 8 ·0 8 ·4 8 ·6 8 ·8	$222\\226\\227\\234\\227$	12	$59 \\ 59 \\ 7 \\ 14 \\ 17$	$+ 3 \\ - 1 \\ + 1 \\ + 5 \\ + 6$	$     \begin{array}{r}       3 & 26 \\       3 & 30 \\       4 & 0 \\       \overline{3} & 53     \end{array} $	$+\frac{1}{3}$ + $\frac{17}{0}$		II		
Kobe Wakayama Sumoto Siomisaki Muroto		$9.0 \\ 9.3 \\ 9.4 \\ 9.6 \\ 10.6$	228 226 228 221 226	2 2 2	13a 9 26 28 41	08875 -+++	$   \begin{array}{r}     3 & 57 \\     4 & 23 \\     4 & 14 \\     \hline     4 & 41   \end{array} $	-1 + 18 + 7 + 4				
Hamada Koti Matuyama Izuka Hukuoka		$10.8 \\ 10.8 \\ 11.0 \\ 12.4 \\ 12.7$	239 229 233 238 238	2 2 2 2 2 3	38 37 34 58 23	-12 - 28 - 38 - 31 + 18	$     \begin{array}{r}       4 & 40 \\       4 & 54 \\       4 & 45 \\       \overline{5} & 49     \end{array} $	$-\frac{2}{+12}$ $-\frac{2}{2}$ $+\overline{21}$				
Kumamoto Zinsen Kagosima Nake Naha		$13.0 \\ 13.4 \\ 14.0 \\ 16.9 \\ 19.7$	$235 \\ 260 \\ 231 \\ 226 \\ 227$	333344 4	8 12 29a 7 31	-12 -27 ++3 -3	$     \begin{array}{r}       6 & 19 \\       5 & 43 \\       6 & 25 \\       6 & 6 \\       \hline     \end{array} $	$+44 \\ -2 \\ +26 \\ -61 \\ -$		111		
College Calcutta Frunse Sitka Honolulu	Ν.	$45.0 \\ 49.4 \\ 49.8 \\ 52.3 \\ 53.1$	35 266 297 43 93	e 8 i 8 e 9 e 9	17 54k 54 17 21	-2 + 1 + 2 + 2 0	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	-5+6+14+5+4	i 19 6 e 11 32	SS PP	e 18.1 i 23.6 e 21.5 e 23.6	
Stalinabad	N. E.	$53 \cdot 2 \\ 54 \cdot 1 \\ 54 \cdot 5 \\ 55 \cdot 7 \\ 59 \cdot 9$	$317 \\ 297 \\ 279 \\ 294 \\ 267$	i 9 i 9 i 9 9 10	$     \begin{array}{r}       18 \\       26 \\       28 \\       38 \\       38 \\       3     \end{array} $	- 43 - 34 - 7	$     \begin{array}{r}       i & 17 & 16 \\       i & 17 & 15 \\       17 & 40 \\       18 & 14 \\       18 & 14 \\     \end{array} $	+11 + 5 + 14 - 7	 12 12	_ PP	 31·1	
Moscow	Е. Е.	$62.7 \\ 63.3 \\ 65.0 \\ 65.1 \\ 68.0$	$\begin{array}{r} 48 \\ 272 \\ 323 \\ 262 \\ 57 \end{array}$	i 10 i 10 10 (e 10 e 11	35 31 42 40) 17	$^{+}_{-}{}^{2}_{-}{}^{2}_{-}{}^{5}_{-}{}^{5}_{+}{}^{14}$	18 49 19 16 19 33 e 20 3	$-\frac{8}{+12}$ + 7 + 1	20 15 (i 23 45)	$s_c s$	33·1  e 27·8	
Saskatoon Berkeley	N. E. N. Z.	$68.3 \\ 68.7 \\ 69.2 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ 69.3 \\ $	355 170 39 58 58 58	e 11 i 11 e 11 i 11 i 11 i 11	$3 \\ 23 \\ 17 \\ 19 \\ 30 \\ 16$	-2+16+7+8PeP+5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-4302+10	e 24 26	ss 	e $28 \cdot 0$ $34 \cdot 1$ e $33 \cdot 3$	
Santa Clara Upsala Bozeman Tinemaha Santa Barbara		$69.8 \\ 70.0 \\ 71.2 \\ 72.3 \\ 73.0 $	58 334 46 56 59	i 11 11 e 11 i 11 e 11	23 11 21 29 35	+ 9 - 4 - 2 + 2	i 20 26 e 20 15 e 20 35	+ 3 -11 - 5 - 5	13 45 11 41 11 41 11 46	PP PeP PeP	e 33·4 e 34·1 e 31·7	

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

1.

217

	∆ Az.	P. m. s.	0 – C. s.	S. 0 m. s.	-C.	m. s.	pp.	L. m.
Haiwee Bergen Logan Salt Lake City Mount Wilson	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	i 11 33 11 32 i 11 35 e 11 35 e 11 38 i 11 39	-1 -30 -1 -1	i 21 2 -	$-\frac{15}{2}$	$ \begin{array}{r} 1 \ 11 \ 46 \\ \mathbf{e} \ 21 \ 25 \\ \mathbf{e} \ 11 \ 51 \\ \mathbf{i} \ 11 \ 51 \end{array} $	PeP PS PeP PcP	36.6 e 34.3 e 30.0
Pasadena Z. Riverside Riverview Copenhagen La Jolla	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	i 11 39 i 11 42 i 11 53 a 11 43 i 11 50	$   \begin{array}{c}     - & 1 \\     - & 2 \\     + & 9 \\     - & 2 \\     + & 2   \end{array} $		$-\frac{4}{11}$	i 11 52 i 11 55 i 21 20 i 11 59	$\frac{\mathbf{P_eP}}{\mathbf{P_eP}}$	e 30·9 e 31·7
Palomar Z. Focsani Potsdam Ivigtut Aberdeen	$\begin{array}{ccccc} 75 \cdot 6 & 58 \\ 76 \cdot 5 & 320 \\ 77 \cdot 5 & 332 \\ 77 \cdot 7 & 6 \\ 78 \cdot 0 & 342 \end{array}$	i 11 47 e 11 41? e 11 58 e 11 55	-13 -13 -5	e 22 8	$\mathbf{PS} = 6$ $\mathbf{S_{c}S} = 11$	i 11 59  i 30 18	PeP SSS	e 39 · 1 e 38 · 4 42 · 9
Bucharest Ogyalla E. N. Jena Cheb	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	e 12 0 11 59 e 12 5? e 12 5? e 18 5?	- 2 - 8 - 2 3	$e \begin{array}{ccc} 21 & 17 & - \\ 22 & 13 & - \end{array}$	$S_cS$ -49 +7 $S_cS$ $S_cS$	e 14 59	PP 	39.1 e 43.1 e 43.1 e 42.1 e 43.1
Ksara Tucson Belgrade De Bilt Sofia	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	e 12 11 1 12 13 e 12 12 i 12 12a e 12 12a e 12 14	- 2 - 3 - 3 - 2	e 22 15 e 22 34 i 22 15 -	ScS - 3 ScS - 5	e 15 8 e 15 18 i 15 17 e 22 38	PP PP PP ScS	e 33.8 e 44.7 e 38.1
Stonyhurst Uccle Stuttgart Strasbourg Auckland	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- ⁸ - 3 - 2 5	e 22 26 e 22 253 e 23 5	$S_cS$ -9 -11 $S_cS$ +9	e 15 23	SS PP PP	$\begin{array}{r} 37 \cdot 1 \\ e & 39 \cdot 1 \\ e & 46 \cdot 3 \\ e & 45 \cdot 1 \\ 40 \cdot 1 \end{array}$
Kew Triest Des Moines Chur Zürich	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	i 12 25 a e 12 22 e 12 40 e 12 27 e 12 27 e 12 27 a	-5 $P_cP$ -3	i 22 36 e 23 42	- 8 - 8 PS ScS ScS	i 15 33	PP 	e 31.6 e 32.5 e 41.5
Basle Arapuni Paris Neuchatel Milan	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- ³ - ² - ³ - ²	e 22 53 ·	PS - 4 - 6 9	30 59 	?	$44.1 \\ 42.1 \\ 42.9$
Florence Helwan Chicago Clermont-Ferrand Florissant	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	e 12 45	$   \begin{array}{c}     - & 1 \\     - & 3 \\     - & 1 \\     - & 2   \end{array} $	e 22 59 [· e 23 20 ·	$   \begin{bmatrix}     - & 4\\     S_c S \\     - & 6\\     - & 3 \\     + & 1   \end{bmatrix} $	i 32 3 e 12 52 e 18 5 i 16 7 e 23 9	SSS PeP PPP SKS	e 36·1 e 51·1
Wellington St. Louis Ottawa Seven Falls Christchurch	$\begin{array}{ccccccc} 86 \cdot 7 & 157 \\ 86 \cdot 9 & 39 \\ 87 \cdot 2 & 27 \\ 87 \cdot 2 & 23 \\ 88 \cdot 2 & 159 \end{array}$		$\begin{array}{c} \mathbf{P_cP} \\ - & 2 \\ - & 2 \\ - & 2 \\ - & 2 \end{array}$	i 23 22 · 23 21 {	$   \begin{array}{c}     - & 2 \\     - & 4 \\     0 \\     + & 2 \\     - & 6 \\   \end{array} $	$\begin{array}{r} 29 & 13 \\ i & 23 & 10 \\ & 24 & 23 \\ e & 29 & 17 \\ e & 29 & 26 \end{array}$	SKS PS SS SS	$42 \cdot 1$ $39 \cdot 1$ $42 \cdot 1$ $40 \cdot 5$
Vermont Pittsburgh Barcelona Harvard Weston	$\begin{array}{ccccccc} 88\cdot 8 & 26 \\ 89\cdot 9 & 32 \\ 90\cdot 7 & 331 \\ 91\cdot 1 & 25 \\ 91\cdot 3 & 25 \end{array}$	i 13 0 e 14 5 i 13 5	- 2 + 59 - 3 - 1	i 23 48 e 23 31 [· e 24 3 ·	$+ 4 \\ - 6 \\ - 6 \\ - 1 \\ + 10$	e 29 22	ss  Ps	e 53.6 e 46.0 e 48.1
Fordham Tortosa Philadelphia Toledo Columbia	$\begin{array}{cccccc} 91 \cdot 8 & 27 \\ 91 \cdot 8 & 332 \\ 92 \cdot 1 & 28 \\ 94 \cdot 2 & 334 \\ 94 \cdot 9 & 35 \end{array}$	e 13 29 e 13 10 e 13 21	$\begin{array}{c} \mathbf{P_c P} \\ \mathbf{P_c P} \\ \mathbf{-2} \\ \mathbf{-1} \\ \mathbf{-1} \end{array}$	23 39 [	$   \begin{array}{r} - & 3 \\ - & 4 \\ + & 6 \\ + & 25 \\ - & 4 \end{array} $	e 23 42 e 23 34 17 7 e 31 0	SKS SKS PP SS	e 52.6 e 37.9 e 38.9
Almeria Granada Tacubaya Lisbon San Fernando E.	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	i 13 29 e 21 37 13 43	- 6 - 3 + 9 PP	24 33 { 25 13	$= 8 \\ + 4 \\ + 19 \\ + 1 \\ + 1 \}$	$   \begin{array}{c}     23 & 47 \\     23 & 39 \\     \hline     24 & 9 \\   \end{array} $	sks sks	45.1 45.6 48.6 50.6

Continued on next page.

-



These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1.00	1000	1.000
-	67L AL	<b>FB</b>
- <b>B</b>	344473	- <b>1 - - - -</b>
- 2	20160	
- 12		1997 ( C. 1

218

		Δ	Az.	P		0 – C.	s.	0 – C.	Su	pp.	L.
		0	0	m.	8.	8.	<b>m.</b> s.	8.	·m. 8.		m.
Bermuda		102.5	23	e 18	17	$\mathbf{PP}$			e 27 7	PS	e 49·0
San Juan		114.9	30	e 19	43	$\mathbf{PP}$	e 29 14	PS	e 35 32	SS	e 46·3
Huancayo		135.5	60	e 32	43	$\mathbf{PS}$					e 55-9
La Paz	Z.	143.5	56	19	38	[+1]			i 19 43	PKP	70.1
Additional r Mito and Omaesaki Calcutta i Sitka iP =	Osima readi SSSN	readings decimation = 20m.3	ceased	1 by 1	т.	202-2020 2020					

```
Bombay iE =10m.51s., PPSE =19m.31s., iE =20m.38s. and 23m.31s.
Hyderabad P_cPE = 10m.48s., PSE = 18m.36s., SSE = 21m.58s.
Kodaikanal, all readings increased by 1m.
Scoresby Sund e = 21m.26s.
Upsala e = 18m.5s.?, eN = 31m.38s.
Santa Barbara iNZ =11m.58s.
Logan e = 15m.14s. and 24m.49s.
Salt Lake City e = 24m.22s., eSS = 25m.40s.
Riverview iE = 21m.45s.
Aberdeen QEN = 36m.35s.
Bucharest eEN =11m.39s., iSN =22m.13s., ePSE =22m.33s., ePSN =22m.38s.
Tucson i = 13m.27s., e = 19m.2s, and 24m.24s.
Belgrade e = 26m.43s.
De Bilt ess = 26m.45s.
Stuttgart ePPPZ = 17m.12s., eQ = 42m.23s.
Strasbourg e = 16m.36s.
Kew ePPPZ = 17m.22s., iPS = 22m.57s., eSSZ = 27m.27s., eSSSZ = 30m.37s.
Helwan eZ = 13m.8s., PPNZ = 16m.3s., eZ = 17m.50s., SKSN = 23m.2s., PSN = 24m.23s.
Chicago e = 15m.21s., eSS = 28m.40s.
Clermont-Ferrand ePS = 24m.32s.
Florissant iE = 23m.47s., iSS?E = 29m.5s.
Wellington Q = 40 \cdot 1m.
St. Louis iE = 23m.47s., eSSE = 29m.8s.
Ottawa SS = 29m.5s. ?
Christehurch Q = 36m.2s.
Vermont e = 19m.22s. and 33m.27s.
Weston SS = 30m.23s.
Philadelphia e = 16m.58s., 17m.45s., and 29m.52s.
Almeria pP = 13m.46s., sP = 13m.56s., PP = 17m.20s., pPP = 17m.44s., pS = 24m.48s.,
    sPS = 26m.14s., i = 27m.32s., SS = 31m.12s., SSS = 34m.25s.
Granada pP = 13m.49s., sP = 14m.10s., PP = 17m.16s., pPP = 17m.25s., sS = 25m.55s.,
    PPS = 26m.37s., SS = 31m.19s.
Lisbon PPZ =17m.43s., SSE = 32m.17s. ?, N = 35m.5s. ?, Z = 40m.41s.?
San Fernando SSE = 28m.53s.
San Juan ePP = 19m.57s., e = 27m.24s. and 39m.52s.
Huancayo e = 49m.11s.
```

Long waves were also recorded at Edinburgh.

June 13d. 16h. 23m. 18s. Epicentre 41°.0N. 143°.3E. (as at 8h. 36m.).

		Δ	Az.	Р.	0 - C.	s.	0-C.	Sul	op.	L.	
		•	0	m. s.	8.	m. s.	8.	m. s.		m.	
Mizusawa	E.	2.5	222	0 44	+ 1	1 13	- 1				
Vladivostok	1000	8.8	287	2 13	+ 2	·					
Irkutsk		28.7	307	6 1	0	11 58	SS	<u> </u>		÷ • •	
College		45.0	35		State	e 14 57	- 1	<del>******</del> *		e 26.5	
Honolulu		53-1	93	_		e 15 49	-62	(e 20 2)	SS	e 20·0	
Sverdlovsk		53.2	317	19 22	0	16 58	+ 6			-	
Tashkent		54.1	297	9 29	Õ	e 17 17	PS			-	
Moscow		65.0	323	10 44	Õ	19 26	0				
Scoresby Sund		68.3	355			e 19 55	-11		<del>,</del>	e 41·4	
Tinemaha	z.	72.3	56	1 11 39	+10			-			
Mount Wilson	z.	74.2	58	e 11 50	+10					<u> 1975</u>	
Pasadena	Z.	74.2	58	e 11 49	+ 9					e 36·2	
Tucson		80.1	56	1 12 25	+12		_				
Stuttgart		81.9	332		- 1	e 22 421	+ 6			e 43·2	
Helwan	z.	85.5	332 306	$e 12 22 \\ 12 42$	+ 1			e 12 57	$P_eP$	_	
Florissant		86.7	39	e 12 55	D.D	e 23 22	9			0.62.0	
St. Louis		86.9	39	e 12 48	PeP	e 23 22 e 23 23	- 2	1.1283	12 H = 1	e 53·9	
Ottawa		87.2	27	e 12 56	PeP	6 45 45	- 0			49.7	
Fordham		91.8	27	012 00	T 01	e 23 5	-66			42.7	
Granada		96.5	333			36 35	SSS			51.5	
					5-4	00 00	000		****	01.0	

Long waves were also recorded at other European stations.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

#### 1943

### 219

#### June 13d. 17h. 39m. 12s. Epicentre 41°.0N. 143°.3E. (as at 16h.).

Intensity IV at Urakawa, Hakodate, Hatinohe, Aomori; II-III at Miyako and Obihiro. Epicentre as adopted. Radius of macrosesmic area 200-300km. Depth 40km. Seismological Bulletin of the Central Meteorological Observatory, Japan, for the year 1943, Tokyo, 1950, p. 29, macroseismic chart p. 29.

		Δ	Az.	P. m. s.	0 – C. s.	S. m. s.	0 – C. s.	m. s.	рр. L. m.
Hatinohe Miyako Aomori Mizusawa Sapporo	E.	$     \begin{array}{c}             0 \\             1 \cdot 4 \\             1 \cdot 7 \\             1 \cdot 9 \\             2 \cdot 5 \\             2 \cdot 5 \\             2 \cdot 5 \\         \end{array}     $	$251 \\ 216 \\ 264 \\ 222 \\ 325$	0 26 0 29 0 35 a 0 42 0 44 a	-12 +12 +11 +11	$\begin{array}{c} 0 & 46 \\ 0 & 49 \\ 1 & 1 \\ 1 & 11 \\ 1 & 14 \end{array}$	$-5.0 \\ -5.0 \\ -5.2 \\ -3.0 \\ 0$		
Sendai Hukusima Onahama Mito		$3.3 \\ 3.9 \\ 4.5 \\ 5.1$	$214 \\ 214 \\ 205 \\ 206$	0 52a 1 6 1 7k 1 18	-1 + 4 + 4 + 2 = 2	$     \begin{array}{ccc}       1 & 27 \\       1 & 44 \\       1 & 53 \\       2 & 10 \\     \end{array} $	- 8 - 6 - 12 - 10		
Utunomiya Kakioka Tukubasan Tyosi Maebasi		5.2 5.3 5.4 5.6 5.7	$212 \\ 208 \\ 208 \\ 201 \\ 217$	$\begin{array}{cccccccc} 1 & 20 \\ 1 & 19 \\ 1 & 20 \\ 1 & 23 \\ 1 & 29 \end{array}$	$-13 \\ -34 \\ -44 \\ +1$	$   \begin{array}{cccc}       2 & 37 \\       2 & 40 \\       2 & 21 \\       2 & 49 \\       2 & 50 \\   \end{array} $	s*** -**		
Nagano Tokyo, Cen. Met Yokohama Toyama Kohu	t. ОЪ.	5.9 6.0 6.3 6.4 8.5	$224 \\ 209 \\ 208 \\ 230 \\ 216$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$+ 1 \\ - 3 \\ 0 \\ P^{*} \\ + 1$	$     \begin{array}{cccc}       2 & 26 \\       2 & 33 \\       3 & 6 \\       3 & 48 \\       3 & 12 \\     \end{array} $	-14 -10 S* L S*		$\frac{-}{-} \frac{-}{(3\cdot 8)}$
Misima Osima Shizuoka Omaesaki Gihu		6.8 7.0 7.2 7.5 7.6	$\begin{array}{r} 211 \\ 206 \\ 214 \\ 214 \\ 224 \end{array}$	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	- 2 - 6 + 2 + 2 + 2	$     \begin{array}{r}       3 & 6 \\       2 & 54 \\       3 & 18 \\       3 & 47 \\       3 & 30 \\     \end{array} $	+ 3 -14 + 5 S* + 7		
Hamamatu Nagoya Hikone Kyoto Toyooka		7.7 7.7 8.0 8.4 8.6	$\begin{array}{r} 217 \\ 222 \\ 226 \\ 227 \\ 234 \end{array}$	$     \begin{array}{cccc}       2 & 10 \\       2 & 0 \\       2 & 6 \\       2 & 6 \\       2 & 6 \\       2 & 12 \\     \end{array} $	P* + 4 + 6 + 3	$     \begin{array}{r}       3 & 37 \\       3 & 58 \\       3 & 42 \\       \overline{4} & 1     \end{array} $	$+12 \\ S^{*} \\ + 9 \\ +13$		
Osaka Owase Sumoto Siomisaki Muroto		$     \begin{array}{r}       8 \cdot 8 \\       8 \cdot 9 \\       9 \cdot 4 \\       9 \cdot 6 \\       10 \cdot 6 \\     \end{array} $	$227 \\ 221 \\ 228 \\ 221 \\ 226 \\$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+ 4 +17 + 6 PPP + 7	$     \begin{array}{r}       3 & 48 \\       4 & 18 \\       4 & 12 \\       \overline{} \\       4 & 59 \\     \end{array} $	- 5 + 5 SSS		
Hamada Koti Hukuoka Kumamota Zinsen		$10.8 \\ 10.8 \\ 12.7 \\ 13.0 \\ 13.4$	$239 \\ 229 \\ 238 \\ 235 \\ 260$	$     \begin{array}{cccc}       2 & 39 \\       2 & 41 \\       3 & 3 \\       3 & 16 \\       3 & 20 \\     \end{array} $	+ 2 + 2 + 2 + 6	$   \begin{array}{r}     4 & 39 \\     \hline     6 & 21 \\     6 & 40 \\     6 & 41   \end{array} $	-3 +53 +65 +56		
Nake Irkutsk College Calcutta Sitka	N.	$16.9 \\ 28.7 \\ 45.0 \\ 49.4 \\ 52.3$	226 307 35 266 43	$ \begin{array}{r} 4 & 7 \\ 5 & 59 \\ e & 8 & 26 \\ e & 9 & 33 \end{array} $	$+ \frac{8}{-2} + \frac{2}{7} + \frac{7}{18}$	i 11 1 e 14 55 i 15 59 e 16 40	$+\frac{11}{-3}$ -10	$e \frac{18}{15}$	$\frac{1}{88} e \frac{1 \cdot 6}{25 \cdot 1}$
Honolulu Sverdlovsk Tashkent New Delhi Victoria	N.	$53 \cdot 1 \\ 53 \cdot 2 \\ 54 \cdot 1 \\ 54 \cdot 5 \\ 62 \cdot 7$	93 317 297 279 48	e 10 27 i 9 18 9 26 	PcP - 4 - 3	$\begin{array}{cccccc} e & 17 & 5 \\ & 17 & 6 \\ & 17 & 23 \\ i & 17 & 24 \\ e & 19 & 07 \end{array}$	PS PS PS + 3		e 24·4 
Bombay Moscow Scoresby Sund Saskatoon Berkeley	E.	$63 \cdot 3$ $65 \cdot 0$ $68 \cdot 3$ $69 \cdot 2$ $69 \cdot 3$	272 323 355 39 58	$ \begin{array}{r} 10 & 42 \\ e & 11 & 6 \\ i & 11 & 18 \end{array} $	$-\frac{2}{1}$ + $\frac{1}{7}$	e 23 10 19 26 e 20 6 e 20 18 i 20 16	$ss_{0} \\ + 2 \\ - 1$	e 23 28	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Santa Clara Upsala Bozeman Tinemaha Santa Barbara	Z. Z.	$   \begin{array}{r}     69 \cdot 8 \\     70 \cdot 0 \\     71 \cdot 2 \\     72 \cdot 3 \\     73 \cdot 0   \end{array} $	58 334 46 56 59	e 11 32 e 11 11 e 11 33 e 11 31 i 11 48	PeP - 4 +10 + 2 PeP	e 20 30 e 20 21 e 20 36	+ 75 - 4	e 13 38 1 11 42	$ \begin{array}{c} - & e & 32 \cdot 3 \\ e & 33 \cdot 8 \\ e & 31 \cdot 1 \\ P_e P & - \end{array} $

Continued on next page.



These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

220

		Δ	Az.	P. m. s.	0 – C.	S. m. s.	0 - C. s.	m. s.	pp.	L. m.
Haiwee Salt Lake City Pasadena Riverside Riverview	z.	73.1 73.9 74.2 74.8 74.8	56 50 58 58 173	i 11 46 e 11 50 i 11 39 i 11 43	$\frac{\mathbf{P}_{c}\mathbf{P}}{\mathbf{P}_{c}\mathbf{P}}$	e 21 8 e 21 10 i 21 27	$-\frac{1}{2}$ $-\frac{1}{4}$ +7	i 11 51 i 11 54	PeP PcP	$\begin{array}{r} e & 35 \cdot 6 \\ e & 32 \cdot 8 \\ e & 32 \cdot 1 \end{array}$
Ivigtut	z. E.	75.0 75.6 77.7 78.0 78.0	334 58 6 342 319	i 11 45k e 11 51 e 12 6?	$+\frac{0}{3}$ + 4	$\begin{array}{r} 21 & 17 \\ e & 21 & 53 \\ 1 & 21 & 56 \\ e & 21 & 54 \end{array}$	-6 +1 +1 +1 -1	14 33  e 22 18?	PP  S_cS	e 39.8 37.0 38.8
Jena Cheb Kalossa Ksara Tucson		$79.2 \\ 79.6 \\ 79.7 \\ 80.0 \\ 80.1$	$331 \\ 331 \\ 324 \\ 306 \\ 56$	$\begin{array}{cccc} e & 12 & 8 \\ e & 12 & 13 \\ e & 12 & 14 \\ e & 12 & 14 \end{array}$		$\begin{array}{c} e & 21 \\ e & 21 \\ e & 22 \\ e & 22 \\ e & 22 \\ e & 6 \end{array}$	$-\frac{1}{24}$ + $\frac{1}{4}$	e 12 123 e 12 28 e 12 26	$\mathbf{P}_{\mathbf{c}}^{\mathbf{c}}\mathbf{P}$	e 35.8 e 42.8 e 44.8 e 33.2
Belgrade De Bilt Sofia Stonyhurst Uccle		80 · 4 80 · 4 80 · 6 81 · 0 81 · 8	$322 \\ 335 \\ 319 \\ 340 \\ 335$	e 12 10 e 12 18 e 12 16 e 12 19	$-\frac{5}{3}$ $-\frac{3}{3}$	e 22 43 e 22 26 e 22 49 32 481 e 22 29	ScS + 5 ScS - 6	e $15\overline{18}$ e $15\overline{18}$ e $15\overline{30}$	PP Q	e 44.6 e 38.8 41.8 e 39.8
Stuttgart Strasbourg Kew Triest Zürich		$81.9 \\ 82.5 \\ 82.7 \\ 82.7 \\ 83.3$	332 332 338 327 330	e 12 18 e 12 28 e 12 24 e 22 40 e 12 29	-52 +23 -33 -1	e 22 28 e 22 39 (e 22 40)	- 8 - 5 4	$e_{15}^{2} \frac{58}{30}$		e 41 ·9 43 ·8 e 39 ·8
Basle Paris Neuchatel Milan Florence		$83.5 \\ 84.1 \\ 84.2 \\ 84.6 \\ 85.2$	331 335 331 329 327	e 12 22 e 12 36 e 12 35 e 12 36 e 12 42	$-9+2+1\\+0\\+3$		$\frac{-}{5}$	$e \frac{24}{24} 14$ $e \frac{28}{50} 50$	PPS SS	44 <u>·8</u> 
Helwan Chicago Clermont-Ferrand St. Louis Ottawa		$   \begin{array}{r}     85 \cdot 5 \\     85 \cdot 6 \\     86 \cdot 6 \\     86 \cdot 9 \\     87 \cdot 2   \end{array} $	306 36 333 39 27	$ \begin{array}{r} 12 & 39\\ e & 12 & 47\\ e & 12 & 48\\ 12 & 48\\ \end{array} $	$-\frac{2}{1}$ + $\frac{1}{0}$ - $1$	$\begin{array}{r}23 & 5\\ e & 22 & 58\\ e & 23 & 10\\ 23 & 24\end{array}$	$ \begin{bmatrix} + & 1 \\ - & 7 \end{bmatrix} \\ \begin{bmatrix} - & 3 \\ + & 3 \end{bmatrix} $	$e \begin{array}{c} 12 & 51 \\ e \begin{array}{c} 28 & 45 \\ \end{array} \\ e \begin{array}{c} 23 & 22 \\ 28 & 487 \end{array}$	SKKS	e 36.0 e 46.2 e 40.8
Seven Falls Christchurch Pittsburgh Harvard Philadelphia		$87.2 \\ 88.2 \\ 89.9 \\ 91.1 \\ 92.1$	$23 \\ 159 \\ 32 \\ 25 \\ 28$	e 13 10	+ 2	e 23 18 e 23 18 e 23 51 e 25 8 e 23 42	[ + 3]  [ - 4]  - 3  PS  [ - 3]	$e \frac{28}{52}$ $e \frac{24}{1}$	ss skks	41.8 35.6 e 37.8 e 44.3
Toledo Almeria Granada Lisbon San Fernando San Juan	Е.	94.2 96.4 96.5 96.8 98.0 114.9	334 332 333 338 335 30	e 13 19 e 14 28 14 29 17 26 e 22 37	- 3 +56 +57 PP PPP	24 32 24 26 24 43 e 24 46 e 29 30	$\{ \begin{array}{c} + & 1 \\ - & 2 \\ - & 8 \\ - & 8 \\ + & 6 \\ + & 6 \\ PS \end{array} \}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		44 · 5 44 · 8 48 · 2 45 · 2 46 · 3 e 54 · 2
Additional read Upsala ePP3 Tucson e =1 Uccle SSE = Kew ePS =2 Helwan PP3 Philadelphia Almeria pPP Granada pPF San Fernand	N = 3m 27m 3m Z = = 1 0 = 1 0 = 1 0 = 1	=13m.3 118. 1.588. 168., 6 16m.24 25m.3 7m.518 7m.518 17m.51 PPSE - 9 also 1	SS = s., SI 1s. ar ., PS s., SS = 28n	28m.10s., KSEN = 10 1038m.12s = 25m.16s = 31m.53s = 21s.	eSSSN 23m.36s laikanal	= 31m.48s ., PSN = 2	. <b>?.</b> 24m.57s, d. Welli	ngton, Ar		Colum

June 13d. Readings also at 1h. (Tacubaya), 4h. (Tinemaha, Riverside, Mount Wilson, Tucson, Rio de Janeiro, and Tacubaya), 5h. (near Mizusawa (4)), 6h. (Tinemaha, Palomar, Riverside, Tucson, and near Mizusawa (5)), 7h. (Bombay, Kodaikanal, and near Mizusawa (3)), 8h. (Stuttgart and near Mizusawa (3)), 9h. (Palomar, Riverside, Pasadena, Tucson, Mount Wilson, Tinemaha, Toledo, Stuttgart, and near Mizusawa (2)), 10h. (near Mizusawa (3)), 11h. (Triest and near Mizusawa (3)), 12h. (Mizusawa), 13h. (Tashkent, New Delhi, Ksara, and Helwan), 14h. (2), 15h., 16h., 17h, (2), 18h. (3), and 19h. (near Mizusawa), 21h. (Stuttgart, Tucson, Tinemaha, Mount Wilson, Fort de France, San Juan, and Bogota), 22h. (Huancayo and near La Paz).

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

### 1943

#### 221

June 14d. 2h. 59m. 54s. Epicentre 30°.0S. 61°.0E. (as on 1941 October 11d.).

A = +  $\cdot 4206$ , B = +  $\cdot 7587$ , C = -  $\cdot 4975$ ;  $\delta = +4$ ; h = +2; D = +  $\cdot 875$ , E = -  $\cdot 485$ ; G = -  $\cdot 241$ , H = -  $\cdot 435$ , K = -  $\cdot 868$ .

Tananarive Kodaikanal Bombay New Delhi Helwan	E. E. N.	∆ • • • • • • • • • • • • • • • • • • •	Az. 306 24 15 17 333	P. m. s. 3 47 e 8 54 i 10 16k 10 47	0 - C. - 7 - 3 + 3 - 3	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	m. s. 3 58 i 16 22 e 13 32	pp. PP PPS PP	L. m. 7·6
Ksara Tashkent Riverview Sverdlovsk Triest		$67.8 \\ 71.4 \\ 74.1 \\ 86.5 \\ 86.6$	$338 \\ 6 \\ 120 \\ 0 \\ 329$	e 11 7 11 27 1 11 27 12 46	+ 5 3 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			e 36.0
Moscow Almeria Granada Irkutsk Zürich		$87.7 \\ 89.2 \\ 90.1 \\ 90.3 \\ 90.3$	$348 \\ 314 \\ 314 \\ 24 \\ 327$	$\begin{smallmatrix}&13&1\\&12&58\\i&13&6\\&16&23\\e&13&1\end{smallmatrix}$	+ 9 - 1 + 3 PP - 3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$   \begin{array}{r}     13 & 22 \\     23 & 47 \\     23 & 37 \\   \end{array} $	SKKS	48·1 48·4
Cheb Basle Stuttgart San Fernando Strasbourg	E.	90.6 90.9 91.0 91.3 91.6	331 327 328 311 328	$\begin{array}{r} & & & & & & \\ e & 13 & & 5 \\ e & 13 & 21 \\ e & 13 & 13 \end{array}$	$-\frac{3}{-2}$ +12 +3	e 23 6? $[-30]$ e 24 4 + 1 i 24 11 + 5	e 23 39 e 18 36 e 13 24	SKS PPP PcP	e 52·1 e 49·6 52·6 e 57·1
Toledo Paris Uccle Copenhagen De Bilt		$\begin{array}{r} 92 \cdot 1 \\ 94 \cdot 2 \\ 94 \cdot 7 \\ 94 \cdot 9 \\ 95 \cdot 2 \end{array}$	316 325 327 334 329	e 13 11 e 13 37 e 17 67 e 13 31	-1 + 15 = 15 = 10 PP + 4	e 24 20 + 7 e 24 6? [+ 7] 23 56 [- 5]	e 17 26	PP PP	e 46·1 e 50·1 e 48·1
Kew Scoresby Sund Bermuda Seven Falls Ottawa		$\begin{array}{r} 97.3 \\ 115.6 \\ 133.9 \\ 139.9 \\ 142.9 \end{array}$	326 338 287 308 307	e 13 42 e 19 52 e 22 28 e 22 0? e 19 29	+ 6 PP ? PP [- 7]	e 23 287 1	e 17 38		e 43 · 1 e 63 · 3 e 69 · 9 69 · 1 69 · 1
Tucson Tinemaha Haiwee Mount Wilson Pasadena	Z. Z.	172.7 172.9 173.8 175.7 175.8	$290 \\ 355 \\ 353 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 \\ 352 $	i 20 11 i 20 12 i 20 14 e 20 11 i 20 13	$ \begin{bmatrix} & 0 \\ [+ & 1] \\ [+ & 3] \\ [- & 1] \\ [+ & 1] \end{bmatrix} $		i 21 47 e 21 52	PP PKP PKP PKP	e 87.6

334 1 40 13 I AL DI L'APA Pasauena 110.0 6 09.1 e 28 46 PcPFKP Riverside e 21 59 PKP₂ Palomar -----Additional readings :--Tananarive SS = 6m.53s. Bombay iE = 9m.2s. Helwan eZ = 12m.24s. Almeria PP = 16m.43s., SKS = 23m.12s., SKKS = 23m.25s., PS = 24m.17s. Granada PP = 16m.38s., iSN = 24m.12s., SS = 30m.11s.Irkutsk PS = 25m.14s. Stuttgart ePPZ = 16m.46s. Strasbourg e = 14m.9s. Paris e = 22m.6s. Scoresby Sund e = 23m.56s. and 35m.19s. Tucson e = 21m.30s., 29m.15s., and 36m.3s. Tinemaha ePPEZ = 25m.34s. Haiwee ePPZ = 25m.35s. Mount Wilson iPPZ = 25m.39s.,  $eP_cP$ , PKPZ = 29m.14s. Pasadena eZ = 21m.6s., iZ = 22m.33s., ePPZ = 25m.39s., iPcP, PKPZ = 29m.10s., eE = 34m.36s.?.Palomar ePPZ = 25m.34s.,  $eP_eP, PKPZ = 29m.4s.$ Long waves were also recorded at Tortosa, Christchurch, Wellington, Arapuni, and La Paz,

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

#### 1943

#### 222

June 14d. 7h. 46m. 48s. Epicentre 38°.0N. 21°.0E. (as on May 22d.).

A = +.7375, B = +.2831, C = +.6131;  $\delta = -6$ ; h = -1; D = +.358, E = -.934; G = +.572, H = +.220, K = -.790.

	Δ	Az.	Р.	0-C.	s.	0-C.	Su	pp.	L.
Sofia Bucharest Kalossa Focsani Florence	5.1 7.4 8.7 9.0 9.4	$\hat{21} \\ 30 \\ 351 \\ 28 \\ 311$	m. s. e 1 22 e 1 58 e 2 37 e 1 48 i 2 28	8. + 2 + 6 P• -25 +10	$   \begin{array}{c}     m. & s. \\     i & 2 & 30 \\     i & 3 & 22 \\     \hline                             $	+10 + 4 - 22	$\begin{array}{c} \mathbf{m. \ s.} \\ \mathbf{i \ 1} \ 36 \\ \mathbf{i \ 3} \ 46 \\ \mathbf{e \ 1} \ 57 \\ \end{array}$	P* S* P	m. i 4·2 e 4·9 4·7 i 4·7
Triest Ogyalla Milan Helwan Chur	$9 \cdot 4$ 10 \cdot 1 11 \cdot 5 11 \cdot 8 12 \cdot 2	$327 \\ 348 \\ 314 \\ 130 \\ 320$	$\begin{array}{cccccccc} e & 2 & 12 \\ e & 3 & 42 \\ & 2 & 47 \\ 1 & 3 & 8k \\ e & 2 & 52 \end{array}$	- 6 - 1 PPP - 6	$\begin{array}{r} e & 3 & 40 \\ \hline 4 & 41 \\ i & 5 & 16 \\ e & 4 & 52 \end{array}$	$-27 \\ -18 \\ +10 \\ -24$	e 3 47 e 4 21	- <u>?</u> - <u>?</u>	e 4.5 5.4 
Ksara Prague Zürich Cheb Basle	$12.8 \\ 13.0 \\ 13.1 \\ 13.6 \\ 13.7 \\ 13.7$	$105 \\ 341 \\ 320 \\ 336 \\ 319$	e 3 21 e 1 43 e 2 48 e 5 127 e 3 12	PPP - 22 ? - 6	e 5 41	ss 	= e 5 21		
Neuchatel Stuttgart Strasbourg Jena Potsdam	$13.7 \\ 13.7 \\ 14.3 \\ 14.5 \\ 15.4$	$316 \\ 326 \\ 322 \\ 336 \\ 341$	e 3 12 i 3 11 e 3 37 e 3 21 e 3 42	$     \begin{array}{r}                                     $	e 5 27 e 6 10 e 6 23 e 6 35	-25 + 4 + 12 + 3	e 5 18 = 3 24 e 3 45	P P	e 7·1 i 7·0 e 7·2
Paris Uccle De Bilt Copenhagen Almeria	$17.2 \\ 17.4 \\ 17.9 \\ 18.6 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ 18.7 \\ $	$315 \\ 323 \\ 327 \\ 345 \\ 275$	e 4 5     e 4 7     i 4 10k     e 4 24	+ 2 + 1 + 2 + 2 + 2	e 7 16 e 7 30 7 36 7 57	$-\frac{3}{0}$ -10 +9			e 10·1 e 8·6 e 9·2
Granada Kew Upsala	$19.5 \\ 20.2 \\ 22.0$	$277 \\ 320 \\ 356$	i 4 27 e 4 34 4 50	- 4 - 5 - 8	$\begin{smallmatrix}&8&3\\e&8&10\\e&8&48\end{smallmatrix}$	$\frac{-3}{-11}$	<u>4</u> 48 	PP 	10.9 e 9.5 e 11.8

Additional readings :---Sofia iEN = 2m.8s. Bucharest iN = 3m.11s., iSE = 3m.36s. Potsdam eSE = 6m.38s. Granada pPP = 5m.6s., iP_cP = 8m.18s.  $\left| \hat{g} \right|$ 

June 14d. 16h. 22m. 21s. Epicentre 40°.9N. 142°.7E. (as on 13d.).

Scale II-III at Hatinohe, Urakawa, Aomori, Hakodate. Epicentre 41°.0N. 142°.5E. Macroseismic area 200-300 km. Shallow. Seismological Bulletin of the Central Meteorological Observatory, Japan, for the year

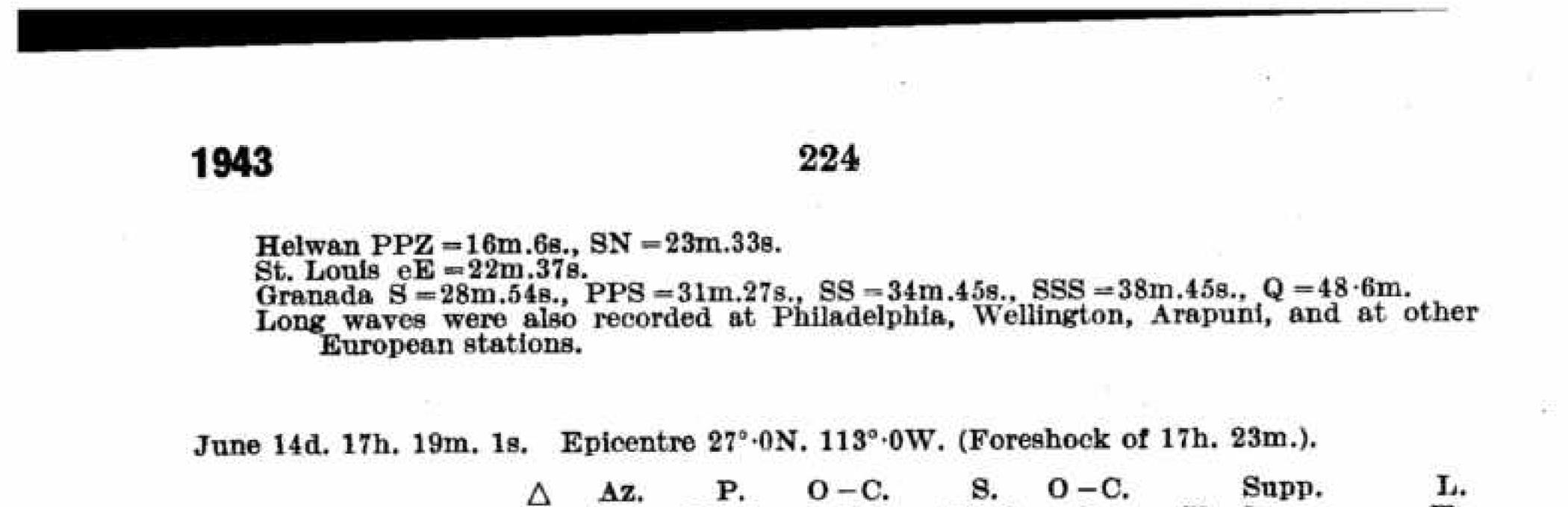
1943, Tokyo 1950, p. 30, macroseismic chart p. 30.

 $A = -6030, B = +4594, C = +6522; \delta = +2; h = -2.$ 

	Δ	Az.	Р.	0-C.	s.	0-C.	Sul	op.	L.
	0	0	m. s.	8.	m. s.	8.	m. s.		m.
Hatinohe	0.9	247	0 21k	+ 1	0 36	+ 2			-
Miyako	1.4	203	0 28	+ 1	0 46	0	-		
Aomori	1.5	267	0 30k	+ 2	0 51	+ 2			
Mizusawa E.	2.1	214	0 41	+ 4	1 9	+ 5			
Sapporo	2.4	335	0 44	. + 3	1 11	- 1		$\rightarrow$	
Sendai	3.0	208	0 51	+ 1	1 29	+ 2	1 34	S*	
Hukusima	3.6	209	0 54	- 4	1 15	$\mathbf{P}_{\mathbf{f}}$			_
Aikawa	4.5	232	$1 \ 14k$	+ 3	2 13	+ 8			
Mito	4.8	202	1 17	+ 2 + 2	2 18	+ 6			
Kakioka	5.1	204	1 22	+ 2	2 31	8*			
Tukubasan	5.1	204	1 21	+ 1	2 29	s. s.	-	· · · · · · ·	
Maebasi	5.3	214	1 27	$^{+1}_{+5}$	2 38	S*			-
Tyosi	5.3	196	1 22	0	2 44	S*	-		_
Nagano	5.5	221	1 31	+ 6	2 25	- 5			
Tokyo Cen. Met. Ob.	5.7	205	1 32	+ 4	2 34	- 1			

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943


223

Hunatu Kohu Misima Osima Shizuoka		∆ 6·2 6·2 6·5 6·6 6·8	Az. 211 213 208 204 211	m. s. 1 46	0-C. 8. P• + 6 - 2 + 1 + 4	S. m. s. 2 59 2 56 3 2 2 57 3 11		m. s	upp.	L. m.
Gihu Nagoya Omaesaki Hamamatu Kameyama		7·2 7·2 7·2 7·3 7·8	$222 \\ 220 \\ 211 \\ 214 \\ 221$	$     \begin{array}{c}       1 & 58 \\       1 & 58     \end{array} $	+ 2 + 9 + 9 + 6	3 25 3 36 3 28 3 40	+12 S• S•			
Toyooka Osaka Kobe Owase Sumoto		8.2 8.4 8.6 8.6 9.0	$232 \\ 224 \\ 226 \\ 219 \\ 226 \\ 226 \\$	$     \begin{array}{cccc}       2 & 6 \\       2 & 17 \\       2 & 15 \\       2 & 28 \\       2 & 28 \\       2 & 28 \\     \end{array} $	+ 3 +11 + 9 P• +15	$   \begin{array}{r}     3 & 45 \\     3 & 53 \\     4 & 25 \\     3 & 58 \\   \end{array} $	+ 7 + 5 S•0			
Siomisaki Muroto Hamada Koti Matuyama		$9.3 \\ 10.2 \\ 10.3 \\ 10.3 \\ 10.6$	$219 \\ 224 \\ 238 \\ 228 \\ 231 \\$	$   \begin{array}{cccc}     2 & 40 \\     2 & 35 \\     2 & 34 \\     2 & 34 \\     2 & 33 \\   \end{array} $	PPP + 4 + 2 + 2 - 3	$     \begin{array}{r}       5 & 14 \\       4 & 33 \\       4 & 34 \\       4 & 43     \end{array} $	SSS + 3 + 4 + 6			
Hukuoka Kumamoto Zinsen Kagosima College		$12.2 \\ 12.5 \\ 12.9 \\ 13.5 \\ 45.3$	$237 \\ 234 \\ 260 \\ 230 \\ 35$	2 55 3 3 3 8 3 16k	-3 + 1 + 1 + 1 + 1	6 28 e 14 53	 9			e 23.8
Andijan Sverdlovsk Tashkent New Delhi Moscow		$51.8 \\ 53.0 \\ 53.7 \\ 54.1 \\ 64.8$	294 317 297 279 323	$ \begin{array}{r} 9 & 10 \\ 1 & 9 & 15 \\ 1 & 9 & 22 \\ \hline 10 & 39 \end{array} $	$-\frac{2}{6}$	$16 55 \\ 17 5 \\ 17 22 \\ 117 22 \\ 116 19 \\ 19 39$	PPS PPS -46 PS			=
Scoresby Sund Upsala Tinemaha Haiwee Logan		$68.4 \\ 69.9 \\ 72.8 \\ 73.5 \\ 73.7 \\ 73.7 \\ $	355 334 56 49	e 25 2 e 11 30 i 11 47 i 11 50	- 2 PeP PeP	e 19 58 e 33 4 e 21 1	- 9 7 - 7	i 11 43 e 21 36	P _c P PS	e 35.0 e 40.6 e 36.6
Mount Wilson Pasadena Copenhagen Riverside Palomar	Z. Z. Z.	74.7 74.7 74.9 75.3 76.0	58 58 334 58 58	e 11 39 i 11 54 e 11 39 e 11 45 e 12 1	$\begin{array}{c} - & 4 \\ P_c P \\ - & 5 \\ - & 2 \\ P_c P \end{array}$	21_40 	+18	i 11 53 e 11 56	$P_cP$	e 33-6
La Jolla Jena Ksara De Bilt Tucson	N.	$76 \cdot 1 \\ 79 \cdot 1 \\ 79 \cdot 7 \\ 80 \cdot 3 \\ 80 \cdot 5$	$59 \\ 331 \\ 306 \\ 335 \\ 56$	e 12 1 e 12 1 e 12 9 i 12 10 e 12 7	PcP - 7 - 2 - 4 - 8	e 22 31 i 22 39	$+\frac{18}{19}$	e 15 14 i 12 26	PP PcP	e 37.6 39.5
Stuttgart Uccle Kew Triest Paris		$81.7 \\ 81.7 \\ 82.5 \\ 82.5 \\ 84.0 $	331 335 338 327 335	i 12 17 a e 12 16 i 12 23 e 12 30	- 5 - 6 - 3 - 3	e 22 51 e 21 33 i 22 34 i 22 58	PS -61 - 8 +16	$\begin{array}{ccccccc} e & 41 & 51 \\ i & 23 & 0 \\ i & 12 & 30 \\ \hline e & 24 & 6 \end{array}$	Q PS	e 45.6 e 39.6 e 36.6 45.6
Florence Helwan Florissant St. Louis Tortosa Almeria Granada		$85 \cdot 1 \\ 85 \cdot 2 \\ 87 \cdot 1 \\ 87 \cdot 3 \\ 91 \cdot 7 \\ 96 \cdot 3 \\ 96 \cdot 4$	327 306 39 39 332 332 333	e 12 41 % i 12 35 e 12 58 i 12 44 e 17 18 i 17 26	+ 2 - 4 + 9 - 6 PP PP	i 23 14 22 57 e 23 20 e 34 39) 27 7 27 6	$-\frac{12}{-9}$	e 22 51 e 12 52 e 23 9 e 17 59 17 42	SKS PcP	e 43.3 e 34.6 55.6 55.5
Additional rea Upsala el identifi Tucson e = Stuttgart e Kew iPP12 28m.37	PN = 28m. SKS Z = 15	25m.10 4s.	51a			5555267.555		s.?. Pha SE = 23m.	ses wr	ongly

Continued on next page.

19.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.



		0	ш. в.	в.	ш. в.	D.	m. n.		
Tucson	5.5	19	i1 5	-20	i 2 20	-10	i 1 17	$\mathbf{P}$	i 3.0
La Jolla	6.9	329	e 1 42	- 3	12 52	-13			
Riverside	7.9	333	e 1 59	0	1324	- 6	100	_	
Mount Wilson	8.4	330	e 2 6	0	e 3 38	- 5			
Pasadena	8.4	329	i 2 10	+ 4	e 3 35	- 8			
Haiwee	10.0	336			14 45	SSS	_		
Tinemaha	11.0	337		-	e 5 12	SSS			

June 14d. 17h. 23m. 9s. Epicentre 27°.0N. 113°.0W. (as at 17h.19m.).

A = -.3486, B = -.8213, C = +.4516;  $\delta = 0$ ; h = +3; D = -.920, E = +.391; G = -.176, H = -.416, K = -.892.

		Δ	AZ.	Р.	0 – C.	S.	0-C.	Sup	p.	L.
			0	m. s.	8.	m. s.	8.	m. s.		m.
Tucson		5.5	19	e 1 23	- 2	(i 2 29)	- 1	i1 38	P.	i 2.5
La Jolla		6.9	329	i 1 55	+10	i3 6	+ 1			
Palomar	Z.	7.1	333	e 1 51	+ 3	i 3 14	+ 4	i 2 1	$\mathbf{P}^{\bullet}$	
Riverside	10010	7.9	333	e 2 0	+1	e 3 34	+ 4	i 2 15	$\mathbf{P}^*$	
Mount Wilson		8.4	330	e 2 6	0	i 3 53	+10	i 2 23	$\mathbf{P}^{\bullet}$	
Pasadena		8.4	329	e 2 4	- 2	i 3 51	+ 8	1 2 22	P*	<u> </u>
Santa Barbara		9.4	324	e 2 28	+10	i 4 22	+15			-
Haiwee		10.0	336	i 1 58	-29	i 4 31	+ 9			
Tinemaha		11.0	337	e 2 41	1	i 5 12	SSS		3	2000
Fresno	N.	11.3	331	e 5 19	SSS	e 8 6	$\mathbf{L}$	-		(e 8·1)
Berkeley		13.4	326	13 13	- 1	e 6 4	SSS			e 6·3
Salt Lake City		13.8	4			-		e 6 30	SSS	e 7·3
Ukiah		14.8	328	e 4 23	+51		\$	(e 6 47)	SSS	e 6·8
Ferndale		16.4	328	e 8 7	SSS					e 8·6
Bozeman		18.7	6	e 4 25	+ 3		Station	e 8 7	SS	e 9.6

Concernant States

m.

Lincoln Florissant St. Louis Chicago Columbia	$   \begin{array}{r}     19 \cdot 3 \\     22 \cdot 3 \\     22 \cdot 3 \\     25 \cdot 5 \\     28 \cdot 3   \end{array} $	40 53 53 47 67	e 5 31 e 5 17 e 5 14 e 9 4 e 11 30	+62 +16 +13 PcP ?	$e \frac{9}{9} \frac{18}{10}$	$+\frac{16}{8}$	e = 19	$ \begin{array}{c} - & e \ 9.7 \\ - & e \ 11.7 \\ PP & e \ 10.9 \\ - & e \ 13.2 \\ - & e \ 15.2 \end{array} $
Philadelphia Ottawa Bermuda Scoresby Sund	$33.8 \\ 34.9 \\ 42.0 \\ 65.2$	58 48 71 22	e 7 7	$+\overline{\underline{12}}$	e 13 15 e 14 21	$\frac{P_c S}{+ 7}$	e 14 21? e 23 35	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

Tueson gives i = 1m.49s. and 1m.57s.

Long waves were also recorded at Santa Clara, Sitka, College, San Juan, De Bilt, Kew, Granada, and Stuttgart.

June 14d. 22h. 54m. 3s. Epicentre 20°.5S. 177°.5W. (as on 1941 April 7d.).

Depth of focus 0.010.

 $\delta = -12$ ; h = +5.A = -.9365, B = -.0409, C = -.3481.;Supp. L. 0 - C.0 - C.s. Р. AZ. m. s. m. m. s. s. m. s. s. 0 0 777  $^{+6}_{-19}$ 17 Auckland 17.6 201-2+1+1+2 $\begin{array}{c} 4 & 12 \\ 4 & 27 \end{array}$ 18 18.8 194 Tuai  $_{\rm ScS}^{\rm pP}$  $\begin{array}{r} \mathbf{i} \ \mathbf{4} \ \ \mathbf{35} \\ \mathbf{15} \ \ \mathbf{48} \end{array}$ ----i7 57 - 3 New Plymouth 19.9 199 -1043 197 21.7 Wellington 49 i 11 46Santa Barbara 77.5



These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

### 1943

#### 225

		Δ	Az.	Р.	о – с.	s.	0 – C.	Śupp.	Ì.
		0	0	m. s.	8.	m. s.	8.	m. s.	m.
Pasadena		78.3	47	i 11 50	- 1	i 21 33	- 4	e 12 35 pP	: <del></del> :
Mount Wilson		78.5	47	e 11 50	- 2			i 12 37 pP	
Palomar	Z.	78.8	49	i 11 53	- 1			e 12 37 pP	
Riverside	022/0	78.8	47	i 11 56	+ 2	-	· · · · · ·	i 12 40 pP	
Haiwee		79.6	45	i 11 59	$\begin{array}{c} + & 2 \\ + & 1 \end{array}$	e 21 50	- 1	i 12 46 pP	
Tinemaha		80.0	44	i12 0	0	e 21 53	- 2	i 12 48 pP	
Tucson		82.5	52	i 12 13	0			e 12 53 pP	e 44·2
Copenhagen		144.1	350	19 25	[+1]			- 19 <del>4 -</del> Maria Mari	•
Ksara		147.6	300	e 19 13	[-18]	<u> </u>		e 19 49 pPK	P
De Bilt		148.4	357	i 19 40	[+ 8]		· · · ·		
Jena		148.8	348	e 19 41	[+ 9]	् <del>र</del>			-
Stuttgart		151.3	350	e 19 39	[+ 3]			i 19 46 pPK	P -
Helwan	z.	152.3	294	e 19 42	(+ 4)			e 20 3 pPK	
Granada	1015	162.5	17	1 20 45	[+54]	44 51	SS	1 21 28 PKP	
Almeria		163.1	15	20 38	[+47]			e 21 26 PKP	

Additional readings :---

New Plymouth S? =7m.49s. Helwan eZ =20m.54s. Granada PP =25m.15s. Almeria e =23m.14s. Long waves were also recorded at Lincoln.

June 14d. Readings also at 0h. (Tacubaya near Ebingen and Stuttgart), 2h. (Tinemaha, Pasadena, Mount Wilson, Riverside, Tucson, Palomar, Florissant, San Juan, Montezuma, Huancayo, La Paz, La Plata, and near Berkeley), 3h. (Pittsburgh, near Andijan, near Ebingen and Stuttgart), 5h. (Kew and near Mizusawa), 6h. (Tinemaha and Tucson), 7h. (Kew, Belgrade, and near Bogota), 9h. (Stuttgart, Palomar, Tucson, and La Jolla), 10h. (La Plata, and near Mizusawa), 14h. (near Mizusawa), 17h. (Palomar, Riverside, Mount Wilson, Pasadena, Tucson, Haiwee, Tinemaha, and near Mizusawa), 18h. (Seattle and Logan), 20h. (Stuttgart, Palomar (2), Riverside (2), Mount Wilson (2), Pasadena (2), Haiwee, Tucson (2), and Tinemaha (2) ), 21h. (near Strasbourg, Jena, Stuttgart, and Ebingen).

June 15d. 11h. 10m. 42s. Epicentre 41°.6N. 142°.0E. (as on 1942 October 25d.).

 Intensity VI at Aomori; V at Urakawa, Hakodate, Mizusawa; IV at Muroran, Obihiro, Sakata; II-III at Hukusima, Mito, Kakioka, and Abashiri.
 Epicentre 41°·1N. 142°·5E. Radius of macroseismic area 300 km. Shallow.
 Seismological Bulletin of the Central Meteorological Observatory, Japan for the year 1943, Tokyo 1950, pp. 31-32. Macroseismic chart p. 31.

A =5910,	B = + .4617,	C = + .6614;	$\delta = -10;$	h=-2;
D = + .616,	E = +.788;	G =521,	$H = + \cdot 407$ ,	K =750.
~				

	Δ	Az.	Р.	0 – C.	S. 0-C.	Supp.	L.
	•	•	m. s.	8.	m. s. s.	m. s.	m.
Aomori	1.2	229	0 32	+ 8	052+11		
Sapporo	1.6	342	0 40a	+10	19 Sr		
Miyako	1.8	180	0 30k	- 2	$0\ 51\ -\ 5$		
Mizusawa	2.6	195	0 44	0	1 12 - 5	18 1	
Sendai	3.4	194	0 56k	+ 1	1 32 - 5	1 27 9	••
Hukusima	4.0	198	1 2	- 2	1 49 - 3		_
Onahama	4.8	192	1 18	+ 3	152 - 20		
Mito	5.4	195	1 19	- 5	2 42 5*		-
Utunomiya	5.4	200	1 21	- 3	$2\ 35\ +\ 7$		1
Kakioka	5.5	194	1 23	-2	2 27 - 3		ं तर
Tukubasan	5.6	196	1 23	- 4	224 - 9		
Maebasi	5.7	205	1 29	+ 1	2 40 + 5	<u> </u>	
Nagano	5.8	213	1 32	+ 3	$2\ 28\ -10$		
Tyosi Tokyo Cen. Met. Ob.	5.9	191	$   \begin{array}{c}     1 & 34 \\     1 & 33   \end{array} $	$^{+3}_{-2}$	2 46 + 6		
Tokyo Cen. Met. Ob.	6·2	198	1 33	- 2	2 34 -14		·
Hunatu	6.6	203	1 22	-19	257 - 1		
Kohu	6.6	204	1 54	$\mathbf{P}^{\bullet}$	3 8 + 10		
Misima	6.9	201	1 43	- 2	37 + 2		
Osima	7.1	198	1 33	-15	2 45 - 25		
Shizuoka	7.2	204	1 52	+ 3	3 18 + 5		



These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943					226		22			
Gihu Nagoya Omaesaki Hamamatu Hikone		∆ 7.4 7.5 7.7 7.8	Az. ° 215 213 204 207 217	P. m. s. 1 53 2 22 2 4 2 11 1 49	0-C. s. + 1 P. + 9 P. - 9	S. m. s. 3 24 3 32 3 33 3 39 3 26	0-C. 8. + 6 + 12 + 10 + 14 - 2	m. s.	рр. 	I
Kameyama Kyoto Toyooka Osaka Kobe		8.0 8.2 8.3 8.6 8.8	$215 \\ 219 \\ 225 \\ 218 \\ 220$	$     \begin{array}{cccc}       2 & 4 \\       2 & 5 \\       2 & 8 \\       2 & 7 \\       2 & 13 \\     \end{array} $	+ 42 ++ 24 ++-+ +	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$^{+ 8}_{+ 5}_{+ 5}_{- 12}_{- 2}$			W 550 500
Sumoto Siomisaki Hamada Muroto Hirosima		$9 \cdot 2 \\ 9 \cdot 6 \\ 10 \cdot 3 \\ 10 \cdot 4 \\ 10 \cdot 5$	$220 \\ 212 \\ 233 \\ 219 \\ 229$	$     \begin{array}{cccc}       2 & 17 \\       2 & 20 \\       2 & 36 \\       1 & 48 \\       2 & 28 \\     \end{array} $	$+ 1 \\ + 1 \\ + 4 \\ - 46 \\ - 7$	$\begin{array}{r} 4 & 20 \\ \hline 4 & 34 \\ 4 & 46 \\ 4 & 42 \end{array}$	+17 +4 +14 +14 +7			
Koti Matuyama Kumamoto Zinsen Kagosima		$10.5 \\ 10.7 \\ 12.6 \\ 12.6 \\ 13.6 \\ 13.6 \\ $	$\begin{array}{r} 223 \\ 226 \\ 229 \\ 255 \\ 226 \end{array}$	2 34 2 36 3 5 3 11 3 18 a	-12 -22 ++2 ++1		SS SSS SSS			
Irkutsk College Calcutta Andijan Sverdlovsk	N.	$27.6 \\ 45.0 \\ 48.5 \\ 51.1 \\ 52.1$	$307 \\ 34 \\ 264 \\ 295 \\ 316$	5 55 8 18 8 50a e 9 10 i 9 17	$+ 4 \\ - 1 \\ + 4 \\ + 3$	i 10 39 i 14 56 i 15 55 16 33	+72+7+9	$     \begin{array}{c}                                     $	PP PP	e 21 22
Sitka Tashkent New Delhi Honolulu Hyderabad	N. E.	$52.5 \\ 52.9 \\ 53.4 \\ 54.1 \\ 58.9$	43 295 277 92 266	$\begin{array}{c} e & 9 & 19 \\ 1 & 9 & 23 \\ e & 9 & 36 \\ e & 9 & 34 \\ 10 & 5 \end{array}$	$^{+2}_{+3}_{+12}_{+5}_{+2}$	i 16 46 i 16 55 e 16 52 18 9	$+ 3 \\ -13 \\ + 1$	$\begin{array}{r} \mathbf{e} \ 11 \ 45 \\ \mathbf{e} \ 17 \ 19 \\ \mathbf{e} \ 11 \ 36 \\ 12 \ 4 \end{array}$	PP PS PP PP	e 25 e 23
Bombay Victoria Moscow Kodaikanal Colombo	Е. Е.	$62 \cdot 3 \\ 63 \cdot 0 \\ 63 \cdot 9 \\ 64 \cdot 3 \\ 64 \cdot 7$	$271 \\ 48 \\ 324 \\ 261 \\ 256$	i 10 28 10 39 i 10 9 e 10 16 10 38	$^{+2}_{+8}_{-28}_{-23}_{-4}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	PS - 3 - 26 + 6 PPS	1 19 42 	s _c s	25 37
Scoresby Sund Ukiah Upsala Saskatoon Berkeley		67.6 68.5 69.1 69.4 69.8	355 56 334 38 57	i 11 2 e 11 11 i 11 10 i 11 16	$+ \frac{1}{5} \\ + \frac{0}{2}$	i 19 59 e 20 3 20 15 e 20 18 e 20 19	$+ 2 \\ - 5 \\ 0 \\ - 4$	e 13 30 e 23 56 i 13 42 i 11 19	PP PP PcP	e 29 e 27 e 33 33 e 32
Santa Clara Bozeman Bergen Tinemaha Logan		70·3 71·4 72·4 72·8 73·6	57 45 340 56 48	i 11 19 e 11 28 i 11 32 i 11 31 e 11 37	+ 2 + 4 + 2 + 4 + 2 + 1 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2	i 20 20 i 20 36 20 45 e 20 14 i 21 3	- 9 - 6 - 8 - 1 4	$i 21 21 \\ 20 58 \\ i 11 44 \\ e 14 27$	PPS PeP PP	e 33 e 34 e 36 e 35
Santa Barbara Copenhagen Salt Lake City Mount Wilson Pasadena	z.	73.6 74.1 74.1 74.7 74.7	A state of the	i 11 50 i 11 41a e 11 50 e 11 50 e 11 43 i 11 42	$P_{c}P_{+1}$ +10 -0	$ \begin{array}{r}  & 21 & 15 \\  & 1 & 21 & 10 \\  & 1 & 21 & 13 \\  & 1 & 21 & 13 \\ \end{array} $	$+\frac{3}{2}$ - 6	$\begin{array}{r} & 14 & 25 \\ e & 15 & 48 \\ e & 11 & 49 \\ i & 11 & 54 \end{array}$	PP PPP PcP PcP	e 36 e 30 e 33
Riverside Riverview La Jolla Palomar Potsdam	z.	$75 \cdot 3$ $75 \cdot 5$ $76 \cdot 1$ $76 \cdot 1$ $76 \cdot 5$	$     \begin{array}{r}       172 \\       58 \\       57     \end{array} $	e 11 45 11 52 e 11 51 e 11 47 e 11 58	- 2 + 4 - 4 + 4	i 21 20 i 21 43	- <u>8</u> - <u>4</u>	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	PeP PS PeP PeP	e 31 e 41
Bucharest Aberdeen Ivigtut Prague Ogyalia	N.	76.9 77.1 77.2 77.8 78.0	$318\\341\\6\\329\\325$	$     i \begin{array}{c}     11 & 58 \\     11 & 59 \\     \hline                               $	$+\frac{2}{2}$ + $\frac{3}{11}$	i 22 7 21 50 e 21 42 21 55 e 21 48 i	PS + 4 - 5 + 2 - 7	$     \begin{array}{c}             i & 22 & 16 \\             e & 31 & 36 \\             e & 22 & 18 \\                                   $	PPS PS	42 36 e 37 e 46
Jena Edinburgh Cheb Kalossa		78-2 78-5 78-6 78-7 78-9	330 341	e 12 1 e 12 8 12 10	$-\frac{2}{-3}$ + 3 + 4 + 5	e 21 55 22 3 e 22 8 e 22 183	-2+2+6+15	$\begin{array}{r} \mathbf{i} \ 12 \ 187 \\ 22 \ 26 \\ 22 \ 29 \end{array}$	PcP ScS	e 37 e 44 e 44

Continued on next page.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

# 1943

#### 227

	Δ	Az. P.	о-с. s. s.		Supp.	L.
Belgrade De Bilt Sofia Stonyhurst Tucson	$     \begin{array}{r}             0 \\             79 \cdot 3 \\             79 \cdot 4 \\             79 \cdot 5 \\             80 \cdot 1 \\             80 \cdot 6 \\         \end{array}     $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	m. s. e 15 16 PP i 12 32 PcP e 15 18? PP e 22 44 PS e 15 29 PP	m. e $46 \cdot 2$ e $37 \cdot 3$ e $34 \cdot 3$ e $31 \cdot 5$
Uccle Stuttgart Strasbourg Triest Kew	80.8 80.9 81.5 81.6 81.7	330 i 12 1 331 e 12 2 326 e 12 1	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccc} 15 & 25 & PP \\ e & 15 & 25 & PP \\ 15 & 10 & PP \\ \hline e & 15 & 32 & PP \\ \end{array}$	e 39·3 e 44·6 e 46·3 e 42·3 e 42·3
Chur Zürich Basle Neuchatel Paris	$82 \cdot 3 \\ 82 \cdot 3 \\ 82 \cdot 5 \\ 83 \cdot 2 \\ 83 \cdot 2 \\ 83 \cdot 2 \\ \end{array}$		30 + 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{1}{16}$ $\frac{1}{31}$ $\frac{1}{7}$	 42·3
Milan Auckland Florence Helwan Arapuni	83.6 83.7 84.2 84.4 85.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	32a - 2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} - & - \\ i & 13 & 8 \\ e & 12 & 54 \end{array} \begin{array}{c} \mathbf{P_c P} \\ \mathbf{P_c P} \\ \mathbf{P_c P} \end{array} $	$   \begin{array}{r}     41 \cdot 9 \\     41 \cdot 3 \\     \hline     \\     43 \cdot 3   \end{array} $
Clermont-Ferrand Chicago Florissant Shawinigan Falls St. Louis	85.6 85.7 86.8 86.9 87.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{ccccccc} 12 & + & 1 \\ 11 & - & 1 \\ 16 & - & 1 \\ 16 & - & 2 \\ 16 & - & 2 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		e 46.1 e 35.8 e 42.3
Seven Falls Ottawa Wellington Christchurch Barcelona	87 ·0 87 ·1 87 ·7 89 ·1 89 ·1	156 12	$\begin{array}{ccc} -& -& -& -\\ & -& 2\\ 52 & & -& 0\\ 47 & -& -& 11\\ 29 & -& 32 \end{array}$	e 23 23 $-4$ 23 10 $\begin{bmatrix} -5 \\ -5 \end{bmatrix}$ 23 18 $\begin{bmatrix} -5 \\ -1 \end{bmatrix}$ e 22 51 $-61$	13 3 P.P	40.3 e 40.3 40.3 40.9 e 45.7
Pittsburgh Tortosa N. Harvard Fordham Philadelphia	$89.9 \\ 90.8 \\ 91.0 \\ 91.7 \\ 92.1$	A second se Second second sec second second sec	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{ccccccc} \mathbf{i} & 16 & 47 & \mathbf{PP} \\ \mathbf{e} & 25 & 8 & \mathbf{PS} \\ \mathbf{e} & 23 & 40 & \mathbf{SKS} \end{array}$	e 50·4 e 41·3 e 48·3 e 36·3
Toledo Columbia Almeria Granada	$93 \cdot 2 \\ 95 \cdot 0 \\ 95 \cdot 4 \\ 95 \cdot 5$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccc} 19 & + & 2 \\ 56 & SKS \\ 22 & - & 6 \\ 29 & + & 1 \end{array}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	e 30 24 ? . 13 44 PeP i 17 16 PP	e 44.3 e 44.5 45.8 45.7

```
CAT PETTOLOGICE CO
                                                    PT TO [ 1 0] 1 11 10
                                                                              14 M 14 M
                                                                                      TV I
                                            + 5
San Fernando
                 E. 97·0
                            334 e 13 40
                                                   e 25 27 +32
                                                                  i 17 37
                                                                              \mathbf{PP}
                                                                                      47.3
                                                  e 24 37 [-1] e 25 21 
e 26 35 {-4} e 29 30
                             23 e 18 6
                    102.4
Bermuda
                                            \mathbf{PP}
                                                                   e 25 21 SKKS e 49.6
                             29 e 19 40
                    114.9
                                            \mathbf{PP}
San Juan
                                                                              PS
                                                                                    e 52·9
                    136.1
                             59 e 22 59
                                           PKS
                                                  e 33 2 PS
Huancayo
                                                                   e 40 8
                                                                              SS
                                                                                    e 64·4
  Additional readings :---
    College eSS = 18m.10s., e = 18m.27s.
    Calcutta iPSN = 16m.30s.
    Sitka ePPP = 12m.30s., i = 19m.5s., iSS = 20m.33s.
    New Delhi PPPN = 12m.15s., iN = 18m.1s., S<sub>c</sub>SN = 19m.42s.
    Honolulu e = 19m.11s., SSN = 20m.15s., SSSN = 21m.27s.
    Hyderabad PSE = 18m.23s.
    Bombay iE = 10m.46s., E = 18m.29s., S_cSE = 19m.23s.
    Scoresby Sund i = 20m.27s.
    Upsala PS = 20m.41s., eSSE = 24m.18s.?, eSSN = 24m.39s.?, e = 29m.18s.?.
    Bozeman e = 28m.51s.
    Bergen e = 24m.31s.
    Logan i = 12m.34s., e = 17m.18s., eS_cS_i = 22m.15s., e = 25m.37s. and 28m.26s.
    Copenhagen 21m.39s. and 26m.7s.
    Salt Lake City e = 28m.47s.
    Riverview eSSE = 26m.0s.
    Potsdam iS_cSEN = 22m.10s.
    Bucharest iSSEN = 27m.22s.
    Jena iP =12m.4s., iZ =12m.23s., iN =12m.27s., eS?EN =22m.18s.?, eN =22m.44s.
    De Bilt iPP = 15m.16s., isS? = 22m.43s., eSS = 28m.48s.
    Stonyhurst SS = 25m.40s.
    Tucson i = 12m.35s., e = 23m.35s.
    Uccle iZ =12m.38s., iN =22m.35s. and 23m.2s., iPS =23m.31s.
```

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

# 1943

#### 228

Stuttgart  $eP_eP = 12m.39s.$ , ePPPZ = 17m.12s., eSPZ = 22m.53s., eQ = 41m.30s.Kew ePPPE = 17m.30s.?, iPSE = 23m.3s., ePSN = 23m.16s., ePPS? = 23m.44s., eSSE = 29m.20s.?,  $eQEN = 34\cdot3m.$ Florence iSKKSE = 23m.23s., iSE = 23m.28s., iPSE = 24m.20s. iPPSE = 25m.5s., iSSE = 29m.48s.Helwan PPNZ = 16m.6s., PPPZ = 18m.3s., SEN = 23m.26s., PSZ = 24m.24s.Clermont-Ferrand ePP = 16m.7s., i = 16m.42s.St. Louis eN = 23m.23s., eE = 28m.56s., iE = 29m.11s.Wellington SKS = 23m.3s., SPP = 24m.30s., SS = 28m.35s., SSS? = 36m.18s.?. Christchurch SS = 29m.24s., SSS = 33m.15s., Q = 35m.59s.Tortosa iN = 25m.20s.Fordham e = 24m.36s. and 25m.42s.

June 15d. 18h. 21m. 42s. Epicentre 14°.6N. 93°.0W.

A = -.0507, B = -.9668, C = +.2505;  $\delta = +2$ ; h = +6; D = -.999, E = +.052; G = -.013, H = -.250, K = -.968.

3		Δ	Az.	P. m. s.	0 – C. s.	S. m. s.	0 – C. s.	m. s.	p. L. m.
Oaxaca Puebla Merida Tacubaya Guadalajara	N.E. N.N. N.	$     \begin{array}{r}                                     $	$304 \\ 312 \\ 27 \\ 310 \\ 303$	e 1 6 i 1 41 i 1 53 i 1 55 e 2 50	$- 4 \\ + 5 \\ + 2 \\ + 2$		• 		
Balboa Heights Mobile Columbia Cape Girardeau Tucson	N.	$14.3 \\ 16.6 \\ 22.1 \\ 22.8 \\ 23.9 \\$	$111 \\ 15 \\ 27 \\ 7 \\ 321$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-86 + 1 + 1 + 1 + 2	e 9 10 i 9 45	$+\frac{12}{15}$	i 5 49	$\frac{1}{2} e \frac{8 \cdot 3}{e 11 \cdot 4}$ $PP e 11 \cdot 7$
St. Louis Florissant San Juan Lincoln Des Moines		$24.1 \\ 24.2 \\ 26.0 \\ 26.3 \\ 26.9 \\$	5 5 78 355 359	i 5 17 i 5 19 i 5 38 e 5 36 e 5 54	-10 + 23 + 39	$\begin{array}{r} e & 9 & 44 \\ i & 9 & 48 \\ e & 10 & 22 \\ e & 11 & 2 \end{array}$	+10 + 13 + 16 +16 SS	e 5 40 i 5 50 i 10 34 (e 11 59)	$\begin{array}{cccc} PP & \\ PP & \\ & 1 & e & 11 \cdot 8 \\ & e & 10 \cdot 7 \\ SSS & e & 12 \cdot 0 \end{array}$
Chicago Georgetown Pittsburgh New Kensington La Jolla	33	$27.5 \\ 28.0 \\ 28.2 \\ 28.4 \\ 28.6$	$     \begin{array}{r}             8 \\             28 \\           $	e 5 48 6 3 e 5 55 (e 6 61 e 5 57	$-\frac{2}{+8}$ $-\frac{1}{-8}$ $-\frac{1}{-8}$	e 10 35 10 59 i 10 37 (e 11 0	+ 5 +21 - 4 () +15	e 6 46 (e 6 42?)	PP e 15·4 PP (e 16·7)
Palomar Riverside Philadelphia Mount Wilson Pasadena	z.	28.6 29.3 29.7 29.9 29.9	$316 \\ 316 \\ 29 \\ 316 \\ 316 \\ 316$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		$e_{10}^{10} 26_{111}^{26}_{7}_{7}_{111}^{11}_{7}$	$-\frac{33}{+1}$ + 3	$i \frac{1}{9} 14$ $i \frac{1}{6} 59$ $i \frac{7}{1} 4$ $e \frac{1}{7} 12$	$\begin{array}{c} \overline{P_eP} & \overline{\hline} \\ PP & e & 12 \cdot 4 \\ PP & e & 13 \cdot 8 \\ PP & e & 13 \cdot 8 \end{array}$
Buffalo Fort de France Salt Lake City Fordham Santa Barbara		$30.7 \\ 30.8 \\ 30.8 \\ 31.0 \\ 31.2$	21 86 333 29 315	i 6 7 e 6 55 e 6 21 e 6 20 e 6 21	$-12 \\ PP \\ + 1 \\ - 1 \\ - 2$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	+12 + 3 + 3 = 8	$     \begin{array}{rrrr}             i & 7 & 7 \\             e & 12 & 55 \\             e & 8 & 25 \\             i & 8 & 4 \\                                  $	$\begin{array}{c} PP \\ SS \\ ? \\ PPP \end{array} \stackrel{f}{=} e 15 \cdot 6 \\ - \end{array}$
Bermuda Logan Huancayo Tinemaha Fresno	N.	$31.3 \\ 31.6 \\ 31.7 \\ 31.7 \\ 32.5$	$50 \\ 334 \\ 146 \\ 320 \\ 318$	e 6 9 1627 e 631 e 627 e 634	-15 + 1 + 4 + 4 = 0 = 0	e 11 24 i 12 38 i 11 41	-7 +63 +4	e 8 17 1 8 20 e 8 5 1 7 38	PPP e 13·4 PPP i 17·8 PPP e 14·4 PP
Harvard Ottawa Lick Vermont Santa Clara		$33 \cdot 4 \\ 34 \cdot 0 \\ 34 \cdot 1 \\ 34 \cdot 2 \\ 34 \cdot 3 \\ 34 \cdot 3$	$30 \\ 22 \\ 317 \\ 25 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 317 \\ 3$	i 6 41 6 48 e 6 50 e 7 35 i 6 50	-1 +2 PP 0	$\begin{array}{r}e&12&6\\12&16\\e&12&36\\1&12&40\end{array}$	+3++3 +20+23	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	PP e 21.3 PP 16.3 ? e 18.1 PPP e 14.7 — e 16.9

Continued on next page.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

19	14	3

.

- <b>18</b> - 18	1 <b>1</b> 1		<b>.</b>	
£D.	<b>4</b> 73			
÷.,	÷.,		1.4	l
1.6.1	1.6	1.1		
-	- 22	6.2	-	ľ
-	-	22	M	

	$\triangle  \mathbf{Az.}  \mathbf{P}_{\mathbf{m}}$	19 21 21 21 21 21 21 21 21 21 21 21 21 21		pp. L. m.
Bozeman Berkeley E. Shawinigan Falls Ukiah Seven Falls	34·5 338 e 6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{ccccc} + & 4 & & - \\ - & 2 & e & 7 & 17 \\ 7 & + & 3 & & 8 & 20 \\ + & 8 & e & 8 & 36 \end{array}$	PP e 17.6 PP e 17.6 PP 19.3 PP e 17.6 PP 19.3
Ferndale E. Halifax Saskatoon La Paz Seattle	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$   \begin{array}{ccc}         ^{2} + 1 & 9 & 5 \\         + 12 & - & - & \\     \end{array} $	$ \begin{array}{c} - & e & 18 \cdot 3 \\ - & e & 20 \cdot 3 \\ PP & \cdot & 19 \cdot 3 \\ - & & 18 \cdot 3 \\ - & (e & 18 \cdot 4) \end{array} $
Victoria Sitka Ivigtut La Plata Honolulu	53·4 333 i9	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$-3$ $\overline{19}541$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
College Scoresby Sund Lisbon Edinburgh Aberdeen	70·0 19 i 11	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$+\overline{16}$ $1\overline{6}$ 18 -11	$\begin{array}{c} \mathbf{PP} & \mathbf{e} & \mathbf{32 \cdot 6} \\ \mathbf{e} & \mathbf{28 \cdot 9} \\ \mathbf{PPP} & \mathbf{35 \cdot 1} \\ \mathbf{P_cP} & \mathbf{39 \cdot 8} \end{array}$
Stonyhurst San Fernando E. Kew Granada Bergen	80·9 54 i 12	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccc} S_{c}S & 37 \cdot 6 \\ PPS & 38 \cdot 3 \\ PS & e & 39 \cdot 3 \\ P_{e}P & 36 \cdot 0 \\ - & e & 40 \cdot 3 \end{array}$
Almeria Paris Tortosa Uccle De Bilt	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$\begin{array}{ccc} P_{c}P & 38 \cdot 3 \\ - & 40 \cdot 3 \\ - & e & 36 \cdot 3 \\ \hline PS & e & 39 \cdot 3 \\ PS & e & 39 \cdot 3 \\ PS & e & 39 \cdot 3 \end{array}$
Clermont-Ferrand Barcelona Neuchatel Strasbourg Basle	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\frac{1}{+10}$ $\frac{2}{-}$ $\frac{2}{-}$ $\frac{-}{-}$ $$	$ \begin{array}{c} - & e & 40 \cdot 4 \\ - & e & 40 \cdot 6 \\ \hline e & 40 \cdot 6 \\ \hline PP & e & 45 \cdot 3 \end{array} $
Copenhagen Stuttgart Zürich Upsala Jena	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{c} -2 \\ -5 \\ -5 \\ +15 \\ 10 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12$	$\begin{array}{r} \mathbf{PS} & \mathbf{41 \cdot 3} \\ \mathbf{PS} & \mathbf{e} & \mathbf{41 \cdot 8} \\ \mathbf{SKKS} & \mathbf{e} & \mathbf{39 \cdot 3} \\ \mathbf{SKKS} & \mathbf{e} & \mathbf{39 \cdot 3} \\ \mathbf{PeP} & \mathbf{e} & \mathbf{40 \cdot 3} \end{array}$
Chur Milan Potsdam Cheb Prague	A set of the set of		$ \begin{bmatrix} -13 \\ -2 \\ -2 \\ 0 \\ +1 \end{bmatrix} = $	$ = \frac{\mathbf{e} \cdot \mathbf{44 \cdot 3}}{\mathbf{e} \cdot \mathbf{44 \cdot 3}} $
Florence Triest Sofia Moscow Bucharest	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} \{+ 1 \} & \mathbf{i} \ 25 \ 18 \\ \{+ 1 \} & - \\ \{+ 2 \} & - \\ \{+ 2 \} & - \\ \{+ 2 \} & - \\ \{+ 2 \} & - \end{array} $	$\begin{array}{c} \mathbf{PS} & -\mathbf{i} \\ -\mathbf{i} & \mathbf{i} \\ -\mathbf{i} \\ $
Arapuni Wellington Christchurch Sverdlovsk Helwan	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} [-69] & - \\ [+6] & e & 32 & 33 \\ [+3] & 27 & 36 \\ PS & e & 18 & 34 \\ [+16] & - \end{array} $	SS 42.3 PS 47.5 PP
Irkutsk Riverview Tashkent New Delhi Calcutta Bombay E. Kodaikanal E.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{bmatrix} + & 5 \end{bmatrix} & e & 19 & 13 \\ PS & e & 31 & 21 \\ [+ & 3] & i & 20 & 33 \\ - & & i & 22 & 57 \\ - & & i & 23 & 48 \\ - & & - & - \\ - & & - & - \\ - & & - & -$	PPS e 54.6 PP =

6.5

For Notes see next page.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

# 1943

## 230

#### NOTES TO JUNE 15d. 18h. 21m. 42s.

Additional readings :---Tucson iP = 6m.13s., i = 10m.6s.St. Louis iSP?Z = 5m.56s.Chicago  $eP_cP = 8m.33s.$ , e = 11m.16s.New Kensington readings decreased by one minute. Philadelphia i = 7m.57s. and 11m.29s.Pasadena  $iP_cPZ = 9m.12s.$ ; iZ = 11m.56s.Buffalo i = 7m.27s., SS = 13m.13s. Fordham i = 11m.58s. and 12m.40s.Logan i = 13m.51s.Huancayo iP = 6m.52s., i = 12m.25s.

Tinemaha  $iP_cPZ = 9m.21s$ . Harvard  $iP_cP = 9m.4s.$ , e = 11m.12s.,  $eP_cS = 13m.13s.$ , eSS? = 14m.24s., e = 15m.44s. $eS_cS = 16m.58s.$ Vermont e = 13m.29s. . Berkeley ePPN = 7m.13s., iSN = 12m.28s.Ukiah e = 15m.51s. Seattle readings reduced by one hour. Sitka i = 20m.2s., eSS = 20m.28s.La Plata SSE = 22m.54s., SSSN = 24m.54s.College eSS = 23m.10s. Lisbon N = 23m.528. Stonyhurst iPS = 22m.47s., eSS = 26m.18s.?, eSSS = 29m.18s.?. Kew ePPN =15m.45s., ePSEN =23m.20s.?, eSSE =27m.50s.?. Almeria PP = 15m.30s, PPP = 17m.35s,  $S_cS = 22m.52s$ , PS = 23m.28s, PPS = 23m.50s. SS = 28m.33s.Upsala ePPN = 16m.31s., eSKSE = 23m.18s., eSS?N = 29m.18s.?, eSSS?E = 33m.18s.?. Florence iPPE = 16m.25s., iSE = 24m.16s., iPPSE = 25m.57s., eSSSE = 34m.28s.Christchurch S = 33m.8s., Q = 42m.50s.?.Irkutsk ePS = 28m.8s. Riverview eE = 36m.54s. Tashkent eSKKS = 27m.41s., iPS = 30m.28s., ePPS = 32m.0s.Long waves were also recorded at Auckland and Belgrade.

June 15d. 18h. 32m. 7s. Epicentre 14°.6N. 93°.0W. (as at 18h. 21m.).

		Δ	Az.	Р.	O - C.	s.	0 – C.
		o	0	m. s.	8.	m. s.	s.
Oaxaca	E.	4.4	304	i1 34	$\mathbf{P}_{\mathbf{g}}$		
Puebla	N.	6.6	312	i 2 2	P*	2000 Barrier	
Merida	N.	7.1	27			i 3 35	S*
Tacubaya	z.	7.6	310		· · · · · · · · · · · · · · · · · · ·	e 3 3	-20
Cape Girardeau	N.	22.8	7	e 5 39	PPP		
Palomar	z.	28.6	316	i6 1	+ 1		
Riverside	Z.	29.3	316	i6 5	- 1		
Mount Wilson	z.	29.9	316	i6 9	- 3		
Pasadena	Z.	29.9	316	i 6 11	- 1		
Tinemaha	Z.	31.7	320	i6 28	+ 1	and the second second	
Bozeman	232.0	34.5	338	16 54	+ 2	e 12 34	+14

June 15d. 19h. 45m. 22s. Epicentre 14°.6N. 93°.0W. (as at 18h.).

		Δ	Az.	Р.	0-C.	8.	0 – C.	Su	pp.	L.
		0	0	m. s.	8.	m. s.	8.	m. s.	201210-01	m.
Oaxaca	N.	4.4	304	e 1 35	$\mathbf{P}_{\mathbf{g}}$	<del>,</del>				
Puebla	N.	6.6	312			e 3 3	+ 5			-
Merida	E.	7.1	27	i 0 32	3					-
Balboa Heights		14.3	111	e 3 38	$\mathbf{PP}$					a later
Columbia		22.1	27	e 5 10	+11	e 9 13	+15	—		e 13·1
Cape Girardeau	N.	22.8	7	e 5 16	+11		_			
Tucson	:8050	23.9	321	15 19	+ 3	e 9 45	+15	i6 2	PPP	e 11·7
St. Louis		24.1	5	i 5 18	0	e 9 45	+11		-	
Florissant		24.2	5	i 5 20	+ 1	i 9 51	+16			
San Juan		26.0	78	e 5 57	+21	e 10 23	+17	—		e 14·0
Des Moines		26.9	359					e 11 47	SSS	e 16.6
Chicago		27.5	8	e6 6	+16	e 10 47	+17	e 9 50	1	e 12·3
Pittsburgh		28.2	21	e6 1	+ 5	i 10 44	+ 3		-	
New Kensington		28.4	21	e 7 441	PPP	e 11 44?	the second se			e 15·3
Palomar	z.	28.6	316	15 59	- 1				-	

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943					2 <b>31</b>					
Riverside Philadelphia Mount Wilson Pasadena Salt Lake City		∆ 29.3 29.7 29.9 29.9 30.8	Az. 316 29 316 316 333	P. m. s. e 6 6 e 6 16 i 6 10 i 6 10 i 6 20	0 - C. s. 0 + 2 - 2 0	S. m. s. e 11 40  e 11 30	0 - C. + $\overline{34}$ + $\overline{7}$	Su m. s. e 9 13 e 6 49 i 6 19 i 9 13 e 11 52	pp. PeP PP PeP	L. m. e 16·8 e 13·6 e 17·3
Haiwee Bermuda Logan Huancayo Tinemaha		$31.0 \\ 31.3 \\ 31.6 \\ 31.7 \\ 31.7 \\ 31.7$	$319 \\ 50 \\ 334 \\ 146 \\ 320$	i 6 20 e 6 29 i 6 27 a	$-\frac{1}{-\frac{2}{0}}$	e 11 7 e 11 39 e 11 8	$-\frac{24}{+4}$ + 29	(e 13 46) e 9 19	sss PeP	e 15.7 e 17.4 e 13.8
Ottawa Vermont Santa Clara Bozeman Seven Falls		$34.0 \\ 34.2 \\ 34.3 \\ 34.5 \\ 37.3$	$22 \\ 25 \\ 317 \\ 338 \\ 25$	$\begin{array}{r} 6 & 48 \\ e & 10 & 10 \\ i & 6 & 51 \\ e & 6 & 48 \\ e & 8 & 50 \end{array}$	$     \begin{array}{c}       0 \\       ? \\       + 1 \\       - 4 \\       PP \end{array} $	$\begin{array}{c} 12 & 18 \\ e & 12 & 32 \\ e & 12 & 26 \\ \hline \end{array}$	+5 +15 +6	$e \begin{array}{c} 8 & 11 \\ e \begin{array}{c} 13 & 7 \\ \hline 7 \\ (e \begin{array}{c} 14 \\ - \end{array} 31) \end{array}$		17.6 e 17.2 e 17.7 e 14.5 18.6
Sitka Scoresby Sund Granada De Bilt, Copenhagen		$53 \cdot 4 \\ 70 \cdot 0 \\ 80 \cdot 9 \\ 83 \cdot 6 \\ 86 \cdot 5$	333 19 54 38 33	$\begin{array}{c} - \\ 12 & 15 \\ i & 12 & 33 \\ e & 12 & 49 \end{array}$	$-\frac{2}{2}$ + 2 + 3	$e \frac{17}{20} \frac{2}{40}$	$+ \frac{7}{14}$ + $\frac{7}{2}$	$     \stackrel{e}{\overset{22}{_{28}}}                                  $		e 27 ·9 e 36 ·9 e 40 ·6
Stuttgart Potsdam Cheb Triest	Z. E.	$87.0 \\ 88.1 \\ 88.5 \\ 91.0$	$40 \\ 36 \\ 39 \\ 42$	e 12 48	<u>0</u> 	e 23 44? e 23 38 e 23 19	+7 -3 [-20]			e 51.6 e 52.6 e 44.6

Additional readings :— Tucson e =10m.54s. Scoresby Sund e =31m.14s, and 31m.42s.

Scoresby Sund e = 31m.14s. and 31m.42s. Long waves were also recorded at Fort de France, Harvard, Ukiah, College, Edinburgh, Aberdeen, and Stonyhurst. 5

		$\Delta$	Az.	Р.	0 – C.	s.	0 – C.	Su	pp.	L.
		0	0	m. s.	<b>s.</b>	m. s.	8.	m. s.		m.
Oaxaca	N.	4.4	304	i 1 45	$\mathbf{P}_{\mathfrak{g}}$					
Puebla	E.	6.6	312	4.420		i 3 10	+12			
Merida	N.	7.1	27	(i 1 55)	+7	( <del>1997)</del> )				
Columbia		$22 \cdot 1$	27	e 5 3	+ 4	e 9 4	+ 6			e 13-1
Cape Girardeau	N.	22.8	7	e 5 4	- 1			e 5 15	$\mathbf{PP}$	
Tueson		23.9	321	i 5 14	- 2	c 9 23	- 7	e 5 48	$\mathbf{PP}$	e 10·7
St. Louis		$24 \cdot 1$	5	i 5 18	0	e 9 39	+ 5	e 10 0	88	· · · ·
Florissant		24.2	5	i 5 19	Ō	i 9 50	+15	e 6 7	PPP	-
San Juan		26.0	78	e 5 57	+21	e 10 49	SS			e 13.6
Des Moines		26.9	359				-	e 11 52	and the second sec	e 18.9
Chicago		27.5	8	e6 0	+10	e 10 42	+12	e 8 19	8	e 11·8
Pittsburgh		28.2	21	e 5 56	Ŏ	e 10 39	-2			
New Kensington		28.4	21	e 7 397	3	e 11 397	the second se	and a		e 17·7
Riverside	-	29.3	316	16 3	- 3			i 9 10	PcP	· · · ·
Philadelphia		29.7	29	e 6 53	PP			e 12 33	SS	e 17·2
Mount Wilson		29.9	316	i6 9	- 3			e 9 11	$P_cP$	
Pasadena		29.9	316	i 6 10	- 2	e 11 8	- 1	e 9 11		e 14·4
Salt Lake City		30.8	333	e 6 19	- ī	e 11 9	$-1\hat{4}$	· · · · ·		e 15.2
Bermuda		31.3	50	e 6 12	-12	e 11 25	- Ĝ	e 10 26		e 15.7
Logan		31.6	334	e 6 23	- 3	e 11 23	-12	e 7 53		e 16·3
Huancayo		31.7	146	e 6 38	+11	e 11 47	+10	e 10 16	2	e 12·9
Tinemaha		31.7	320	i 6 26	î	×		e 9 17	PcP	
Ottawa		34.0	22	e 7 21 ?	+33	e 12 21?	+ 8		A CA	18.3
Vermont		34.2	25		100	~		e 15 25	SSS (	e 17·2
Santa Clara		34.3	317	e 6 51	+ 1	e 12 29	+12			e 17.7
Bozeman		34.5	338	e 6 51	- 1	e 12 22	+ 2			e 16·5
Ukiah		36.1	319	e 9 32	$P_{c}\tilde{P}$	e 12 48	$+$ $\tilde{3}$			e 18·0
Seven Falls		37.3	25	e 8 337	PP			-		17.4
Scoresby Sund		70.0	19		<u> </u>	e 20 33	+ 7			29.6
Stonyhurst		78.7	37	13 21?	9	22 0	- 3	22 27	ScS	36.4

Continued on next page.

۰.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

### 1943

232

		Δ	Az.	Р.	0 – C.	s.	0 – C.	Sup	p.	L.
		c	0	m. s.	8.	m. s.	8.	m. s.		m.
Granada		80.9		(i 12 5)	-12			(12 17)	$P_cP$	(34.6)
Paris		82.7	42	e 12 28	+ 1					42.3
De Bilt		83.6	38	i 12 35k	+ 4	e 23 6	+13			e 41·4
Copenhagen		86.5	33	e 12 50	+ 4	23 11	[ 0]	<u></u>		
Stuttgart		87.0	40	e 12 49	+ 1	e 22 39	1			e 43·4
Potsdam	E.	88.1	36		100	e 23 32	- 5	<u></u>		e 51·3
Triest		91.0	42	e 12 52	-15	e 23 38	[-1]	<del>2000</del> 232	2016	e 45·4

Additional readings :— Merida readings increased by one minute.

Tucson e = 6m.58s., iS = 9m.40s.Logan e = 6m.42s. Stonyhurst SS = 26m.10s. Granada readings reduced by four minutes. Long waves were also recorded at La Paz, Harvard, College, and at other European stations.

June 15d. Readings also at 5h. (Tananarive), 9h. (Florence, Triest, Stuttgart, Bucharest, and Sofia), 11h. (Mizusawa), 14h. (near Tashkent, Andijan, and Stalinabad, New Delhi, and near Bogota), 17h. (Tinemaha, Palomar, Tucson, and Bogota), 18h. (Palomar and Tucson), 19h. (Merida, Tinemaha, Palomar, Tucson, near Florissant, and St. Louis), 20h. (Tucson and Palomar), 21h. (Seattle, Sitka, Tinemaha, and Tucson), 22h. (Ksara, Chicago, Tinemaha, Haiwee, Pasadena, Mount Wilson, Riverside, Tucson, St. Louis, Florissant, and Cape Girardeau), 23h. (Palomar, Pasadena, Mount Wilson, Haiwee, Tucson, Tinemaha, Stuttgart, and Irkutsk).

#### June 16d. 21h. 42m. 7s. Epicentre 34°.7N. 140°.2E.

Intensity V at Katsuura ; IV at Tomisaki, Osima, Yokohama, Misima, Tokyo ; II-III at Titibu, Hunatu, Mito, Maebasi, and Shirakawa.

Epicentre as adopted, macroseismic radius 300 km. Shallow. Seismological Bulletin of the Central Meteorological Observatory, Japan, year 1943, Tokyo 1950.

> $A = -.6330, B = +.5274, C = +.5667; \delta = -1; h = 0;$ D = + .640, E = + .768; G = - .435, H = + .363, K = - .824. $\triangle$  Az. P. O-C. S. O-C.

	0	0	m.	8.	8.	m. s.	8.
Osima	0.7	262	0	18 B	+ 1	0 28	0
Misima	1.1	292	0	23 a	+ 1	0 37	- 2
Tokyo Cen. Met. Ob.	1.1	340	0	23 a	+1	0 38	- 1
Tyosi	1.1	28	0	24 a	+ 2	0 41	$^{+2}_{+3}$
Kakioka	1.5	0	0	30 a	+ 2	0 52	+ 3
Shizuoka	1.5	280	0	27 k	- 1	0 45	- 4
Tukubasan	1.5	357	0	28 a	0	0 46	- 3
Kohu	1.6	305	0	33	+ 3	0 50	- 1
Mito	1.7	7	0	32a	+1		
Omaesaki	1.7	267	0	29	- 2	0 48	- 6
Utunomiya	1.8	351	0	33 a	+ 1	0 55	- 1
Maebasi	1.9	331	0	33	- 1	1 5	+ 6
Hamamatu	2.0	270	0	37 a	+ 2	1 4	+ 2
Onahama	2.3	15	0	54 k	+14	1 16	+7
Gihu	2.6	284	0	49k	+ 5	1 21	+ 4
Nagano	2.6	320	0		- 1	1 13	- 4
Nagoya	2.7	280	0	45	0	1 25	$^{+6}_{+3}$
Hukusima	3.0	4	0	48	- 2	1 30	
Kameyama	3.1	273	0	50	-2 -1 -1	1 25	- 4
Hikone	3.3	280	0	52	- 1	1 25	-10
Owase	3.4	260	0	54	- 1	1 31	- 6
Aikawa	3.6	335	0	57	- 1	1 37	- 5
Sendai	3.6	9	0	56	- 2 - 2	1 27	-15
Kyoto	3.7	276	0	58		1 12	$\mathbf{P}_{\mathbf{s}}$
Osaka	3.8	271	1	2	+ 1	1 42	- 5
	(1	linned	i Sanaa maa	and me			

Continued on next page.

10 C

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1	0	A 1	2	
	J		9	

283

	$\Delta$	Az.	P		O - C.	s.	0 – C.
	0	0	m.	8.	в.	m. s.	8.
Siomisaki	3.9	253	1	0	- 2	1 43	- 7
Kobe	4.1	272	1	5 k	0	1 50	- 5
Wakayama	4.2	263	1	6	- 1	1 51	- 6
Sumoto	4.4	267	1	9 3	- 1	1 57	- 5
Mizusawa	4.5	8	e 1	3	- 8	1 57	- 8
Toyooka	4.5	283	1	8	- 3	20 <del></del>	
Miyako	5.1	15	1	18	- 2	2 10	-10
Muroto	5-2	256	1	29	$^{-2}_{+8}$	2 26	+ 4
Koti	5.6	82	1	25	- 2	2 22	-11
Aomori	6.1	4	1	38	+ 4	) <del></del>	
Hirosima	6.4	269	1	58	P*	-	
Sapporo	8.4	6	2	53	Ps		
Kagosima	8.7	251	2	1 k	- 9		

June 16d. Readings also at 4h. (near Sofia), 5h. (near Tashkent and Stalinabad), 6h. (Johannesburg, Helwan, Stuttgart, Tananarive, Tucson, Pasadena, Mount Wilson, and Tinemaha), 7h. (Huancayo, Almeria, Granada, San Fernando, Tortosa, Kew, De Bilt, and Florence), 11h. (Triest), 12h. (Granada), 14h. (Kew), 17h. (Fort de France), 19h. (near Fresno), 21h. (near Sofia), 23h. (Tacubaya (2) and Mizusawa).

June 17d. 16h. Undetermined shock.

Riverview iZ = 58m.53s. and 60m.35s., iE = 62m.53s., eLN = 69m.42s.Tashkent iP = 60m.42s., iS = 69m.42s.Sverdlovsk iP = 61m.59s.Stuttgart eZ = 68m.12s.?, eL = 116m.30s.Pasadena iPZ = 68m.38s., iZ = 68m.47s., eZ = 70m.35s.Mount Wilson ePZ = 68m.38s.Riverside ePZ = 68m.38s.Tinemaha ePZ = 68m.38s.Irkutsk eS = 68m.42s.Tucson eP = 68m.51s., e = 72m.4s.Harvard i = 69m.21s., and 69m.31s.Fordham e = 69m.25s.Calcutta iN = 69m.25s.Christchurch e = 80m.?.

Arapuni e = 80m.36s.?. Wellington e = 82m.?. Long waves were also recorded at De Bilt and Kew.

June 17d. Readings also at 7h. (La Paz), 10h. (Mount Wilson and Tucson), 14h. (near Mizusawa), 15h. (Irkutsk, Tashkent, Stuttgart (2), Pasadena, Mount Wilson (2), Riverside, Tucson (2), and near Mizusawa), 16h. (Kew), 19h. (Tucson), 22h. (Florissant).

June 18d. 14h. Undetermined shock.

```
Columbia eP?=15m.7s., eS=18m.50s., e=19m.5s., eL=23m.15s.

Tucson iP=15m.8s., eS=19m.33s., eL=22m.35s.

St. Louis eP?N=15m.10s., eS?N=19m.35s.

San Juan eP=15m.19s., e=16m.29s., eL=20m.41s.

Tinemaha ePZ=15m.46s.

Riverside ePZ=15m.54s.

Mount Wilson iPZ=16m.0s.

Pasadena eP=16m.2s., eL=25m.

Huancayo eS=21m.31s., eL=23m.52s.

Bozeman eS=22m.18s., eL=29m.20s.

Ukiah eS=22m.42s., eL=29m.23s.

Scoresby Sund e=31m.14s., eL=49m.37s.

Sitka eS=31m.54s., eL=39m.15s.

Long waves were also recorded at Harvard, Philadelphia, Bermuda, Kew, and Stuttgart.
```



.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

### 1943

#### 234

June 18d. 19h. Undetermined shock. Near Apia. Apia iPE = 24m.18s.k.Auckland S? = 32m.48s., i = 34m.8s., L = 35m.3s.La Jolla ePEN = 34m.51s.Santa Barbara ePZ = 34m.55s.Riverside ePZ = 34m.58s.Pasadena iP = 35m.0s., iZ = 35m.7s., eS = 44m.54s.,?, eLEZ =  $56\cdot2m.$ Mount Wilson iPZ = 35m.2s., iZ = 35m.9s.Palomar ePZ = 35m.3s.Haiwee ePN = 35m.4s.Tinemaha eP = 35m.9s.

Tucson iP = 35m.25s., e = 51m.47s., eL = 58m.47s.Sitka e = 35m.48s., eS = 45m.35s., e = 47m.15s., eL = 56m.9s.Riverview eE = 36m.17s., eLE = 40m.42s.Honolulu eS = 37m.14s., eL = 40m.24s.Stuttgart ePKP?Z = 43m.8s., eL = 100m.12s.Basle e = 43m.22s.Granada PKP = 44m.11s., ePP = 48m.50s., L =  $105\cdot3m.$ Victoria e = 45m.18s.?, L = 59m.Bozeman e = 46m.25s., eL = 61m.28s.Long waves were also recorded at Bermuda, Scoresby Sund, Harvard, and other New Zealand and European stations.

June 18d. Readings also at 5h. (Mount Wilson, Tucson, and Riverside), 7h. (Kew and near Bogota), 8h. (Fort de France and near Mizusawa), 9h. (Pasadena, Mount Wilson, Riverside, Tucson, and near Mizusawa), 10h. (Fort de France), 11h. (Pasadena, Tucson, Mount Wilson, Riverside, Tinemaha, Huancayo, and near La Paz), 16h. (Sitka, Tucson, Pasadena, Mount Wilson, Riverside, Tinemaha, Andijan, Tashkent, Brisbane, Riverview, Bombay, and near Fresno), 17h. (Cheb, Stuttgart, Kew, Sydney, Christchurch, Irkutsk, New Delhi, Calcutta, Pittsburgh, Harvard, Fordham, Pasadena, Mount Wilson, Riverside, Tinemaha, Santa Barbara, and Tucson), 19h. (near Balboa Heights), 20h. (Florence and near St. Louis), 22h. (near Mizusawa).

June 19d. 9h. South Pacific.

Apia iPEZ = 7m.41s.k, iPEN = 7m.51s., iSEN = 8m.21s., iSEZ = 8m.39s. Auckland P? = 14m.0s., S = 16m.48s., L = 18m.42s.Honolulu e = 15m.33s., 16m.57s., and 19m.48s., eL = 23m.15s. Wellington PZ = 15m.37s., e = 17m.30s.?, S = 19m.18s., L = 20m.0s., i = 21m.37s. and 22m.37s.,  $P_cS?Z = 23m.18s.$ ,  $S_cS? = 27m.30s.$ La Jolla ePZ = 18m.22s. Santa Barbara ePZ =18m.22s. Santa Clara ePZ = 18m.22s.,  $iP_eS, S_ePE = 33m.24s.$ , eLE = 45m.36s.Mount Wilson ePZ = 18m.24s., eZ = 22m.22s.Pasadena iPZ = 18m.24s., iZ = 18m.28s., eS = 27m.54s.?, eLEZ = 39.6m. Riverside ePZ = 18m.26s. Palomar ePZ = 18m.31s. Arapuni S = 18m.36s.?, L = 20m.0s.Tinemaha ePN =18m.38s. Tucson iP = 18m.51s., i = 19m.29s., e = 23m.17s., eL = 42m.6s.Ukiah e = 19m.10s. and 27m.16s., eS = 28m.17s., eL = 36m.55s. Bozeman eP = 19m.36s., e = 20m.17s., eS = 29m.47s., eL = 46m.14s.Riverview iSEN = 19m.36s., eLZ = 24m.0s.Salt Lake City e = 20m.16s., eS = 29m.18s., eL = 40m.53s.Granada PKP = 24m.41s., PKP₂ = 24m.59s., PP = 28m.30s., PPP = 31m.31s., SKKS = 35m.1s., SKSP = 38m.58s., SS = 48m.2s., L = 87.9m.Almeria PKP = 26m.31s., i = 26m.41s., e = 29m.35s., i = 49m.37s., L = 88m.49s.**Basle** e = 26m.39s.Paris ePKP = 26m.41s., L = 86m. Stuttgart ePKP?Z = 26m.43s., eL = 83m.Ksara e = 26m.48s. and 30m.6s. Florence ePKPZ = 26m.51s., ePP?N = 30m.2s., eSKP?E = 30m.51s.Helwan ePZ = 27m.0s., eZ = 28m.0s., 31m.0s., and 32m.27s.Bucharest EN = 28m.0s.?. Victoria e = 28m.54s., L = 42m.Sitka eS = 29m.1s., eL = 39m.12s.College eS = 29m.32s., eL = 41m.19s.Pittsburgh eEN = 31m.40s., eLNW = 56m.54s.Huancayo e=32m.2s., eL=48m.12s. San Juan e=32m.22s., eL=54m.27s. Seven Falls e = 35m.18s.7, L = 60m. Scoresby Sund e = 35m.51s., eSS = 48m.8s., eL = 62m.53s. Long waves were also recorded at Christchurch and other American and European stations,

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

## 1943

#### 235

June 19d. Readings also at 2h. (near Balboa Heights), 3h. (near La Paz and Stuttgart), 15h. (Haiwee, Mount Wilson, Tucson, College, and Sitka), 16h. (near Branner), 17h. (Chur), 19h. (near Apia), 21h. (near Apia and near St. Louis), 23h. (La Paz and Tacubaya).

June 20d. 15h. 32m. 50s. Epicentre 40°.8N. 30°.4E.

See Marcel Fouché and Nuriye Pinar: Geological and meteorological study of the Adabazar earthquake of 1943 June 20. Riv. Fac. Sci. Univ. d'Istanbul, Ser. A., Tome VIII, fase 1, 1943, pp. 80-92 with map.

Destruction extended from Hendek to 10 km. west of Ada-bazar ; Geyre, 40 km. south, was not examined. Intensity IX at Ada-bazar. Epicentre 40°.8N. 30°.4E.

> $A = +.6548, B = +.3841, C = +.6509; \delta = -3; h = -2;$ D = +.506, E = -.862; G = +.561, H = +.329, K = -.759.

	$\Delta$	Az.	P. m. s.	0 – C. s.	s. ( m. s.	0 – C. s.	m. s.	pp.	L.
Istanbul Bucharest Focsani Sofia Campulung	1·0 4·8 5·5 5·6 5·9	$285 \\ 319 \\ 334 \\ 292 \\ 320$	i 0 11 i 1 15k e 1 29 i 1 28 e 1 34	$P_{r} \\ + 4 \\ + 1 \\ + 3$	$\begin{array}{c} 0 & 26 \\ 1 & 2 & 12 \\ 1 & 2 & 38 \\ 1 & 2 & 38 \\ 1 & 2 & 54 \end{array}$	s. S. + 8 ++5 *	m. s. i 1 33 i 1 56 i 3 7 i 2 4	P* Pg Sg Pg	m. i 3·0 3·1
Bacau Cernauti Ksara Belgrade Kalossa	$     \begin{array}{r}       6 \cdot 3 \\       8 \cdot 2 \\       8 \cdot 2 \\       8 \cdot 4 \\       10 \cdot 1     \end{array} $	$336 \\ 337 \\ 146 \\ 302 \\ 309$	$\begin{array}{ccccccccc} i & 1 & 39 \\ e & 2 & 1 \\ e & 2 & 2? \\ 1 & 2 \\ 2 & 30 \end{array}$	$^{+3}_{-2}_{-64}_{+2}$	$egin{array}{cccccccccccccccccccccccccccccccccccc$	-24 - 42 + 7	i 1 56 e 4 35 i 4 30	P* Sr SS	 5.6
Helwan Ogyalla Triest Florence Prague	$11.0 \\ 11.2 \\ 13.1 \\ 14.5 \\ 14.5 \\ 14.5$	$175 \\ 313 \\ 297 \\ 286 \\ 315$	i 2 37k 2 24 i 3 10 i 3 30k 3 378	$-5 \\ -20 \\ 0 \\ + 2 \\ + 9$	${\begin{array}{r}1&4&49\\&5&10?\\e&5&44\\i&6&28\\i&6&40?\end{array}}$	$^{+2}_{+18}$ $^{+6}_{+17}$ $^{+29}$	$e \frac{2}{38}$ $i \frac{3}{3} 41$	P PP	e 6.2 e 7.0 i 7.5 e 7.2
Cheb Moscow Chur Milan Ravensburg	$15.7 \\ 15.7 \\ 16.2 \\ 16.2 \\ 16.4$	$312 \\ 15 \\ 299 \\ 294 \\ 304$	e 3 43 1 3 39 e 3 51 1 3 53 e 3 53	$-1 \\ -5 \\ +1 \\ +3 \\ 0$	e 6 57 i 6 19 e 7 7 i 7 13 e 7 14	$^{+18}_{-20}_{+16}_{+22}_{+18}$			e 9·2
Jena Potsdam Ebingen Stuttgart Zürich	$16.5 \\ 16.6 \\ 16.9 \\ 17.0 \\ 17.0 \\ 17.0 \\ 17.0 \\ 17.0 \\ 17.0 \\ 17.0 \\ 17.0 \\ 17.0 \\ 17.0 \\ 17.0 \\ 17.0 \\ 17.0 \\ 17.0 \\ 17.0 \\ 17.0 \\ 17.0 \\ 17.0 \\ 17.0 \\ 17.0 \\ 17.0 \\ 17.0 \\ 17.0 \\ 17.0 \\ 17.0 \\ 17.0 \\ 17.0 \\ 17.0 \\ 17.0 \\ 17.0 \\ 17.0 \\ 17.0 \\ 17.0 \\ 17.0 \\ 17.0 \\ 17.0 \\ 17.0 \\ 17.0 \\ 17.0 \\ 17.0 \\ 17.0 \\ 17.0 \\ 17.0 \\ 17.0 \\ 17.0 \\ 17.0 \\ 17.0 \\ 17.0 \\ 17.0 \\ 17.0 \\ 17.0 \\ 17.0 \\ 17.0 \\ 17.0 \\ 17.0 \\ 17.0 \\ 17.0 \\ 17.0 \\ 17.0 \\ 17.0 \\ 17.0 \\ 17.0 \\ 17.0 \\ 17.0 \\ 17.0 \\ 17.0 \\ 17.0 \\ 17.0 \\ 17.0 \\ 17.0 \\ 17.0 \\ 17.0 \\ 17.0 \\ 17.0 \\ 17.0 \\ 17.0 \\ 17.0 \\ 17.0 \\ 17.0 \\ 17.0 \\ 17.0 \\ 17.0 \\ 17.0 \\ 17.0 \\ 17.0 \\ 17.0 \\ 17.0 \\ 17.0 \\ 17.0 \\ 17.0 \\ 17.0 \\ 17.0 \\ 17.0 \\ 17.0 \\ 17.0 \\ 17.0 \\ 17.0 \\ 17.0 \\ 17.0 \\ 17.0 \\ 17.0 \\ 17.0 \\ 17.0 \\ 17.0 \\ 17.0 \\ 17.0 \\ 17.0 \\ 17.0 \\ 17.0 \\ 17.0 \\ 17.0 \\ 17.0 \\ 17.0 \\ 17.0 \\ 17.0 \\ 17.0 \\ 17.0 \\ 17.0 \\ 17.0 \\ 17.0 \\ 17.0 \\ 17.0 \\ 17.0 \\ 17.0 \\ 17.0 \\ 17.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ $	$314 \\ 320 \\ 303 \\ 306 \\ 301$	i 3 55 i 3 55 e 3 58 i 3 59k e 4 4k	$+ 1 \\ - 1 \\ - 2 \\ + 3$	i 7 7 i 7 6 e 7 19 e 7 17 e 7 17	+ 9 + 6 + 12 + 7 + 7	i 3 58 e 4 28	P PP	e 8.2 9.2 e 9.7 e 8.8
Basle Strasbourg Neuchatel Besançon Copenhagen	17.7 17.8 18.0 18.7 19.0	$301 \\ 305 \\ 299 \\ 298 \\ 328$	e 4 9 e 4 12 e 4 12 e 5 10? i 4 23k	-1 + 1 + 1 + 48 - 3	$\begin{array}{c} e & 7 & 34 \\ i & 7 & 43 \\ e & \overline{8} & 10 \\ 7 & 49 \end{array}$	+ 8 + 15 + 15 + 22 - 6	1 6 50 	ss ss	e 9.4 e 10.5
Clermond-Ferrand De Bilt Uccle Upsala Barcelona	$20.4 \\ 20.6 \\ 20.6 \\ 20.7 \\ 21.3$	$294 \\ 314 \\ 309 \\ 342 \\ 287$	$i \begin{array}{ccccccc} i \begin{array}{ccccccc} 4 & 42 \\ i \begin{array}{cccccccccc} 4 & 43 \\ i \begin{array}{ccccccccccccccccccccccccccccccccccc$	$+ 1 \\ + 0 \\ + 1 \\ - 2 \\ 0$	e 8 37 i 8 40 i 8 36 8 23 i 8 50	$^{+12}_{+11}_{+7}_{-8}_{+7}$	1 5 2 <u>-</u> 5 1	PP PP	e 11.3 e 9.2 10.6 10.0
Paris Tortosa Kew Bergen Sverdlovsk	$21 \cdot 3$ $22 \cdot 6$ $23 \cdot 6$ $25 \cdot 0$ $25 \cdot 3$	$302 \\ 280 \\ 308 \\ 331 \\ 41$	$i \begin{array}{cccc} i & 4 & 50 \\ i & 4 & 56 \\ i & 5 & 14 \\ & 5 & 24 \\ i & 5 & 28 \end{array}$	$ \begin{array}{c} 0 \\ - \\ 7 \\ + \\ - \\ 2 \end{array} $	$i \begin{array}{cccccccccccccccccccccccccccccccccccc$	+ 4- 3+ 1+ 1+ 6		PP PP P	11.8 11.1 e 10.7 e 12.0
Stonyhurst Almeria Toledo Aberdeen Edinburgh	$25.6 \\ 25.8 \\ 26.2 \\ 26.5 \\ 26.6 \\ 26.6 \\ $	$313 \\ 273 \\ 280 \\ 320 \\ 316$	i 5 37 i 5 35 i 5 39 i 5 44 e 5 44	+ 5 + 1 + 1 + 3 + 2	i 10 3 i 10 13 i 10 12 i 10 34 10 15	$^{+}_{+11}^{+}_{+3}^{+}_{+20}_{-}^{+}_{1}$	$6 20 \\ 6 27 \\ 11 43 \\ \overline{6 24}$	PP PP SSS PP	$13.0 \\ 13.7 \\ 12.7 \\ 15.0 \\$
Granada San Fernando Tashkent Stalinabad Lisbon	$26.6 \\ 28.8 \\ 29.2 \\ 29.5 \\ 30.3 \\$	$274 \\ 274 \\ 77 \\ 82 \\ 280$	i 5 43 i 5 59 6 4 i 6 8 6 16k	$+ 1 \\ - 3 \\ - 1 \\ + 1 \\ + 1$	$egin{array}{cccc} i & 10 & 8 \\ i & 11 & 6 \\ 11 & 20 \\ i & 11 & 34 \\ 11 & 17 \end{array}$	-8 + 15 + 22 + 32 + 32 + 2		pP PP pP	$   \begin{array}{r}     13 \cdot 4 \\     14 \cdot 2 \\     \hline     18 \cdot 1   \end{array} $

Continued on next page.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

236

		A	Az.	P. m. s.	0 – C. 8.	S. m. s.	О <del>_</del> С. в.	m. s.	op.	L. m.
Frunse Dehra Dun Scoresby Sund New Delhi Bombay	N. N. E.	32.7 39.7 39.7 39.9 42.3	$72 \\ 90 \\ 336 \\ 93 \\ 109$	e 6 37 e 9 8 e 7 43 e 7 41 i 7 58	+ 1 PP + 7 + 4 + 1	$\begin{array}{r}\\ e & 15 & 58\\ 1 & 13 & 45\\ 1 & 13 & 41\\ 1 & 14 & 17 \end{array}$	$+\frac{5}{2}$	$     \begin{array}{r} - \\                                   $	PP PP PcP	e 22·1 e 19·3 19·6
Hyderabad Irkutsk Ivigtut Kodaikanal Calcutta	E. N.	$47.3 \\ 49.9 \\ 50.0 \\ 51.4 \\ 51.6$	$106 \\ 51 \\ 322 \\ 113 \\ 92$	e 8 25 e 8 53 e 9 0 e 9 10? e 9 28	$^{-12}_{-4} \\ ^{+2}_{+11} \\ ^{+18}_{+18}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-890 + 27	$\begin{array}{c} - \\ e & 20 & 12 \\ & 20 & 10 \\ i & 19 & 33 \end{array}$		$\begin{array}{r} 23 \cdot 1 \\ e \ 21 \cdot 2 \\ 25 \cdot 3 \\ 1 \ 23 \cdot 7 \end{array}$
Colombo Halifax Seven Falls Vermont Harvard		$55.4 \\ 65.3 \\ 68.0 \\ 70.9 \\ 71.2$	$114 \\ 309 \\ 314 \\ 313 \\ 310$	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	SP 	$\begin{array}{r} e & 19 & 34 \\ 19 & 59 \\ e & 20 & 45 \end{array}$	+ 5- 3+ 9	$e_{24} \frac{167}{121}$		33·2 33·2 e 33·4 e 37·2
Ottawa Bermuda Fordham College Buffalo		71.7 73.1 73.6 74.7 75.1	$315 \\ 298 \\ 310 \\ 0 \\ 314$	$\begin{array}{cccc} 11 & 27 \\ e & 11 & 41 \\ e & 11 & 40 \\ e & 11 & 47 \\ 12 & 35 \end{array}$	$^{+}_{+} \begin{array}{c} 1\\7\\+\\+\\+\\4\\+49 \end{array}$	$\begin{array}{cccc} 20 & 51 \\ e & 21 & 1 \\ e & 21 & 10 \\ e & 21 & 22 \\ e & 23 & 45 \end{array}$	$+ \begin{array}{c} 6 \\ 0 \\ + \\ 3 \\ + \\ 3 \\ ? \end{array}$	$\begin{array}{r} 25 & 40 \\ e & 16 & 6 \\ e & 16 & 10 \\ \hline e & 15 & 0 \end{array}$	SS PPP PPP	35.2 e 31.4 e 33.2 e 35.4
Pittsburgh Chicago Sitka Columbia San Juan		77.3 80.5 81.3 82.4 83.0	$313 \\ 314 \\ 353 \\ 309 \\ 288$	e 12 25 e 12 34	$+\frac{5}{6}$	e 21 50 e 21 20 e 22 35 e 22 42 i 22 46	$^{+2}_{-62}_{+5}_{+1}_{-1}$	e 23 20 e 28 15	PS SS	e 37 ·9 e 37 ·3 e 34 ·0 e 44 ·6 e 34 ·8
Florissant St. Louis Bozeman Victoria Logan		$84.1 \\ 84.2 \\ 87.2 \\ 88.1 \\ 91.0$	$317 \\ 317 \\ 334 \\ 343 \\ 333$	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$+ \frac{2}{2} + \frac{10}{3}$	e 22 57 e 23 0 e 23 31 23 32 e 24 12	-1 + 1 + 3 + 5 + 9	e 23 21 e 23 21 e 29 37 e 25 4	s ss ps	e 41.3 e 36.4 42.2 e 37.0
Salt Lake City Ukiah Tinemaha Haiwee Santa Clara		$91.9 \\ 96.9 \\ 97.3 \\ 98.1 \\ 98.2$	332 340 335 335 338	$\begin{array}{c}\\ e & 13 & 39\\ e & 13 & 44\\ e & 17 & 46 \end{array}$	+ 3 $+ 4$ PP	e 23 44	د 1 1	$e \frac{25}{26} \frac{17}{20}$ $e \frac{26}{20} \frac{20}{20}$	PS PS SS	e 41.9 e 44.5
Berkeley Tucson Mount Wilson Pasadena	z.	98.6 99.0 99.9 100.0	338 328 334 334	e 19 38 e 13 46 e 13 51	PPP + 2 + 3	 e 25 38	+18	e 26 33 e 26 46 i 17 51 e 18 5	PS PS PP PP	e 45·3 e 39·8

e 28 8 PS -Pasadena 100.0 994 * * 6 99.0 e 41.5 109.7 263 Huancayo 3 i 34 25 ScSPKP e 62.5 133-1 102 i 12 59k Riverview Additional readings :---Bucharest  $iP_{g}EN = 1m.42s$ . Focsani iEN = 2m.9s., iN = 2m.23s., iE = 2m.45s.,  $iS^N = 2m.57s.$ Sofia iE = 2m.2s, and 2m.21s. Bacau iE = 2m.45s, and 2m.48s. Belgrade i =1m.21s., 1m.34s., 1m.37s., 3m.12s., and 3m.22s. Ogyalla eE = 4m.18s., SN = 5m.24s.Florence ipPZ = 3m.34s., iPPPZ = 3m.49s., iSS = 6m.43s. Jena iS = 7m.10s.?. Stuttgart iS = 7m.23s., iZ = 8m.10s.Clermond-Ferrand i = 4m.50s. Upsala iE = 5m.43s., iN = 5m.48s., eE = 8m.10s.?, SN = 8m.30s.Tortosa SSN =10m.5s. Kew ePPPEZ = 5m.58s., ePcP = 9m.6s., eSS = 10m.0s., eSSS = 10m.16s. Bergen SN =10m.3s., eE =10m.10s., SS =11m.6s. Stonyhurst 6m.30s., i=10m.20s. and 10m.40s., iSSS=11m.21s., 12m.30s. Almeria pP = 5m.53s., sP = 6m.5s.,  $P_cP = 8m.53s.$ ,  $pP_cP = 9m.23s.$ , sS = 10m.38s.,  $P_cS = 10m.38s.$ 12m.34s.,  $pP_cS = 12m.59s.$ ,  $sS_cP = 13m.12s.$ Aberdeen iEN = 10m.19s., iE = 12m.39s.Edinburgh  $SS = 11m.23s., S_cS = 16m.32s.$ Granada  $P_cP = 8m.49s.$ , sS = 10m.38s.Lisbon N = 13m.22s, and 16m.57s. New Delhi SSSN =16m.51s. Scoresby Sund i = 9m.31s. iSS = 16m.43s. Bombay sSE = 14m.37s., SSE = 17m.40s.,  $S_cSE = 17m.57s.$ Calcutta iSSSN = 20m.46s.Vermont e = 25m.12s., eSSS = 28m.47s.



These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

## 1943

237

```
Buffalo ePP = 13m.17s., e = 14m.15s. and 19m.35s.
Sitka e = 27m.41s.
San Juan e = 24m.32s.
St. Louis iN = 23m.50s.
Salt Lake City e = 33m.6s.
Berkeley ePPE = 19m.41s.
Tucson e = 16m.50s., ePP = 17m.45s., e = 29m.22s., eSSS? = 35m.50s.
Riverview iE = 25m.56s.
Long waves were also recorded at Tananarive, Honolulu, Philadelphia, Arapuni, Auck-
      land, and Christchurch.
```

June 20d. 16h. 47m. 55s. Epicentre 40°.8N. 30°.4E. (as at 15h.).

	∆ Az	me	0 – C. s.	S. m. s.	0 – C. s.	Sup m. s.	op.	<b>L</b> . m.
Istanbul Bucharest Focsani Sofia Campulung	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$     \begin{array}{r}         0 & 10 \\         e & 1 & 158 \\         e & 1 & 29 \\         e & 1 & 358 \\         e & 1 & 358   \end{array} $	P 0 + 4 P* + 2	$\begin{array}{cccc} 0 & 25 \\ i & 2 & 12 \\ e & 2 & 27 \\ i & 3 & 5 \\ \hline \end{array}$	S. S.	i 1 30 e 1 33	P* P*	2·8 3·4
Bacau Cernauti Ksara Belgrade Kalossa	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	e 2 47? e 2 1 e 2 3	P* Pg - 2 - 3 - 1	e 3 38 e 4 22 e 3 45 (1 4 24)	s• + 2 - 1	$\begin{bmatrix} -\\ -\\ 1 & 2 & 43\\ (e & 2 & 35) \end{bmatrix}$	PP.	3.8 4.2 e 4.1
Helwan Z. Ogyalla Triest Florence Prague	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8 (e 2 359 1 3 9 6 e 3 13	() - 4 = 9 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1	4 50 e 6 12	$+ \frac{3}{-}$ + 1	(2 53) e 6 29	PP SS	
Moscow Chur Milan Jena Potsdam	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	e 3 50 e 3 537 e 3 53	$- \begin{array}{c} 6\\0\\+ \\- \\+ \\3\\+ \end{array}$	6 20 6 48	$-\frac{19}{-3}$			e 9.6 e 10.1
Stuttgart Zürich Basle Strasbourg Neuchatel	$\begin{array}{cccc} 17 \cdot 0 & 30 \\ 17 \cdot 0 & 30 \\ 17 \cdot 7 & 30 \\ 17 \cdot 8 & 30 \\ 17 \cdot 8 & 30 \\ 18 \cdot 0 & 29 \end{array}$	$   \begin{array}{r}       e 4 & 13 \\       e 4 & 8 \\       5 & e 4 & 13   \end{array} $	$^{+12}_{-12}_{+20}$	e 7 5	- 5 	e 7 19	-	e 9.8
Copenhagen Clermont-Ferrand Uccle Upsala Sverdlovsk	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-4 +1 +2 -3		+7 +7 +7 +7			e 10.5 e 10.4
Additional reading Bucharest iZ = 1 Focsani eS* = 21 Kalossa iN = 4m Ogyalla readings Long waves were	m.37s., iF n.49s., SrE .36s. All decreased e also recor	=3m.4s. readings ha by 3m. ded at Ber	we been gen and	reduced t De Bilt.		0s.		
	500, $B = -$	entre 118 2369, C = .970;	2031	; ð=				
Rio de Janeiro La Plata E. N. San Fernando Almeria	$ \begin{array}{r}     \begin{array}{c}             29 \cdot 9 & 24 \\             45 \cdot 9 & 23 \\             45 \cdot 9 & 23 \\             45 \cdot 9 & 23 \\         \end{array} $	e 6 8 8 327 8 26 8 e 8 49	8.	S. m. s. e 11 18 15 149 i 15 42 e 16 6	8. + 9	Sup m. s. i 11 22 i 0 203 i 0 44 e 10 29 i 0 57	PP PPP PPP PPP PP	L. m. 1 12.8 21.4 23.9 23.4
Granada Lisbon Toledo La Paz Tortosa	$\begin{array}{cccc} 49 \cdot 7 & 1 \\ 50 \cdot 2 \\ 52 \cdot 2 \\ 52 \cdot 6 \\ 52 \cdot 6 \\ 54 \cdot 0 & 1 \end{array}$		$+ 6 \\ - 5 \\ - 3 \\ + 3 \\ 0$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-17 + 3 + 8 PPS + 2	10 47 9 07 	PP PP PP	24.7 23.9 22.8 23.4 26.7

(0)



These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

4	a	A	9
	3	42	J

#### 238

	Δ	Az. P. . m. s.	0 – C. s.	S. 0-C. m. s. s.	m. s.	p. L. m.
San Juan Tananarive Florence	59.5 59.5 59.9	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+ 5	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$e \begin{array}{c} 12 & 7 \\ 22 & 25 \end{array}$	PP e 25.2 SS 29.3
Huancayo Helwan	$59.9 \\ 60.2$	262 e 10 9 46 e 10 11	-1	$e \begin{array}{ccc} 18 & 21 & 0 \\ 18 & 37 & +12 \end{array}$	e 10 20 e 10 32	pP e 24.7 pP
Milan Neuchatel Bogota Basle Chur	$60.7 \\ 61.5 \\ 61.9 \\ 62.1 \\ 62.1$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccc}  & + & 6 \\  & - & 2 \\  & + & 2 \\  & + & 4 \\ \end{array} $	$\begin{array}{c} 19 \ 33 \ +61 \\ \hline \\ \hline \\ \end{array} \begin{array}{c} \\ \end{array} \end{array}$	e 10 35	$\stackrel{\mathbf{pP}}{=} \stackrel{28 \cdot 6}{=}$
Paris Zürich	$62.1 \\ 62.3$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- 2	e 18_46 - 3	e 22_44	SS 30·4
Triest Strasbourg Stuttgart	$62 \cdot 4 \\ 63 \cdot 1 \\ 63 \cdot 7$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$^{+64}_{+16}_{-6}$	11854 + 1 e 190 - 10	e 13 4	$\frac{-}{PP} e \frac{28 \cdot 4}{e 31 \cdot 4}$
Belgrade Uccle Kalossa	$64 \cdot 1 \\ 64 \cdot 4 \\ 65 \cdot 2$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{c} & & 0 \\ + & 3 \\ + & +11 \end{array}$	$e \begin{array}{ccc} 19 \ 18 \\ 19 \ 16 \end{array} \begin{array}{c} + 4 \\ - 2 \end{array}$	e 23 30 23 18 e 11 16	$\begin{array}{ccc} \mathrm{SS} & \mathrm{e} & 34 \cdot 6 \\ \mathrm{SS} & & 28 \cdot 4 \\ \mathrm{P} & - \end{array}$
Bermuda Ksara	65·4 65·6	314 e 10 41 44 e 11 0	-6 + 12	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	=	e 27·1
Cheb De Bilt Ogyalla	65.8 65.8 65.9	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		e 19 37 + 2 i 19 36 + 1	i 23 50	
Jena Prague	66·3 66·4		the second se	e 20 26? PPS		e 26.4
Potsdam Copenhagen	67.7 70.8 73.6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	i +25 0	e 19 567 - 2 20 34 - 1	$\begin{smallmatrix}e&20&&1\\&24&57\end{smallmatrix}$	S e 32.4 SS 33.4
Bergen Harvard Upsala	75.4 75.8	$\begin{array}{r}9\\321&i11&46\\16&e12&26\end{array}$		$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	e 21 56	$\begin{array}{c} = & e & 31 \cdot 1 \\ e & 34 \cdot 4 \\ PS & e & 34 \cdot 4 \end{array}$
Fordham Philadelphia Seven Falls	76-1 76-5 77-4	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	_0	$e 21 36 + 1 \\ e 21 38 - 1 \\ e 21 50? + 1$	e 23 6	PPS 31.8 
Vermont Columbia	77.5 78.2			$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	e 26 44	$\frac{32.4}{6.32.8}$
Ottawa Pittsburgh Buffalo	79-5 80-0 80-3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-1 + 1 + 43	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$= {}^{37.4}_{e 37.9}$
Scoresby Sund Chicago	82·3 85·9	$\begin{array}{r} 313 \\ 357 \\ 314 \\ e \\ 22 \\ 11 \\ \end{array}$		$e 21 52 - 48 \\ e 23 . 8 - 8$	e 27 51 e 27 57	SS e 37·3 SS e 35·3
St. Louis Florissant Bombay	86.8 86.9 E. 90.8			$\begin{array}{cccccccccccccccccccccccccccccccccccc$	e 23 23 e 23 58	$\begin{array}{c} \mathbf{S} \\ \mathbf{PS} \\ \mathbf{SSS} \\ \mathbf{45\cdot4} \end{array}$
Tashkent Kodaikanal	E. 93.5	48 e 13 18	+_3	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	e 33 35 i 25 41	SSS 45.4 PS
New Delhi Dehra Dun Tucson	N. 96.6 N. 97.6 101.9	60 e 29 39	· · · · · · · · · · · · · · · · · · ·	i 25 1 + 9	31 41 e 32 29 e 18 9	$\begin{array}{r} \text{SSP} &\\ \text{SSP} & \text{e} \ 34 \cdot 7\\ \text{PP} & \text{e} \ 43 \cdot 1 \end{array}$
Bozeman Logan	103-2 103-6	314 —	- ++0	$\begin{array}{c} e & 24 & 40 & [- & 2] \\ e & 27 & 18 & PS \end{array}$	e 18 9 e 33 46 e 33 44	$\begin{array}{r} PP & e \ 43 \cdot 1 \\ SSP & e \ 45 \cdot 9 \\ SSP & e \ 47 \cdot 1 \end{array}$
Calcutta Haiwee	N. 105.7 108.1 108.2	70 304 (e 18 38	ほうし いぞう ちょう くろうや	i 26 12 + 4	i 28 59	PPS
Pasadena Victoria Sitka Riverview	108-2 111-6 116-4 132-5	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	1 1	$\begin{array}{ccccccc} e & 25 & 5 & [ & 0] \\ e & 28 & 50? & PS \\ e & 29 & 41 & PS \end{array}$	e 21 41 e 35 0 e 36 39	PPP e 45·4 SS 49·4 SSP e 52·3
THILTION	104 0	100			e 39 26	SS e 61.0

Additional readings :---

La Plata E = 18m.26s.?, N = 9m.20s.

San Fernando SSE = 18m.47s.

Almeria pP = 9m.14s., sP = 9m.28s.,  $pP_cP = 10m.33s.$ , PPP = 12m.3s.,  $P_cS = 14m.5s.$ , sS = 16m.36s.,  $S_cS = 18m.23s.$ , SS = 19m.43s., SSS = 21m.30s.Granada iSS = 19m.39s.

Lisbon SSE = 19m.59s.

Tortosa PPPN =12m.21s., iN =17m.50s., SSE =20m.58s.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

## 1943

#### 239

```
San Juan ePPP = 13m.27s.

Huancayo e = 12m.49s.

Helwan eZ = 11m.40s.

Stuttgart eSS = 22m.56s.?, eQ = 28m.44s.?.

Belgrade e = 10m.44s. and 12m.6s.

Uccle SSE = 23m.25s.

De Bilt iE = 27m.6s.

Upsala eSSN = 26m.3s.

Philadelphia e = 25m.52s.

Vermont e = 26m.14s.

Buffalo e = 13m.25s., 13m.29s., 13m.55s. and 14m.11s.

Scoresby Sund e = 28m.17s.
```

St. Louis e = 23m.2s. Bombay iE = 40m.35s. New Delhi iN = 32m.33s. Tucson e = 19m.48s. and 22m.49s. Bozeman e = 39m.53s. Haiwee reading has been increased by 1m. Pasadena eSZ = 27m.20s.?. Sitka e = 38m.59s. Long waves were also recorded at College, New Zealand, and other European stations.

June 20d. Readings also at 2h. (near Mizusawa), 5h. (Bombay and Kodaikanal), 10h. (near Ebingen and Stuttgart), 12h. (Tacubaya), 13h. (Tashkent, Stalinabad, New Delhi, and Stuttgart), 15h. (Istanbul), 16h. (Istanbul, Arapuni, Christehurch, Wellington, and near Yalta), 17h. (Istanbul and near Yalta), 18h. (Basle, Copenhagen (2), Stuttgart, Istanbul, Husan, Miyazaki, Kumamoto, Hamada, Koti, Kobe, Bogota, Berkeley), 19h. (Istanbul, near St. Louis, and near Branner), 21h. and 23h. (Istanbul).

June 21d. 10h. 12m. 12s. Epicentre 41°.9N. 143°.6E. Depth of focus 0.005. (as on 1942 Aug. 8d.).

Intensity IV at Obihiro and Urakawa; II-III at Hatinohe. Radius of macroseismic area 200-300km. Epicentre 40°.0N. 144°.6E. depth 20km. Seismological Bulletin of Cent. Met. Obs. Japan for 1943, Tokyo, 1950, p. 33, with macroseismic chart.

> A = -6009, B = +4430, C = +6653;  $\delta = -5$ ; h = -2; D = +593, E = +805; G = -536, H = +395, K = -747.

	Δ	Az.	Р.	0 – C.	S. 0-C.	L.
	•	o	m. s.	8.	m. s. s.	m.
Sapporo	2.0	305	0-37 a	+ 5	1 11 + 14	3 <u></u> 3
Hatinohe	2.1	229	0 34 a	Ŏ	054 - 5	-
Aomori	2.4	243	0 41	+ 3		_
Miyako	2.6	208	0 42	÷ ĩ	1 13 + 1	3 <b></b>
Mizusawa	3.4	216	0 <b>49</b>	- ŝ	$\hat{1}$ $\hat{2}\hat{7}$ $ \hat{5}$	2 <b></b>
Sendai	4.2	211	1 0a	- 3	1 48 - 4	
Hukusima	4.8	212	1 8	- 4	$\hat{2} \hat{6} - \hat{1}$	
Onahama	5.4	204	1 14	- 6	$\tilde{2}$ 11 $-11$	
Aikawa	5.6	229	1 23	ŏ		
Mito	6.0	205	<b>1 29</b>	+ ĭ	2 32 - 5	
Utunomiya	6.1	210	1 27	- 3	2 37 - 2	
Kakioka .	6.3	207	1 26	- 6		_
Tukubasan	6.3	207	1 27	- 5	2 36 - 8	-
Maebasi	6.5	214	1 35	ŏ	243 - 6	_
Tyosi	6.5	200	1 42	+ 7	$\tilde{2} \ \tilde{4} \tilde{1} \ - \ 8$	<u></u>
Nagano	6.7	221	1 35	- 3	3 12 +18	
Tokyo Cen. Met. Ob.	6.8	207	1 47	+ 8		
Hunatu	7.4	213	1 48	ŏ	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	
Kohu	7.4	214	<b>1 49</b>	+ ĭ	3 11 °Õ	
Misima	7·7	210	î 3 <b>4</b>	-18	<b>3 9</b> -10	

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

240

		Δ	Az.	P. m. s.	O −C. s.	S. m. s.	0 – C. s.	L. m.	
1000000000000		0	0.00	한 것이 같아요. 그는 것을 많아요.			524		
Osima		7.8	207	1 53		0.05	1		
Shizuoka		8.0	212	2 19	+23	3 25	- 1	- 322	
Gihu		8.4	222	$2 \\ 2 \\ 37$	+ 2	3 34	- 2		
Omaesaki		8.4	212	2 37	+35				
Nagoya		8.5	220	2 4	+ 1	4 4	+26		
Hikone		8.8	224	1 51	-16		-		
Kameyama		9.0	221	2 6	- 4	2 <del></del>			
Toyooka		9.3	230	1 49	-25	3 5	-55		
Osaka .		9.6	224	2 11	- 7	4 22	+17		
Kobe		9·8	$\tilde{2}\tilde{2}\tilde{5}$	3 23	+62	5 6	+56		
Trati		11.5	227	2 41	- 3	6 12	$\mathbf{L}$	(6.2)	
Koti		13.8	257	3 17	+ 3				
Zinsen		44.1	35	0 11	· _	e 14 32	+ 1	e 25·1	
College		69.3	335			e 17 48?	. 3		
Upsala Tinemaha	z.	71.6	57	i 11 17	+ 1		- <u>- 1</u> 0		
3348338 1000	2122	10.525102		4 11 10	- 2		<u></u>		
Haiwee	z.	72.4	57	i 11 19	- 2				
Mount Wilson	z.	73.6	59	i 11 26		3 <u>-</u> 8a		e 35.8	
Pasadena	z.	73.6	59	e 11 27	- 1	_	-	0 00 0	
Riverside	z.	74.2	59	e 11 30	- 2		2,423		
Copenhagen		74.3	335	11 34	+ 2 + 1		~	a 10.9	
Uccle		81.1	336	e 12 11	+ 1	e 33 34	Q	e 40·8	
Stuttgart		81.2	332	1 12 12	+ 2			e 44·2	

Long waves were also recorded at Sitka, Christchurch, and other European stations.

- June 21d. Readings also at 1h. (near Berkeley), 2h. (2) and 4h. (2) (Istanbul), 5h. (near Berkeley), 6h. (La Paz, Tacubaya, and near Bogota (2)), 7h. (near Bogota and near Mizusawa), 9h. (Mount Wilson, Riverside, Tucson, and near Berkeley (2)), 12h. (Istanbul), 13h. (Istanbul and near La Paz (2)), 14h. (near Mizusawa), 15h. (Istanbul), 16h. (Pasadena and Tucson), 18h. (Istanbul, and near Mizusawa), 22h. (Basle), 23h. (Istanbul).
- June 22d. 1h. Undetermined shock. Japan. Mizusawa ePEN = 46m.53s., SN = 47m.31s. Irkutsk e = 51m.56s.? and 56m.52s.?. Sverdlovsk iP = 55m.16s. Tashkent eP = 55m.25s.

```
Mount Wilson eZ = 57m.29s.
Tucson e = 58m.0s.
Riverside eZ = 58m.7s. and 58m.34s.
Stuttgart eZ = 58m.16s., eQ = 90m.
Basle e = 58m.24s.
Long waves were also recorded at other European stations.
```

June 22d. 19h. Undetermined shock. Central America. Tacubaya PE = 56m.23s. Merida eN = 58m.16s. Tucson eP = 60m.33s., eP_cP = 63m.33s., eL = 69m.29s. Palomar cPZ = 61m.14s. Riverside ePZ = 61m.21s., iZ = 61m.31s., iP_cPZ = 64m.10s. Pasadena iP = 61m.25s., iZ = 61m.37s., eP_cPZ = 64m.11s., eLN = 74m. Mount Wilson iPZ = 61m.26s., iZ = 61m.36s., iP_cPZ = 64m.11s. Haiwee iP = 61m.36s. Tinemaha iP = 61m.41s., iZ = 61m.52s., iP_cPZ = 64m.18s. Ottawa eZ = 61m.44s., L = 73m. San Juan e = 65m.21s., eL = 67m.30s. Long waves were also recorded at Philadelphia.

June 22d. Readings also at 1h. (Zürich), 4h. (near Bucharest, Bacau, Focsani, Cernauti, and Campulurg), 5h. (near Bucharest, near Istanbul, and Sofia), 6h. (Istanbul), 7h. (Riverview, Pasadena, Tucson, Mount Wilson, and Riverside), 9h. (Fort de France, Wellington, Christchurch, Auckland, and Riverview), 15h. (near Berkeley, Branner, Lick, and San Francisco), 18h. (Stalinabad, near Berkeley, and Branner), 19h. (near Campulung, Focsani, Cernauti, Bacau, and Bucharest), 23h. (Marseilles, Istanbul, and near Mizusawa).



These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

# 1943

### 241

June 23d. 17h. 17m. 45s. Epicentre 30°.9S. 72°.0W. (as on 1943 May 22d.).

Pasadena suggests deep focus.

11757				··8175, C=			-3;	h = +2	-	
D	=	951, E	:=-	•309;	j = - ·]	158, $H = +$	·486, £	c =860	5	
		Δ	AZ.	Р.	0 – C.	. S.	0 – C.	Su	pp.	L.
		0	0	m. s.	8.	m. s.	s.	m. s.	5-3-61 (C)	m.
La Plata	E.	12.5	112	2 51	-11	6 4	SSS			6.7
	N.	12.5	112	2 57	- 5	6 4 5 31	-20	(5 33?	) SS	5.6
	Z.	12.5	112	2 56	- 6	5 7	-16	·		6.7
La Paz	N.	14.8	15	e 3 32	0	e 6 20	+ 2	-		7.5
Huancayo		19.0	351	e 4 30	+ 4	i 8 5	+10	i4 50	PPP	e 10.6
Rio de Janeiro	N.	26.8	79	e 10 9	s	(e 10 9)	-10	-		e 13.7
Bogota	-12,0250	35.4	358	e 6 55	- 5					
Fort de France		46.6	16	e 8 27	- 5				1.1.1.1.1.1	6124 T T T
San Juan		49.3	9	e 8 48	- 5	e 15 48	-11	e 10 44	$\mathbf{PP}$	e 20·4
St. Louis	E.	71.2	346		—	e 20 35	- 5	e 20 59	$\mathbf{PS}$	
Fordham		71.4	359	i 11 22	- 2	and the second sec				
Tueson		72.8	327	i 11 34	+ 2			i 11 48	$P_cP$	e 38·4
La Jolla		76.5	323	e 11 56	+ 2					
Palomar	Z.	76.7	323	e 11 56	+ 1					
Riverside		77.5	323	i 12 la	+ 2			e 12 16	$P_{c}P$	
Mount Wilson		78.0	323	i 12 4a	+ 2			i 12 19	PcP	
Pasadena		78.1	323	i 12 4a	+ 2			i 12 18	$\mathbf{P_{c}P}_{\mathbf{P_{c}P}}$	
Santa Barbara		79.1	322	i 12 10	+ 2	· · · · · · · · · · · · · · · · · · ·				
Haiwee		79.5	325	i 12 12	+ 2			i 12 26	$P_cP$	
Tinemaha		80.3	325	i 12 16	+ 2			1 12 32	$\mathbf{P_{c}P}_{\mathbf{P_{c}P}}$	

Additional readings :---Tucson i =12m.1s., e =13m.35s. Mount Wilson iZ =12m.36s. Pasadena iZ =12m.36s. Haiwee eEN =12m.31s. Long waves were also recorded at Montezuma.

June 23d. Readings also at 0h. (near Berkeley), 5h. (Balboa Heights), 9h. (Istanbul), 10h. (near Berkeley), 11h. (Istanbul), 14h. (Ksara), 16h. (New Delhi), 18h. (Florence), 20h. (near Mizusawa), 22h. (Tacubaya and Merida), 23h. (Tucson and Pittsburgh).

June 24d. 12h. 15m. 34s. Epicentre 21°.0S. 65°.5W. Depth of focus 0.025. (as on 1939 July 4d.).

> $A = + \cdot 3875, B = - \cdot 8502, C = - \cdot 3563; \delta = -5; h = +4;$  $D = - \cdot 910, E = - \cdot 415; G = - \cdot 148, H = + \cdot 324, K = - \cdot 934.$

		Δ	Az.	Р.	0 – C.	s.	0 – C.	Su	pp.	L.
		٥	0	m. s.	8.	m. s.	8.	m. s.		m.
La Paz		5.2	329	i 1 31	+13					2.6
Huancayo		13.0	312	i3 5	+ 6	i 5 28	+ 8			e 7·5
La Plata		15.4	156	3 19	-10	5 55	-19			7.1
Bogota		26.8	341	e 5 26	+ 2	e 9 50	+ 6			
Cape Girardeau	E.	62.3	339			e 18 5	- 8	2010		
Tucson		68.4	321	i 10 41	- 2	e 19 30	+ 3		'	
Riverside		73.7	318	i 11 11	- 4					
Mount Wilson		74.3	318	i 11 15k	- 3	-			<del></del>	
Pasadena		74.3	318	i 11 15k	- 3	—		e 12 32	pP	
Haiwee		75.4	320	e 11 22	- 2	_	_			
Tinemaha	Z.	76.2	320	i 11 26	- 3		_	1 12 47	$\mathbf{pP}$	

Additional readings :---La Plata SZ = 5m.50s.?. Bogota i = 5m.30s. Tucson e = 11m.5s. Riverside eZ = 11m.21s. and 11m.31s. Mount Wilson iZ = 11m.24s.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

### 1943

.

242

June 24d. 20h. 21m. 33s. Epicentre 16°·1S. 168°·3E. Depth of focus 0.010. (as on 1942, Feb. 12d.).

 $\delta = -1$ : A = -.9413, B = +.1949, C = -.2756; h = +6;  $G = + \cdot 270$ ,  $H = - \cdot 056$ ,  $K = - \cdot 961$ .  $D = + \cdot 203, E = + \cdot 979;$ L. Supp. 0-C. 0 - C.s. Р. Az. m, m. s. 8, 8. m. s. 8. m.  $\mathbf{24}$ 229+ i4 i5 18.1 Brisbane E. i 5 37 19 217 $23 \cdot 5$ Riverview e 3 571 e 9 -65217 23.5

Sydney Wellington Christchurch		23·5 25·7 27·6	$170 \\ 173$	e 3 571 5 25 5 42	$^{+63}_{+2}$	$     \begin{array}{c}       9 & 29 \\       9 & 10 & 14     \end{array} $	-13 + 1	6 11	PP —	e 11·4 e 14·4
Mizusawa Berkeley	E.	60.5 84.3	337 49	$(10 \ 2)$ 1 1 2 2 4	$+ \frac{0}{2}$	$\begin{smallmatrix}10&2\\i&22&34\end{smallmatrix}$	P_4			e 41·7
Santa Clara	E.	84.3	49	e 12 4	-18	e 23 59	$\mathbf{PS}$			
Santa Barbara	Z.	84.8	53	e 12 33	+ 8	1 00 50		1 10 15	-D	e 35·6
Pasadena		85.9	53	1 12 31	+ 1	i 22 53	- 1	i 13 15	pP	e 35·6
Mount Wilson La Jolla Riverside Sitka Tinemaha	z.	$   \begin{array}{r}     86.0 \\     86.1 \\     86.4 \\     86.5 \\     86.9 \\   \end{array} $	$53 \\ 54 \\ 53 \\ 27 \\ 50$	i 12 31 e 12 31 e 12 33 e 13 15 i 12 38	$     \begin{array}{r}       0 \\       0 \\       + 42 \\       + 3     \end{array} $	e 15 58 e 22 46	PP [-2]	$   \begin{array}{r}     i \ 15 \ 55 \\     e \ 13 \ 14 \\     i \ 13 \ 17 \\     \hline     i \ 13 \ 21   \end{array} $	PP pP pP pP	e 36·1
Tucson New Delhi Bombay	N.	$91.0 \\ 98.5 \\ 100.1$	$57 \\ 297 \\ 286$	i 12 56	+_2	i 23 53 i 23 47 e 24 54	$[-10] \\ -5 \\ -5 \\ -5 \\ -5 \\ -5 \\ -5 \\ -5 \\ -$	i 13 41 i 23 58	pP sks	e 43·1 e 41·6
Florissant	E.	108.6 108.7	54 54	Contract	PPP	e 29 5 e 26 13	PPS S	e 27 33	PS	6 41 0
St. Louis	N.	100.1	31	6 41 00		702623 70623	- 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 199	* *		
Pittsburgh Ottawa San Juan Bermuda Ksara	N.W.	$   \begin{array}{r}     116.7 \\     118.8 \\     128.1 \\     129.4 \\     133.8 \\   \end{array} $	52 46 78 60 301	e 18 39 e 21 47 e 16 40	$[+2] PP \\ PP \\ (+21) $	e 26 32 e 30 30	PS	$e_{23}^{22} 2_{24}^{7}$	PPP PPP	e 52·4 52·4 e 33·0 e 71·4
Helwan De Bilt Uccle Stuttgart Kew	z.	$138 \cdot 3$ $141 \cdot 7$ $143 \cdot 1$ $143 \cdot 2$ $143 \cdot 6$	297 343 344 337 348	e 19 337 e 19 20	$\begin{bmatrix} 0 \\ [+42] \\ [+10] \\ [-3] \\ [+3] \end{bmatrix}$	e 28 42	SKKS	$\begin{array}{c} \mathbf{i} \ 22 \ \ 33 \\ \mathbf{e} \ 22 \ \ 46 \\ \mathbf{e} \ 22 \ \ 46 \\ \mathbf{e} \ 22 \ \ 46 \end{array}$	PP PP PP	e 41 • 4 e 79 • 4
Triest Zürich		143.6 144.6 145.4	330 336 334	A set of the set of	$[ + 3] \\ [ + 1] \\ [ + 2] \\ ]$	e 34 27		e 23 17	PKS	e 75·4

Paris 140.4 00% 110 40 **TE** 1 160 B W., 333 119 27 1] z. 145.9 ----Milan i 20 23 pPKP e 34 8  $\mathbf{PS}$ [+ 2] 329 i 19 30 146.2Florence [+ 8] z. 155.4 Toledo 21 29 pPKP [+78]25 11 PP 157.8 Almeria 27 57 [+77] e 21 48 pPKP e 80.4 [+81] 6 343 e 21 157.8 Granada Additional readings :---Brisbane iPN = 4m.8s.Riverview iPPZ = 5m.49s., iSEZ = 9m.4s., iN = 9m.35s., iE = 9m.41s., isSN = 10m.2s., iEZ =10m.6s., iN =10m.27s., iScSE =15m.55s. Wellington sPZ = 6m.27s. Christchurch i = 11m.31s., e = 12m.1s.Mizusawa gives eP = 20h.20m.20s. and eSN = 9m.34s. Berkeley iSN = 22m.38s., iZ = 23m.54s.Pasadena iZ = 15m.56s. Mount Wilson iZ = 12m.35s. Sitka i = 24m.5s., e = 29m.41s.Tucson ePP = 16m.46s., isS = 24m.52s.Bombay sSE = 26m.12s., iE = 26m.41s.Bermuda e = 37m.0s. Helwan eZ = 20m.0s., iEZ = 22m.45s. Uccle eZ = 23m.12s., epPPN = 23m.36s., eN = 36m.57s., eE = 42m.14s.Stuttgart eZ =21m.1s. Paris ipPKP = 20m.13s. Florence iPKPZ = 22m.53s., eSKPIE = 26m.6s., eSSSE = 43m.53s.Granada sPKP = 22m.1s., ePP = 25m.19s., PPP = 28m.42s., SKKS = 31m.48s., SKSP = 34m.3s., PPS = 39m.24s., SS = 44m.29s.

Long waves were also recorded at Philadephia, Honolulu, and Ukiah.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

# 1943

### 243

June 24d. Readings also at 1h. (Mount Wilson, Tucson, Riverside, Tinemaha, Stuttgart, and near Apia), 5h. (Merida, Tacubaya, and Tucson), 6h. (Ebingen, Pittsburgh, Mount Wilson, Riverside, Tucson, and Tinemaha), 7h. (Philadelphia), 10h. (Huancayo, Philadelphia, and near Mizusawa), 12h. (Toledo and near Sofia), 14h. (New Delhi, Florence, and near Triest), 15h. (near La Paz, Huancayo, Haiwee, Mount Wilson, Pasadena, Tucson, and Riverside), 16h. (near La Paz and near Tchimkent), 17h. (near Branner, Fresno, and Lick), 18h. (Mount Wilson, Pasadena, Riverside, and near Mizusawa), 19h. (Ebingen, Jena, Stuttgart, Strasbourg, Ravensburg, near Basle, and Zürich).

June 25d. 4h. Undetermined shock.

Intensity VI at Froid, Homestead, Redstone, and Reserve. Epicentre 45°·7N. 111°·7W. R. R. Bodle. United States Earthquakes, 1943, Washington, 1945, p. 9. The readings given do not appear to fit the above epicentre. Tinemaha iP = 29m.2s. Tucson eP = 29m.20s., eL = 34m.32s. Riverside ePZ = 29m.25s. Mount Wilson iPZ = 29m.26s. Pasadena ePZ = 29m.28s. Fordham eP = 30m.30s. Cape Girardeau ePN = 31m.45s.? and 31m.49s., eN = 33m.38s., iN = 34m.1s. Long waves were also recorded at Bozeman.

June 25d. 19h. 13m. 24s. Epicentre 17°·8S. 178°·8W. Depth of focus 0·070. (as on 1941, Nov. 4d.).

Pasadena suggests approximate epicentre 18°S. 178°W. Depth of focus 550km.

A = -.9526, B = -.0199, C = -.3038;  $\delta = +14$ ; h = +5; D = -.021, E = +1.000; G = +.304, H = +.006, K = -.953.

		۵ د	· Az.	Р. m. s.	0 – C. s.	S. m. s.	0 - C. s.	m. s.	pp.	. <b>L</b> . . <b>m</b> .
Apia Auckland Arapuni Tuai Wellington		$7 \cdot 9$ 19 $\cdot 8$ 20 $\cdot 8$ 21 $\cdot 2$ 24 $\cdot 0$	$\begin{array}{r} 60 \\ 195 \\ 192 \\ 187 \\ 192 \end{array}$	$   \begin{array}{r}     1 & 56 \\     1 & 6 & 1 \\     \hline     4 & 17 \\     4 & 41   \end{array} $	10 + 5 + 4	e 3 23 7 29 7 36 7 36 8 11	$ \begin{array}{r} - 5 \\ + 18 \\ + 9 \\ + 2 \\ - 9 \end{array} $	$i\ \overline{8}\ 26$ $14\ 29$ $14\ 42$	$\mathbf{ss}_{\mathbf{scs}}$	
Christchurch Brisbane Riverview Santa Barbara	E. N. Z.	the second se	$193 \\ 245 \\ 245 \\ 233 \\ 47$	$i \frac{5}{5} \frac{13}{15} \frac{15}{7} \frac{15}{15} \frac{45}{45} \frac{11}{1} \frac{1}{1}$	$+ \frac{3}{-3} + \frac{3}{-5} + \frac{3}{-5$	i 8 49 i 9 22 i 9 18 i 10 16	-14 + 4 = 0 + 3 = -14	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	ScS PP ScS pP pP	
Berkeley La Jolla Pasadena Mount Wilson Palomar	z.	76·7 77·4 77·4 77·5 77·9	$     \begin{array}{r}       44 \\       50 \\       48 \\       48 \\       50 \\     \end{array} $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	pP + 1 - 1 - 1 0	$\begin{array}{c} \mathbf{i} \ 20 4 \\ 20 12 \\ \underline{} \\ \underline{} \end{array}$	$-\frac{5}{-\frac{5}{-5}}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	PP PP PP	
Riverside Haiwee Tinemaha Tucson Sitka	z.	77 ·9 78 ·6 78 ·9 81 ·9 83 ·3	$48 \\ 46 \\ 45 \\ 52 \\ 23$	e 11 7 i 11 12 i 11 14 i 11 30	- 2 0 0 0	$e 21 \\ e 21 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ $	$\frac{-}{-\frac{2}{12}}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	pP pP pP	
College Bozeman Huancayo San Juan Ksara		$85.7 \\ 87.9 \\ 98.9 \\ 116.4 \\ 145.1$	$12\\40\\105\\76\\303$	= = 18 47	 [+ 5]	e 21 31 e 21 46 e 22 41 i 23 52	$ \begin{bmatrix} -9\\ -14\\ [+1]\\ [-4] \end{bmatrix} $	e 25 9 e 25 42 e 27 6 e 33 48 e 22 16	? ? PP	e 39·6
De Bilt Jena Uccle Stuttgart Basle	z. z.	$145.6 \\ 145.9 \\ 147.0 \\ 148.4 \\ 149.9 \\$	356 348 357 352 351	i 18 45k i 18 48 i 18 48k i 18 48k i 18 48 e 18 55	[+ 2] [+ 4] [+ 2] [+ 2] [+ 1] [+ 6]			e 43 51 e 21 0	<u>?</u> 	



These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

244

		Δ	Az.	Р.	0 – C.	s.	0 – C.	Su	pp.	L.
		0	•	m. s.	8.	m. s.	8.	m. s.		m.
Zürich		149.9	351	e 18 54k	[+5]				<del></del>	
Helwan	Z.	150.0	299	18 51	1+ 21	e 33 9	$\mathbf{PS}$	i 22 44	PP	
Chur	1.11.022-07	150.2	349	e 18 51	[+2]			e 21 40	3	
Triest	20	150-3	342	e 19 2	(+13)			· 전문(전문)		
Neuchatel		150.5	352	e 18 57	(+7)					
Granada		160.2	11	e 19 44	[+41]	46 26	8			
Additions Tuai 1 =							x			

Wellington i = 7m.49s.,  $P_cSZ = 11m.43s.$ , i = 15m.46s.,  $pS_cS = 17m.26s.$ Christchurch e = 10m.38s, and 12m.52s. Brisbane eSE = 12m.6s., eSN = 12m.16s., iSSE = 14m.59s.Riverview isSEN =13m.27s., iS_cSE =15m.19s.Berkeley eE = 23m.37s. Pasadena iE = 20m.28s., eN = 23m.37s.Mount Wilson iZ =11m.19s. Tucson ePP = 14m.54s. Stuttgart iZ =18m.53s. Helwan iZ = 19m.68.

June 25d. Readings also at 2h. (Fort de France and Mizusawa), 4h. (Florissant, near Ebingen, and Stuttgart), 5h. (Fort de France), 6h. (Tucson, Christchurch, and Wellington), 7h. (Tucson), 12h. (Bogota, Stuttgart, Riverside, Tinemaha, Tucson, Riverview, Auckland, and Wellington), 13h. (near Fort de France), 17h. (Pasadena, Mount Wilson, Tinemaha, Haiwee, Tucson, near Ferndale, Berkeley, Branner, and Lick), 22h. and 23h. (near Tashkent and Tchimkent).

τ.

June 26d. Readings at 1h. (near Berkeley), 2h. (near Ebingen (2) and Stuttgart (2)), 3h. 3h. (Oaxaca, Tacubaya, and Kew), 4h. (Paris, De Bilt, Granada, Cheb, Florence, and Uccle), 5h. (Fort de France), 6h. (near Fort de France, and near Bogota), 7h. (near Bogota), 8h. (near Mizusawa), 18h. (near Berkeley), 20h. (Mount Wilson, Pasadena, Tucson, and Riverside), 22h. (near Berkeley (2)).

June 27d. 10h. 5m. 27s. Epicentre 34°.4N. 24°.5E.

 $A = +.7524, B = +.3429, C = +.5624; \delta = -2; h = 0;$ D = +.415, E = -.910; G = +.512, H = +.233, K = -.827.

> $\triangle$  Az. P. O-C. S. O-C. Supp. L.

	هنك			- <b>*</b>		· · · ·	~~~ uj		
	0	0	m. s.	s.	m. s.	8.	m. s.		m.
Helwan	7.4	126	2 3	+11	3 25	+ 7	i 2 24	$\mathbf{P}_{\mathbf{g}}$	
	8.3	354	e 2 7		0 40		1 * 51	- 8	
Sofia						() - 7	1000		
Ksara	9.5	90	e 2 19	— <u>i</u>	e 4 15	+ 5	Contract Contract		
Bucharest	10.1	7	e 2 30	+ 2	i4 28	+ 3	i 5 31	Sr	6.7
Belgrade	10.8	345	e 3 11	8	e446	+ 4	e 5 34	Sr	i 6.0
DOIBYCHIC	1000		- 김희영 김희승		고 방송 영화	2	제품 전품		1.242
Communa	10.9	2	e 2 45?	+ 5	e 5 27 ?	Sr	e 2 51	PP	$7 \cdot 2$
Campulung	11.5	10	<b>A A A</b>	+ 25		~*	0 2 01		5.4
Focsani		the second se		T 20		1.000			
Bacau	12.3	. 8	e 3 391	+40					7.0
Kalossa	12.8	343	e 3 59	+53		_			e 7·3
Florence	13.9	316	i 2 59	-22	e69	+12		—	e 9.0
1 LOL CALCO	2.773767733	2012-012-012	170 I T 1997-9990	0.05560	2277.002	0.499.000.000			
Triest	13.9	327	e 3 19	- 2	15 37	-20			
1110au	14.2	343	1 000	2	e 6 3	- ĩ		1997	
Ogyalla				1 10			£ 00	DD	0.1
Milan	16.1	318	e4 7	+18	7 21	+32	5 29	$\mathbf{PP}$	$9 \cdot 1$
Chur	16.8	322	e4 0	+ 2	e 7 11	+-6	-		-
Zurich	17.7	322	e 4 21	+11				-	
						11. 2011			
Cheb	18.0	334	-		e 7 33?	+ 1			
	18.3	322	e 4 15	- 2		-			e 8.5
Basle	18.3	327	CONTRACTOR AND	- ī	e 7 42	+ 3	10.00		
Stuttgart			the second se		<ul> <li>A state of the sta</li></ul>			DD	e 10·2
Strasbourg	18.9	325	e 4 18 i 4 26	- 6	e 7 52	- 1	e5 5	$\mathbf{PP}$	e 11.6
Jena	19.0	336	14 26	0	e 7 53	- 2		-	e 10·9
		196556124							CORPOREMENTS
Clermont-Ferrand	19.8	312	o 4 35	0	e 8 23	+10			e 13.6
Potsdam	19.8	339			e 8 13	0	e 8 17	S	e 10.6
	20.0	295	i 4 24	-13	i 8 10	- 7	· · · ·	~	
Tortosa E.			4 4 57			1.00			
Paris	21.8	318	i 4 57	+ 1	e 8 50-	- 2			13.6
Uccle	22.0	324	e 4 57	- 1	e 8 56	0	—		e 11.6



These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943					245			
		Δ	Az.	Р.	0-C.	s. o-c.	Supp.	L.
		0	0	m. s.	s.	m. s. s.	m. s.	m.
Almeria		22.0	284	5 0	+ 2	i9 1 + 5	5 24 PP	11.4
De Bilt		22.5	329	i5 3	+1	e 9 3 - 2		e 12.6
Granada		22.9	285	i 5 12	+ 6	i9 16 + 3	6 3 PP	e 14.8
Copenhagen		22.9	343	e 5 5	- 1	9 14 + 1		11.6
Moscow		$23 \cdot 1$	18	5 9	+ 1	e 9 11 - 5		
Toledo		23.4	292	e 5 13	+ 2	e 9 21 0		
Kew		24.7	322	e 5 21	- 3	e 9 52 + 8		e 13.6
San Fernando	E.	$25 \cdot 1$	283	e 5 44	+16			
Tingolo	10	95.0	259	A 5 55	1 90	0 6 6 6 0	- 6 00 111	가 관계 가 가 있었다.

+20Upsaia 25.9 e 6 20 Е. 6 9 99 e 9 55 332 - 9  $\mathbf{PP}$ e 14·4 25.9 352 e 5 44 e 6 15 N. + 9 e 9 52 -12 $\mathbf{PP}$ e 15.6 ++ i642  $\mathbf{2}$ i 11 57 Sverdlovsk  $33 \cdot 2$ 36 3 -5 e7 7 e 12 45 65 + Tashkent 35.7 6 Additional readings :--Helwan  $P^{*}Z = 2m.37s., S^{*}N = 4m.9s.$ Bucharest iN = 5m.5s., iSE = 5m.13s., iSN = 5m.18s., iSSN = 5m.34s., iN = 5m.58s. Kalossa eE = 4m.7s. Ogyalla eN = 6m.13s. Jena iZ =4m.29s., eN =4m.49s. Uccle iSN = 8m.59s.Almeria PPP = 5m.40s.,  $P_cP = 8m.53s.$ , SS = 9m.44s.Granada pP = 5m.46s., pPP = 6m.18s., sPP = 6m.39s.,  $pP_cP = 9m.46s.$ , sS = 10m.9s.Kew eEZ = 10m.13s.?, eNZ = 11m.5s. Long waves were also recorded at Bergen.

June 27d. Readings also at 3h. (Milan), 4h. (Belgrade (2), Bucharest (2), Florence, Triest Stuttgart (2), Granada and near Andiian), 5h. (Triest, Granada, and near Berkeley), 16h. (Auckland), 17h. (Riverview, Sydney, Christchurch, Wellington, Tucson, Pasadena and Riverside), 18h. (near Sofia) 19h. (Oaxaca (2), Puebla (2), Tacubaya (2), and Tucson), 20h. (Haiwee, Tucson, Pasadena, Riverside, and Tinemaha), 22h. (near Tashkent), 23h. (Oaxaca, Puebla, Tacubaya, Tucson, and Riverside).

June 28d. 2h. Undetermined shock.

Auckland PP? = 43m.45s., S = 46m.50s., P_cP? = 47m.15s., L = 48m.45s.Tuai P = 46m.28s., S? = 47m.42s.Wellington S? = 47m.39s., Q? = 48m.36s., R = 50m.?.Riverview iE = 49m.9s., eS?E = 52m.58s., eLN = 54m.6s.Apia eEN = 50m.40s., eE = 51m.51s., eN = 52m.33s., eEN = 62m.18s.Sydney e = 51m.24s.7 and 36m.33s.Pasadena iPZ = 54m.29s., eLZ = 84m.18s.?.Mount Wilson iPZ = 54m.31s. Riverside iPZ = 54m.32s. Haiwee iP = 54m.38s.Tinemaha iPZ = 54m.40s.Tucson iP = 54m.47s., i = 55m.8s., eL = 94m.53s.Tacubaya PE = 59m.22s. Stuttgart ePKP?Z = 61m.57s., ePKP2?Z = 62m.30s., ePPZ = 66m.14s., eQ = 122m. Granada PKP = 68m.36s., SKKS = 74m.12s., SKSP = 78m.19s., iSS = 88m.26s., L = 130.6m. Pittsburgh eNW = 71m.25s. and 96m.26s. Long waves were also recorded at Christchurch, Philadelphia, Harvard, Kew, De Bilt,

and Paris.

June 28d. 15h. 5m. 21s. Epicentre 51°.7N. 178°.5W. (as on 1940 Aug. 5d.).

A = -.6221, B = -.0163, C = +.7828;  $\delta = +5$ ; h = -6; D = -.026, E = +1.000; G = -.782, H = -.020, K = -.622.

	$\Delta$	Az.	Р.	0-C.	s.	0-C.	Supp	<b>p.</b>	L.
54433/45	0	0	m. s.	8.	m. s.	8.	m. s.		m.
College	20.6	38	e 4 41	- 2	e 8 33	+ 4			e 11·1
Sitka	25.3	60	e6 5	$\mathbf{PP}$	e 10 18	SS			i 12·1
Sapporo	28.2	270	e 5 57	+ 1	_				
Nagano	33.9	263	e 6 47	0	-	—			<u> 1995</u>
Honolulu	34.3	144	e 8 24	$\mathbf{PPP}$	—			-	e 14·9
Misima	34.5	260	6 55	+ 3	—	_			
Osaka	37.0	262	7 13	0					
Kobe	37.1	262	6 36	-38	12 21	-40			
Ukiah	39.8	87			e 18 50	Q		_	e 21.9
Santa Clara	41.7	87	e 8 0	+ 8	e 18 15	SŠS		-	e 21.9

Continued on next page.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

	11 M M M M M		1000	
	Contract of the second	- <b>19</b>		
- 10 <b>- 10</b> - 10	Contraction of the second		- <b>1</b> - <b>1</b> - <b>1</b>	
1.1				
	and the second second second	- <b></b>		
			- <b>19</b> - <b>1</b>	
			- <b>1</b> - <b>1</b> - <b>1</b>	
- <b>1</b>	- <b>199</b> - 199			

246

			Az.	P. m. s.	0 – C. 8.	S. m. s.	0 – C. 8.	m. s.	op.	L. m.
Kagosima Bozeman Tinemaha Haiwee Santa Barbara		$42.1 \\ 43.5 \\ 44.2 \\ 45.0 \\ 45.0 \\ 45.0$	262 70 84 85 88	$e \begin{array}{ccc} e \begin{array}{c} 7 & 57 \\ e \begin{array}{c} 10 & 9 \\ i \begin{array}{c} 8 & 14 \\ 1 \end{array} \\ e \begin{array}{c} 8 \end{array} \begin{array}{c} 21 \\ e \end{array}$	+ 2 PPP + 2 + 2 + 2	$\begin{array}{c} e & 14 & 53 \\ e & 15 & 0 \\ \hline \end{array}$	$+\frac{7}{2}$	i 9 56 i 9 59	P _c P P _c P	e 18.0
Salt Lake City Pasadena Mount Wilson Riverside Palomar	z.	$45.8 \\ 46.1 \\ 46.2 \\ 46.7 \\ 47.5$	77 87 87 87 88	i 8 28 i 8 30 a e 8 34 e 8 39	$+ \frac{0}{2} + \frac{2}{1}$	e 15 54 i 15 17 e 15 18			$\overset{\mathbf{P_{cS}}}{\overset{\mathbf{P_{cS}}}{=}}$	e 20.9 e 18.8
La Jolla Tucson Scoresby Sund St. Louis Sverdlovsk	z.	$47.6 \\ 52.0 \\ 56.9 \\ 59.9 \\ 61.4$	88 84 9 65 328	e 8 40 i 9 13 e 9 48 e 9 44 10 17	$+ 1 \\ 0 \\ - 1 \\ -26 \\ - 3$	e 16 30 e 17 38 e 17 54 e 18 45	$-\frac{6}{-\frac{4}{-27}}$	e 18 5 e 21 38	ss 	e 27.2 e 27.6
Ottawa Seven Falls Fordham Philadelphia Moscow		$62.7 \\ 63.7 \\ 67.0 \\ 67.0 \\ 68.8 \\ $	$50\\46\\53\\55\\339$	5		e 21 15? e 20 21? e 20 16 e 19 45 20 10		e 21 0	s _c s	$\begin{array}{r} 28.7\\ 33.7\\ e 31.3\end{array}$
Tashkent Copenhagen De Bilt Kew Uccle	z.	70·3 72·6 76·5 77·2 77·8	$312 \\ 355 \\ 358 \\ 2 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 359 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ 350 \\ $	e 11 20  e 11 58	+ 3 - 3	e 20 34 20 51 e 21 39 e 21 39 e 22 23	+ 5 - 5 0 - 8 PS			e 43-7
Bermuda Cheb Stuttgart Paris Strasbourg		78.2 78.2 79.7 79.9 79.9	$52 \\ 353 \\ 356 \\ 0 \\ 356 \\ 356 \\ 0 \\ 356 \\ 0 \\ 356 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	$e_{12} \frac{1}{9} \frac{7}{9}$	- 4 3	e 22 53 e 29 39? e 21 57? e 20 59	$\frac{PPS}{SSS} - 16$	e 27 45?		e 39·9 e 45·7 e 40·9 47·7
Florence Bombay Toledo San Juan Granada	E.	84 · 5 86 · 4 88 · 7 88 · 8 91 · 4	353 297 5 61 4	i 12 41 e 12 56 18 14a	+ 5 - 1 PPP	$e \begin{array}{ccc} 23 & 30 \\ 1 & 26 & 40 \\ e \begin{array}{ccc} 24 & 20 \\ 26 & 13 \end{array}$	$+\frac{28}{?}$	e 24 16	PPS 	i 50.7 e 34.2 52.5

Tinemaha iZ = 8m.32s.,  $eS_cPZ = 13m.45s.$ Haiwee  $iS_cPZ = 13m.49s.$ 

Pasadena iZ = 8m.37s. and 8m.57s. Mount Wilson i = 8m.38s. Florence eSSE = 31m.4s. Granada SS = 34m.40s., SSS = 39m.31s., Phases wrongly identified. Long waves were also recorded at Harvard, New Delhi, and other European stations.

June 28d. Readings also at 0h. (Stuttgart), 1h. (Pasadena, Mount Wilson, Riverside, Tinemaha, Haiwee, Santa Barbara, La Jolla, Tucson, Stuttgart, and near Mizu-sawa), 11h. (near Sofia and near Mizusawa), 12h. (near Apia, and near Fort de France), 13h. (Pasadena, Mount Wilson, Tinemaha, Tucson, Stuttgart, and near Mizusawa), 14h. (Triest, near Bucharest, Bacau, Campulung, and Focsani), 16h. (Granada, San Fernando, and Toledo), 18h. (Granada, Bombay, Stuttgart, Kodaikanal, and Tananarive), 22h. (Tucson, Oaxaca, and Tacubaya).

June 29d. 9h. 5m. 5s. Epicentre 3°.0N. 125°.2E. Depth of focus 0.020.

A = -.5756, B = +.8160, C = +.0520;  $\delta = -12$ ; h = +.7;  $D = + \cdot 817$ ,  $E = + \cdot 576$ ;  $G = - \cdot 030$ ,  $H = + \cdot 042$ ,  $K = - \cdot 999$ .

	Δ	Az.	Р.	0 – C.	s.	0 – C.	Supp.	L.
	o	8	m. s.	8.	m. s.	8.	m. s.	m.
Miyakozima	21.7	1	e441	+ 2	8 28	+ 4		
Naha	23.2	5	i 4 55	+ 2				
Titizima	28.9	33	e 5 45	- 1	10 19	- 4		
Miyazaki	29.4	11	5 50	0	10 33	+ 2	16 18 S _c S	
Kumamoto	30.1	9	5 58	+ 1	10 36	- 6		

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943
------

10

1943					247			
		∆ °	Az.	P. m. s.	0 – C. s.	S. 0-C. m. s. s.	Supp. m. s.	L. m.
Hukuoka Koti Hamada Kobe Osaka	333	$0.8 \\ 1.4 \\ 2.4 \\ 2.9 \\ 2.9 \\ 2.9$	$     \begin{array}{r}       8 \\       13 \\       10 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\       16 \\ $	5 52 e 5 59 e 6 23 e 6 22 6 29	$-11 \\ -9 \\ +6 \\ +1 \\ +8$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$(16 29) S_{c}S \\ 8 48 P_{c}P \\ 7 34 PP$	16.5
Nagoya Zinsen Yokohama TokyoCen.Met.O	3 bs.E. 3	3.8 4.3 5.0 5.2 5.2 5.2	$18 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	-9 + 1 + 22 PP PP PP	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	i 14·0
Nagano Perth Wazima Sendal Mizusawa	3333	5.6 5.9 5.9 7.9 8.8	$17 \\ 196 \\ 16 \\ 20 \\ 20 \\ 20$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	+ 1 - 1 = 0 = 0 = 0	$egin{array}{cccccccccccccccccccccccccccccccccccc$	$i 1\overline{3}  5  s\overline{S} \\ 1\overline{7}  0  Q$	 17·0
Brisbane Calcutta Mori Sapporo	N. 4 N. 4	$   \begin{array}{c}     0 \cdot 5 \\     0 \cdot 5 \\     0 \cdot 7 \\     1 \cdot 3 \\     2 \cdot 4   \end{array} $	$141 \\ 141 \\ 302 \\ 17 \\ 17 \\ 17$	$\begin{array}{ccccccccccccc} i & 7 & 23 \\ i & 7 & 21 \\ e & 8 & 2 \\ e & 6 & 42 \\ e & 6 & 42 \\ & 7 & 42 \end{array}$	-2 -4 -49 +2	$\begin{array}{cccccccccccccc} i & 13 & 15 & - & 6 \\ i & 13 & 18 & - & 3 \\ i & 12 & 3 & & 7 \\ 13 & 35 & + & 2 \\ 13 & 54 & + & 5 \end{array}$	$i \overline{8} 57  P\overline{P}$ $- 17  27  S_c \overline{S}$	i 16·3 i 16·4
Riverview Sydney Colombo Kodaikanal Hyderabad	Е. 4	4 ·1 4 ·1 15 ·3 17 ·9 18 ·0	$149\\149\\277\\282\\291$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{c} 0\\ pP\\ + 5\\ + 1\end{array}$	$\begin{array}{c} i \ 14 \ 15 \ + \ 1 \\ e \ 14 \ 7 \\ \hline 16 \ 12 \ + \ 64 \\ 15 \ 10 \ + \ 1 \end{array}$	i 8 37 pP 10 25 PP i 8 56 pP	i 21.0
Dehra Dun New Delhi Bombay Auckland Stalinabad	N. (	52·2 52·2 53·6 50·8 52·3	$307 \\ 305 \\ 292 \\ 136 \\ 313$	$     \begin{array}{c}       e & 9 & \cdot & 5 \\       e & 8 & 55 \\       i & 9 & 8 \\       e & 10 & 3     \end{array} $	$+ 9 \\ - 1 \\ + 1 \\ - 4$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{ccccccc} 17 & 1 & \mathrm{sS} \\ 9 & 27 & \mathrm{pP} \\ 9 & 43 & \mathrm{pP} \\ 19 & 41 & \mathrm{sS} \\ & \end{array}$	
Tashkent Tchimkent Wellington Tuai Christchurch		62 · 9 63 · 0 63 · 0 63 · 4 63 · 9	$316 \\ 317 \\ 140 \\ 137 \\ 144$	i 10 13 e 10 13 10 9 10 15 10 13	+ 2 + 1 + 1 - 3 - 0 - 5	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	10 50 pP i 10 18 P 10 51 PcP	26.0
Sverdlovsk Honolulu College Moscow Ksara		72.7 76.8 86.0 86.2 87.8	$329 \\ 68 \\ 25 \\ 326 \\ 304$	i 11 19 i 11 39 i 12 25 e 12 36	+ 1 + 3 + -1 + 1 + 4	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	i 11 50 pP e 23 25 sS i 12 57 pP e 13 18 pP	e 31.0 e 35.1
Helwan Sitka Bacau Focsani Bucharest		91 ·9 92 ·6 93 ·5 93 ·5 94 ·4	300 33 316 315 315	e 12 53 e 16 37 e 13 4	$+\frac{2}{PP}$ +1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{ccccccc} e & 13 & 25 & pP \\ e & 24 & 46 & sS \\ \hline & & & & \\ \hline & & & & \\ i & 24 & 9 & S \end{array}$	i 36·3 40·9
Campulung Upsala Sofia Belgrade Ogyalla		$95.0 \\ 96.2 \\ 96.7 \\ 98.3 \\ 99.1$	316 331 313 316 319	e 13 13? e 19 38 e 13 14 e 17 51 e 15 25	+ 8 PPP + 1 PP 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	e 47-9
Copenhagen Potsdam Bergen Victoria Cheb	1 1 1	$\begin{array}{c} 00 \cdot 1 \\ 00 \cdot 9 \\ 01 \cdot 7 \\ 01 \cdot 7 \\ 02 \cdot 1 \end{array}$	$329 \\ 325 \\ 334 \\ 40 \\ 323$	$\begin{array}{r} 17 & 40 \\ e & 17 & 47 \\ e & 24 & 6 \\ \hline e & 17 & 56 \end{array}$	PP PP SKS PP	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\stackrel{23}{=} \stackrel{55}{\stackrel{\text{SKS}}{=}} \stackrel{\text{SKS}}{=} $	e 52·9 41·9
Jena Triest Scoresby Sund Stuttgart Florence	1 1 1	$02.3 \\ 02.7 \\ 03.5 \\ 04.5 \\ 04.9$	324 318 350 322 317	e 19 43 e 16 55 e 18 1 e 14 49 i 18 17k	PPP PP +61 PP	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	e 24 5 SKS e 26 20 SP e 25 4 S i 18 51 pP	e 42.7 e 54.2

Continued on next page.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

#### 1943

248

		$\Delta$	Az.	Р. m. s.	0 – C. s.	В. m. s.	0 - C. s.	Supp. m. s.	L. m.
Chur Zürich Strasbourg Milan Basle	Е,	$105.0 \\ 105.4 \\ 105.5$	$321 \\ 323 \\ 319$	$ \begin{array}{r} e & 18 & 15 \\ e & 18 & 26 \\ \hline & 18 & 20 \\ e & 17 & 45 \\ \end{array} $	PP PP PP PKP	e 24 17 e 24 28 e 24 21 i 24 18 e 24 22	[+4] [+13] [+5] [+1] [+4] [+4]	$ \begin{array}{c}                                     $	
Uccle Aberdeen Neuchatel Paris Kew	E.	$106.5 \\ 106.6 \\ 106.6 \\ 108.5 \\ 108.8 \\$	$339 \\ 321 \\ 324$	e 13 59 i 9 15 e 18 26 e 14 8 e 14 8	P PP P P	$ \begin{array}{r} \mathbf{i} & 24 & 25 \\ \mathbf{i} & 24 & 24 \\ \mathbf{e} & 24 & 24 \\ \mathbf{e} & 24 & 24 \\ \mathbf{e} & 24 & 35 \\ \end{array} $	$[+ 5] \\ [+ 3] \\ [+ 3] \\$	e 27 23 PS e 18 43 PP e 18 43 PP	e $53 \cdot 6$ $31 \cdot 9$ e $44 \cdot 9$
Tinemaha Saskatoon Pasadena Mount Wilson Riverside	z. - z. z.	$109.0 \\ 109.8 \\ 110.0 \\ 110.1 \\ 110.7 \\$	31 52 52	e 14 12 e 26 10 e 14 24 e 14 16 e 14 18	P P P P	i 2444	[+ <u>9</u> ]	e 18 8 PKP e 34 4 SS i 18 17 PKP i 18 17 PKP e 18 18 PKP	43·9 43·9
Tortosa Tucson Toledo Almeria Granada	E.	$113.4 \\ 116.4 \\ 116.9 \\ 117.3 \\ 117.9 \\$	51 318	e 18 59 e 15 20 e 19 42 e 19 38 19 15	PP [+76] PP pPKP	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{bmatrix} -12 \\ PS \\ [+ 8] \\ [+ 5] \\ [+ 5] \end{bmatrix}$	i 25 38 SKKS e 18 29 PKP 20 4 pPP 19 47 PP	e 53·4 57·5
San Fernando Chicago St. Louis Seven Falls Ottawa	E.	$120.1 \\ 126.4 \\ 127.2 \\ 128.1 \\ 128.3$	30 34 13	e 20 36 e 21 31 e 18 37 e 28 37 ? e 28 37 ? e 28 37 ?	pPP pPP [- 8] PKKP PKKP	i 25 24 e 25 32 e 25 27 e 38 1 e 32 25		$\begin{array}{c} \mathbf{e} \ 30 \ 17 \ \mathbf{PS} \\ \hline 38 \ 78 \ \mathbf{SS} \end{array}$	64 · 9 
Pittsburgh Fordham Philadelphia Bermuda La Plata		131.0 133.0 133.4 143.6 148.1	19 21	e 22 3 i 22 14 e 23 2 e 23 14 (19 17)	pPP pPP ? pPP [- 6]	e 38 47 e 33 1	ss PS	i 22 8 ? e 46 57 ? e 35 59 ?	e 59·3 19·3
San Juan Huancayo Bogota La Paz	z.	$156.0 \\ 157.8 \\ 159.3 \\ 161.2$	116 68	e 20 5 e 20 3 e 33 55? i 19 45 a	[+30] [+25] [+25] [+4]	$e \begin{array}{c} 30 & 5 \\ i \begin{array}{c} 30 & 34 \\ \hline 30 & 52 \end{array}$	SKKS SKKS	e 34 4 SKSP i 34 557 9 i 24 12 PP	$e 45 \cdot 2 \\ 78 \cdot 9$
Additional re Kobe sS = 1			=16m	.358.					

```
Kobe sS = 13m.5s., S<sub>c</sub>S = 16m.35s.
Osaka SS = 12m.47s.
Tokyo iE = 10m.10s., iP<sub>c</sub>PN = 12m.12s., iSS = 13m.21s.
```

```
Perth i =14m.33s.
Sapporo i = 14m.41s.
Riverview iPPZ = 9m.36s., iS_cSN = 17m.29s., iEZ = 17m.36s.
Wellington P_cP?Z = 10m.35s., sPZ = 11m.8s., PP?Z = 12m.32s., PPP?Z = 14m.15s., iZ = 19m.5s., sS = 19m.48s., SS = 22m.40s., iZ = 25m.13s.?, SSS = 25m.55s.
Dehra Dun eN = 12m.43s. and 15m.49s.
New Delhi PcPN = 10m.4s., PPN = 10m.5%s., PPPN = 12m.21s., SSN = 17m.7s., ScSN =
     18m.31s., SSN =19m.51s., SSSN =20m.52s. and 21m.45s.
Bombay P_cPE = 10m.7s., PPEN = 11m.13s., sSEN = 17m.27s., S_cSE = 18m.34s., SSN = 10m.7s.
     20m.14s., SSSN = 22m.10s.
Christchurch S_cS = 19m.57s., SS = 22m.32s.
College eSS = 28m.23s., eSSS = 32m.28s.
Moscow pPP = 16m.25s., sS = 23m.29s.
Ksara e = 24m.8s.
Helwan iZ = 17m.1s., SKSE = 23m.11s., iE = 24m.10s., PSEN = 24m.37s.
Sitka iSKS = 23m.15s., iSS = 30m.6s.
Bucharest iN = 24m.25s.
Upsala i = 24m.33s., eSS! = 28m.11s., eN = 34m.29s.
Belgrade ePP = 18m.3s.
Copenhagen 18m.14s.
Potsdam eE = 18m.24s.
Scoresby Sund eS = 25m.18s., e = 31m.5s.
Stuttgart epPZ = 15m.53s., ePPZ = 18m.11s., epPPZ = 18m.42s., ePPPZ = 20m.25s.,
    ePS = 26m.30s., e = 28m.24s.
Florence iPPZ = 19m.31s, isSE = 25m.17s, iSSE = 26m.23s.
Uccle eE = 25m.78.
Kew ePPPZ = 20m.53s., eSKKSEN = 25m.29s., ePSEZ = 27m.45s., ePPSEZ = 28m.43s.
Pasadena iE = 19m.31s., iZ = 21m.37s., iN = 26m.14s., eSPZ = 28m.2s.
Tucson e = 19m.15s., i = 19m.34s., e = 21m.52s., epPS = 30m.7s.
Almeria sP = 20m.15s., P_cP = 21m.58s., sP_cP = 22m.44s., pP_cS = 26m.9s., S_cS = 29m.39s.,
    pS_cS = 30m.14s.
```

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

### 1943

#### 249

Granada pPP = 20m.23s., SKP = 20m.58s., PPP = 22m.24s., pPPP = 23m.8s., SKKS = 26m.20s., S = 26m.47s., SS = 34m.32s. Chicago eSS = 37m.32s. St. Louis eE = 37m.24s. and 40m.6s. Fordham i = 23m.13s., e = 38m.3s. La Plata PKPN = 19m.30s. Phases have been wrongly indentified. San Juan ePP = 24m.30s., e = 34m.40s., 38m.31s., and 43m.9s. La Paz iPKP_{sZ} = 20m.30s., PSKS = 34m.28s.

June 29d. Readings also at 0h. (De Bilt, Aberdeen, Kew, Paris, and Granada), 1h. (Santa

Clara, Kew, De Bilt, near Tashkent, and near Mizusawa), 2h. (near Fresno, Lick, Berkeley, Branner, and Santa Clara), 4h. (Haiwee (2), La Jolla, Tinemaha (2), Pasadena (2), Mount Wilson (2), Riverside (2), Tucson (2), Bogota, La Plata, near La Paz, and near Lick, Berkeley, Branner, and Fresno), 7h. (near Fort de France), 8h. (La Paz, near Fort de France, and near Tashkent), 16h. (near Mizusawa), 17h. (near Strasbourg, Basle, Stuttgart, Ravensburg, Zürich, and Ebingen), 22h. (Riverside, Tucson, and near La Paz), 23h. (Stuttgart and near Mizusawa).

June 30d. 10h. 49m. 6s. Epicentre 7°.0S. 123°.0E. Depth of focus 0.100. (as on 1943, Feb. 21d.).

> $A = -.5406, B = +.8325, C = -.1211; \delta = -.3; h = +.7;$ D = +.839, E = +.545; G = +.066, H = -.102, K = -.993.

		Δ	Az.	Р. m. s.	O - C.	S. m. s.	0 – C. s.	m. s.	op.	L. m.
Brisbane Riverview Sydney Titizima Miyazaki		° 35 ·0 37 ·3 37 ·3 38 ·6 39 ·5	$130 \\ 140 \\ 140 \\ 29 \\ 11$	i 5 56 i 6 19k e 7 6? 6 30 6 47	-6 -1 +46 -1 +9	i 10 45 i 11 27 e 11 21 11 41 11 59	-6+2+4-3+2	i 8 8 15 37	pP ScS	i 13.9
Kumamoto Hukuoka Koti Hamada Kobe		$40.3 \\ 41.0 \\ 41.6 \\ 42.5 \\ 43.0$	$10 \\ 9 \\ 13 \\ 11 \\ 15$	e	$+ \frac{2}{5}$	$\begin{smallmatrix}&12&8\\&12&14\\e&12&26\\e&12&39\\&12&48\end{smallmatrix}$	$- \begin{array}{c} 0 \\ - \\ 1 \\ 0 \\ + \end{array} \\ 2 \end{array}$			
Nagoya Zinsen Misima Calcutta Yokohama	N. Z.	$\begin{array}{r} 44 \cdot 0 \\ 44 \cdot 4 \\ 44 \cdot 5 \\ 44 \cdot 9 \\ 45 \cdot 0 \end{array}$	$17 \\ 4 \\ 18 \\ 312 \\ 19$	$\begin{array}{r} 7 & 11 \\ & 7 & 19 \\ e & 9 & 15 \\ 13 & 13 \end{array}$	-2 +2 PP S	$\begin{array}{ccccccccc} 12 & 55 \\ e & 13 & 0 \\ & 13 & 8 \\ i & 13 & 17 \\ (13 & 13) \end{array}$	-5 - 6 + 1 + 4 - 1	i 16 8 e 13 34		
Tokyo Nagano Sendai Kodaikanal Mizusawa	Е.	$45 \cdot 3 \\ 45 \cdot 7 \\ 48 \cdot 0 \\ 48 \cdot 5 \\ 48 \cdot 9$	19 16 19 291 19	e 7 25 e 7 26 7 44 i 10 39 e 7 44	+ 2 0 + 1 PP - 6	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$^{-1}_{+2}$ $^{+3}_{+3}$ +4	1 13 25  e 7 49	? 	
Sapporo Kaimata Auckland Bombay Christchurch		$52.6 \\ 55.4 \\ 55.6 \\ 55.7 \\ 56.6$	$16\\138\\130\\299\\139$	$     \begin{array}{r}       7 & 54 \\       8 & 39 \\       1 & 32 \\       1 & 32     \end{array} $	$-\frac{23}{+3}$ pP	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	-21 + 2 + 4 + 4 + 3	1 8 49 1 17 28 1 17 25 e 17 27	Scs Scs	
New Delhi Wellington Tuai Stalinabad Tashkent	N.	$56.6 \\ 57.1 \\ 58.0 \\ 67.7 \\ 68.7$	$312 \\ 135 \\ 132 \\ 317 \\ 319$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	pP - 2 - 1 + 1 + 1	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	-21 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +	17 26 1 17 34	ScS ScS	
Sverdlovsk Honolulu Ksara Moscow Helwan		$81.3 \\ 82.5 \\ 91.5 \\ 93.2 \\ 94.9 \\$	$331 \\ 68 \\ 303 \\ 326 \\ 299$	i 11 10 e 11 18 e 12 7 12 6 e 12 16	$     \begin{array}{r}       0 \\       2 \\       + \\       + \\       + \\       2     \end{array} $	i 20 28 e 20 44 e 21 39 21 44 i 22 34	$+ 4 \\ -23 \\ -32 \\ + 4$	e 14 16 i 26 42	pP sS	
College Bucharest Sofia Sitka Upsala		$95.9 \\ 99.8 \\ 101.8 \\ 102.1 \\ 103.7$	$25 \\ 314 \\ 312 \\ 33 \\ 330 \\ 330 \\$	= e 17 10	PP	e 22 38 i 22 19 i 22 38 i 22 38 i 22 29 e 22 26	$ \begin{bmatrix} - & 1 \\ + & 8 \\ [+18] \\ [+8] \\ [-2] \end{bmatrix} $	e 24 11 e 26 18? e 25 17 i 25 28	SP PS SP SP	34·9



These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1 <b>1 1</b>	<i>.</i> <b>. . .</b>	<b>.</b>	<b>6</b> 3
	- 546	62	34E -
	- 278	122	
11.5			
1.0	12540	1.00	

250

Copenhagen Triest Cheb Bergen Florence	N.	$\triangle$ 107.3 107.5 108.5 109.5 110.5	${}^{\circ}_{326}_{316}_{320}_{333}_{314}$	P. m. s. 19 56 e 17 24 e 20 3	O -C. s. PPP PKP	S. $0 - C$ . m. s. s. 22 49 [+3] i 23 49 S e 26 54? PS e 23 54? [+60]	m. s. 26 6 SP	L. m.
Stuttgart De Bilt Scoresby Sund Uccle Berkeley	z.	${}^{110\cdot 8}_{112\cdot 3}_{112\cdot 8}_{113\cdot 3}_{113\cdot 8}$	$319 \\ 324 \\ 348 \\ 323 \\ 51$	e 17 21 i 20 31k e 20 51 e 18 40 i 17 28	[+,2] ; ; [+3]	e 26 39 SP i 26 55 SP e 27 6 SP e 27 1 SP	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	e 61·1
Paris Kew Santa Barbara Tinemaha Haiwee	z.	$115.1 \\ 115.8 \\ 116.4 \\ 117.0 \\ 117.5$	$321 \\ 325 \\ 55 \\ 52 \\ 52 \\ 52$		[+3] [+3]	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	e 27 25 SP i 20 10 pPKP i 20 14 pPKP i 20 13 pPKP	
Pasadena Mount Wilson Riverside La Jolla Palomar	Z.	$117.7 \\ 117.8 \\ 118.4 \\ 118.7 \\ 118.9 \\$	54 54 56		P P P [+3]	$ \begin{array}{c} i \ 23 \ 36 \\ e \ 23 \ 35 \\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	[1] A. M.	
Tortosa Granada Tucson Florissant St. Louis	E.	$119.6 \\ 123.1 \\ 124.1 \\ 136.3 \\ 136.5$	$313 \\ 310 \\ 54 \\ 38 \\ 38 \\ 38$	$\begin{array}{r} & 17 & 44 \\ e & 17 & 32 \\ i & 18 & 8 \\ i & 18 & 6 \end{array}$	$\begin{bmatrix} + & 1 \\ [ -13 ] \\ [ & 0 ] \\ [ - & 3 ] \end{bmatrix}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	19 39 PP	
Cape Girardeau Seven Falls Ottawa Pittsburgh Harvard	N.	$137.8 \\ 138.3 \\ 138.4 \\ 140.9 \\ 142.4$	$40 \\ 14 \\ 20 \\ 27 \\ 17$	e 18 3 e 18 15 e 21 54? i 18 13 i 18 19	$\begin{bmatrix} - & 9 \\ + & 3 \end{bmatrix}$ PP $\begin{bmatrix} - & 5 \\ - & 2 \end{bmatrix}$	(e $2\frac{1}{4}$ 22) $\left[-\frac{1}{1}\right]$	e 21 6 pPKP i 21 58 PP i 21 4 pPKP	33·9 e 24·4
Fordham Philadelphia Bermuda La Paz San Juan		$143.1 \\ 143.4 \\ 153.7 \\ 154.2 \\ 165.6 \\$	$21 \\ 23 \\ 15 \\ 155 \\ 37$	$ \begin{array}{r} i 18 & 19 \\ i 18 & 20 \\                                   $	$ \begin{bmatrix} - & 3 \\ - & 2 \end{bmatrix} \\ \begin{bmatrix} + & 6 \\ + & 7 \end{bmatrix} $	= '= e 43 29 ss	(e 35 48) PPS (e 36 24) PPS e 27 17 PPP	e 35.8 e 36.4

Additional readings :--

Riverview isSN = 14m.35s., iEZ = 14m.42s.

Tokyo iE = 11m.46s.

Bombay isSN =19m.7s., isSE =19m.10s., iE =21m.31s., iN =22m.37s., iE =22m.40s.

```
Christchurch e =19m.27s., i =20m.46s. and 23m.8s.
Tuai i = 9m.19s., i = 16m.36s.
Ksara e = 25m.46s.
Helwan eZ = 14m.14s. and 18m.11s., i = 21m.54s.
College eSS = 29m.36s.
Sitka e = 23m.40s., i = 26m.33s., iSS = 30m.54s., e = 31m.4s., esSS = 34m.56s.
Upsala iE = 22m.32s., eE = 23m.16s.
Copenhagen 23m.46s., 24m.26s., 27m.18s., 28m.17s., and 32m.12s.?
Stuttgart eZ = 20m.8s., e = 24m.52s., eZ = 28m.21s., e = 36m.14s.
De Bilt eN = 25m.9s., eZ = 32m.1s., e = 36m.59s. and 40m.54s.
Scoresby Sund eS = 25m.7s., esPS = 31m.13s., e = 32m.57s., esSS = 37m.2s.
Uccle eZ = 20m.12s. ? and 28m.12s.
Kew eE = 23m.27s., ePPE = 24m.42s., eEN = 25m.38s., eZ = 28m.37s., e = 29m.30s
     ePSEZ = 32m.44s., eSSEN = 37m.37s., eQZ = 44.9m.
'Santa Barbara iZ =18m.49s.
Tinemaha iPKP = 17m.34s., iPPNZ = 18m.53s., ePKKPZ = 28m.5s.
Haiwee iPPEZ = 18m.53s.
Pasadena iPKP = 16m.36s., ePPE = 18m.51s., iPPZ = 18m.58s., iZ = 19m.21s., eEN
     24m.57s., iPKKPZ = 28m.4s.
Mount Wilson iPKP = 17m.36s., iPP = 18m.59s., iPKKPZ = 28m.3s.
Riverside iPKP = 17m.36s., iPP = 19m.1s., iPKKPZ = 27m.58s.
La Jolla iPKP =17m.36s., iPP =19m.1s.
Granada S = 25m.58s.
Tucson iPKP = 17m.48s., i = 19m.52s., 21m.33s., and 27m.37s.
Florissant iZ = 20m.57s., iE = 21m.43s.
St. Louis iZ =18m.16s. and 20m.59s., iE =21m.48s., iZ =29m.52s.
Cape Girardeau iN = 21m.48s., eN = 26m.58s.
Philadelphia i = 18m.31s., i = 18m.43s.
San Juan e = 19m.28s., epPPP = 29m.54s., e = 33m.18s. and 47m.54s.
Huancayo records long waves.
```



These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

### 1943

۰.

#### 251

June 30d. 20h. 13m. 1s. Epicentre 15°·1S. 73°·9W. Depth of focus 0·005. (as on 1941 Oct. 15d.).

> A =  $+ \cdot 2679$ , B =  $- \cdot 9280$ , C =  $- \cdot 2589$ ;  $\delta = -2$ ; h = +6; D =  $- \cdot 961$ , E =  $- \cdot 277$ : G =  $- \cdot 072$ , H =  $+ \cdot 249$ , K =  $- \cdot 966$ .

		Δ	AZ.	Р. m. s.	0 - C. s.	S. m. s.	0 – C. s.	m. s.	pp.	L. m.
Huancayo La Paz Bogota Balboa Heights San Juan	z.	$3 \cdot 3 \\ 5 \cdot 7 \\ 19 \cdot 6 \\ 24 \cdot 5 \\ 34 \cdot 1$	$336 \\ 105 \\ 359 \\ 347 \\ 13$	i 1 0 i 1 23a i 4 27 e 5 20 e 6 37	+ 9	i 1 28 i 2 9 e 8 24 i 11 51	-1 -20 +26 -10	= e 8 20		2.5 i 10.6 i 14.4
Bermuda Columbia Philadelhpia Pittsburgh St. Louis		48.0 49.3 54.8 55.5 55.6	$11 \\ 353 \\ 359 \\ 355 \\ 345$	e 8 34 e 8 36 i 9 21 i 9 31 i 9 30	$- \begin{array}{c} 0 \\ 8 \\ - 5 \\ 0 \\ - 1 \end{array}$	$\begin{array}{cccccccc} e & 15 & 24 \\ e & 15 & 36 \\ e & 16 & 54 \\ i & 17 & 7 \\ i & 17 & 10 \end{array}$	-29 - 96 - 20	$e 9 59 \\ i 18 2 \\ e 9 52$	pP pP	e 19·3 e 20·1 e 25·3
Fordham Tucson Ottawa La Jolla Palomar	Z. Z.	$55.7 \\ 58.9 \\ 60.2 \\ 63.2 \\ 63.3$	$1\\323\\358\\320\\320$	$\begin{array}{r} 9 & 31 \\ i & 9 & 56 \\ e & 10 & 2 \\ i & 10 & 25 \\ e & 10 & 26 \end{array}$	-11 + 12 + 12 + 12	e 17 8 e 18 7 	- 4 - 4 	e 10 9 10 22 i 10 22 e 10 50	pP sP	30 <u>-0</u>
Riverside Mount Wilson Pasadena Tinemaha San Fernando	Z. E.	$64.0 \\ 64.6 \\ 64.6 \\ 66.6 \\ 81.8 \\ $	$320 \\ 320 \\ 320 \\ 320 \\ 322 \\ 49$	i 10 30 i 10 35k i 10 35k i 10 35k i 10 49 e 12 29		= e 22 53	+33	i 10 57 i 11 1 i 11 2 i 11 14	sP sP sP	
Granada Almeria Toledo Tortosa Kew	E.	84.0 84.7 84.8 88.4 91.8	49 50 46 47 38	i 12 27 e 12 27 i 12 28 12 27 e 12 59	$^+$ $^{2}_{-1}$ $^ ^{1}_{-19}$ $^ ^3$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+ 6 -10 - 5 [-16] +12	$   \begin{array}{ccccccccccccccccccccccccccccccccccc$	pP pP PS PPS	41·3 
Paris De Bilt Stuttgart Triest Copenhagen		$92.5 \\ 95.2 \\ 96.7 \\ 99.0 \\ 100.3$	$     \begin{array}{r}       41 \\       38 \\       42 \\       46 \\       36 \\     \end{array} $	i 13 5 i 13 17 e 13 23 e 13 29 17 44	$     \begin{array}{c}             0 \\             - 1 \\             - 6 \\             PP \end{array}         $	e 24 24 		e 16 59	PP	51.0 
Additional rea San Juan i			e =1	2m 559						

San Juan 1 = 11m.55s., e = 12m.55s.Philadelphia e = 9m.36s., ePP = 11m.24s., isS = 17m.42s.

St. Louis PPZ = 11m.41s., isSE = 17m.52s., eSSN = 21m.4s. Fordham i = 17m.56s. Tucson i = 10m.47s., ePKP,PKP = 39m.36s. Mount Wilson e = 11m.15s. Pasadena iZ = 11m.19s. Granada sS = 23m.47s. Almeria PP = 16m.4s., pS = 23m.8s., PS = 23m.52s., sPS = 24m.18s. Kew ePPS?Z = 25m.38s., eSSS?Z = 33m.59s.?. Long wayes were also recorded at La Plata.

June 30d. Readings also at 0h. (Basle), 4h. (near Apia), 9h. (Focsani), 11h. (Bogota and Stuttgart), 12h. (New Delhi), 13h. (Balboa Heights and La Paz), 15h. (near Berkeley), 19h. (Sitka).



These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

÷.

1



The scanned images of the bulletins of the International Seismological Summary (ISS) have been obtained as part of a global earthquake relocation project (Villaseñor et al., 1997) initiated with funding from the US National Science Foundation through grant EAR-9725140 and collected by SGA <u>Storia Geofisica Ambiente</u> (Bologna) on behalf of the <u>Istituto</u> <u>Nazionale di Geofisica e Vulcanologia</u> (Rome), in the frame of <u>Euroseismos</u> project.

A digital hypocenter file of the ISS (Villaseñor and Engdahl, 2005) can be obtained from the USGS web site: <u>http://earthquake.usgs.gov/scitech/iss/</u>

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

Villaseñor, A., and E.R. Engdahl, *A digital hypocenter catalog for the International Seismological Summary,* Seism. Res. Lett., vol. 76, no. 5, pp. 554-559, 2005.

Villaseñor, A., E.A. Bergman, T.M. Boyd, E.R. Engdahl, D.W. Frazier, M.M. Harden, J.L. Orth, R.L. Parkes, and K.M. Shedlock, *Toward a comprehensive catalog of global historical seismicity*, Eos Trans. AGU, vol. 78, no. 50, pp. 581, 583, 588, 1997.